
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 9

Assignment 9.1 Quiz

1. Let C be a class, composed from the Mixins M and N. Suppose, M and N both imple-
ment a method f(). Is it true that

� The conflicting methods f() from M and N lead to a compiler error and have
to be resolved manually

� There is no compiler error, but one implementation of f() from M or N over-
writes the other

2. Now assume, that M and N are Traits instead of Mixins. Is it true that

� The conflicting methods f() from M and N lead to a compiler error and have
to be resolved manually

� There is no compiler error, but one implementation of f() from M or N over-
writes the other

3. (Attention: Several answers might be true for this question!)
c1 t c2 = c1 t� c2 is true for

� c1 = {a = 0x1}, c2 = {b = 0x1}

� c1 = mixin(c3)(c2), c2 = {a = 0x1}, c3 = {a = 0x2}

� c1 = mixin(c2)(c3), c2 = {a = 0x1}, c3 = {a = 0x2}

� c1 = mixin(c3)(c4), c2 = c3 . c4, c3 = {a = 0x1}, c4 = {a = 0x2}

4. Why is exclusion an important composition operator for Traits?

Suggested Solution 9.1
Resolving conflicts is otherwise only possible via reimplementation of a method, leading
to more redundant code. Consider the following Java 8 code as an example:

interface A {
default int f() { return 0; }

}

interface B {
default int f() { return 1; }

}

class C implements A,B {
public int f() { return A.super.f(); }

}

Since Java 8 does not support exclusion, the method f in class C must be reimplemen-
ted.

1



Assignment 9.2 Having fun with Mixins
Reconsider the example from the lecture about synchronized file- and socket-streams. The
following classes are given:

FileStream = {read = 0x1, write = 0x2}
SocketStream = {read = 0x3, write = 0x4}
SyncRW = {read = 0x5, write = 0x6}

Your task is to come up with a new class SynchedF ileStream which mixes the class
SyncRW into the class FileStream.

Suggested Solution 9.2

mixin(SyncRW ) = λx.SyncRW . x = λx.{super 7→ x} t� (SyncRW t� x)

Now define the actual new class:

SynchedF ileStream = mixin(SyncRW ) ◦ FileStream
= {super 7→ FileStream} t� (SyncRW t� FileStream)
= {super 7→ FileStream} t� {read = 0x5, write = 0x6}
= {super 7→ FileStream, read = 0x5, write = 0x6}

Assignment 9.3 Mixins Ruby

Implement the Stream Wrapper scenario from the lecture based on Ruby Mixins

Suggested Solution 9.3
streams.rb

Assignment 9.4 Implementation differences: Traits vs. Mixins
A next mainstream implementation of traits comes with the virtual extension methods in
Java 8.

• Implement a solution for the Stream Wrapper problem. You may use the following
code:

interface Stream {
int read();

}

interface FileStream extends Stream {
default int read() { /* ... */ }

}

interface NetworkStream extends Stream {
default int read() { /* ... */ }

}

2



interface Synch {
default void acquireLock() { /* ... */ }
default void releaseLock() { /* ... */ }

}

• Compare your solution to the one based on Mixins from the above assignment. What
are the differences? Which one is more flexible w.r.t. software engineering aspects?

Suggested Solution 9.4
Traits.java

There are two solutions to come up with something like the Synch-Mixin:

• Either statically generate particular wrapper interfaces to forward statically to the
right parent (as done in the SynchFileStream).

• Or generate a dynamic wrapper interface which opens up a new abstract method,
which has to be dispatched to the right dynamic predecessor (kind of imitated via
the interfaces SynchWrapper and SynchNetworkStream )

If we compare these solutions via Traits with the solution based on Mixins from above, we
see that the overwriting of method read() has to be done explicitely, if we resort to Traits,
where as with Mixins, we automatically overwrite. Mixins further offer the possibility to
treat the parent class as of variable type, while in Java’s Virtual Extension Methods, we
cannot do so.

3


