Programming Languages TI.ITI

Dr. Michael Petter, Raphaela Palenta WS 2018/19

Exercise Sheet 9

Assignment 9.1 Quiz

1. Let C be a class, composed from the Mixins M and N. Suppose, M and N both imple-
ment a method £ (). Is it true that

|:| The conflicting methods £() from M and N lead to a compiler error and have
to be resolved manually

|:| There is no compiler error, but one implementation of £() from M or N over-
writes the other

2. Now assume, that M and N are Traits instead of Mixins. Is it true that

|:| The conflicting methods £() from M and N lead to a compiler error and have
to be resolved manually

|:| There is no compiler error, but one implementation of £() from M or N over-

writes the other

3. (Attention: Several answers might be true for this question!)
¢ Ucs =c; Ucy is true for

[] c={a=0z1}, c={b=0z1}

[] c1 = mizin(es)(ca), ¢ ={a=0z1}, c3={a=0s2}

[] c1 = mizin(ca)(es), ¢ ={a=0z1}, c3={a=0s2}

[] c1 = mizin(cs)(cs), ca=c3pecy, c3={a=0xl}, c4={a=022}

4. Why is exclusion an important composition operator for Traits?

Assignment 9.2 Having fun with Mixins

Reconsider the example from the lecture about synchronized file- and socket-streams. The
following classes are given:

FileStream = {read = 0z1, write = 022}
SocketStream = {read = 0x3, write = 0x4}
SyncRW = {read = 0z5, write = 026}

Your task is to come up with a new class SynchedF'ileStream which mixes the class
SyncRW into the class FileStream.

Assignment 9.3 Mixins Ruby

Implement the Stream Wrapper scenario from the lecture based on Ruby Mixins

Assignment 9.4 Implementation differences: Traits vs. Mixins

A next mainstream implementation of traits comes with the virtual extension methods in

Java 8.

o Implement a solution for the Stream Wrapper problem. You may use the following

code:

interface

Stream {

int read();

}

interface
default

interface
default
}

interface
default
default
}

FileStream extends Stream {
int read() { /* ... */ }

NetworkStream extends Stream {
int read() { /* ... */ }

Synch {
void acquireLock() { /* ... */ %}
void releaselock() { /* ... */ }

« Compare your solution to the one based on Mixins from the above assignment. What
are the differences? Which one is more flexible w.r.t. software engineering aspects?

