
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 9

Assignment 9.1 Quiz

1. Let C be a class, composed from the Mixins M and N. Suppose, M and N both imple-
ment a method f(). Is it true that

� The conflicting methods f() from M and N lead to a compiler error and have
to be resolved manually

� There is no compiler error, but one implementation of f() from M or N over-
writes the other

2. Now assume, that M and N are Traits instead of Mixins. Is it true that

� The conflicting methods f() from M and N lead to a compiler error and have
to be resolved manually

� There is no compiler error, but one implementation of f() from M or N over-
writes the other

3. (Attention: Several answers might be true for this question!)
c1 t c2 = c1 t� c2 is true for

� c1 = {a = 0x1}, c2 = {b = 0x1}

� c1 = mixin(c3)(c2), c2 = {a = 0x1}, c3 = {a = 0x2}

� c1 = mixin(c2)(c3), c2 = {a = 0x1}, c3 = {a = 0x2}

� c1 = mixin(c3)(c4), c2 = c3 . c4, c3 = {a = 0x1}, c4 = {a = 0x2}

4. Why is exclusion an important composition operator for Traits?

Assignment 9.2 Having fun with Mixins
Reconsider the example from the lecture about synchronized file- and socket-streams. The
following classes are given:

FileStream = {read = 0x1, write = 0x2}
SocketStream = {read = 0x3, write = 0x4}

SyncRW = {read = 0x5, write = 0x6}

Your task is to come up with a new class SynchedF ileStream which mixes the class
SyncRW into the class FileStream.

Assignment 9.3 Mixins Ruby

Implement the Stream Wrapper scenario from the lecture based on Ruby Mixins

1



Assignment 9.4 Implementation differences: Traits vs. Mixins
A next mainstream implementation of traits comes with the virtual extension methods in
Java 8.

• Implement a solution for the Stream Wrapper problem. You may use the following
code:

interface Stream {
int read();

}

interface FileStream extends Stream {
default int read() { /* ... */ }

}

interface NetworkStream extends Stream {
default int read() { /* ... */ }

}

interface Synch {
default void acquireLock() { /* ... */ }
default void releaseLock() { /* ... */ }

}

• Compare your solution to the one based on Mixins from the above assignment. What
are the differences? Which one is more flexible w.r.t. software engineering aspects?

2


