
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 8

Assignment 8.1 Quiz

1. Is every class associated with a unique virtual table? What about virtual subtables?

2. Given the following C++ classes:

class E { public: virtual void f(E*); };
class D { public: virtual void f(E*); };
class C : virtual E { public: virtual void f(E*); };
class B : D { public: virtual void f(E*); };
class A : B,C { public: virtual void f(E*); };

Assuming the existence of implementations of each instance of f, which of the
following calls involve a virtual thunk?

� A a; E* e = &a; a.f(e);

� A a; E* e = &a; e->f(&a);

� A a; C* c = &a; a.f(c);

� A a; C* c = &a; c->f(&a);

� A a; B* b = &a; b->f(&a);

3. Complete the object representation and virtual table diagrams given the following:

class A { public: int a; virtual void f(); }
class D : public A, public virtual V { public: int d; virtual void f(); }
class V { public: int v; virtual void f(); }

A int a
vptr

int dD

D::f()

0

4. Consider the following code (note: shared base class):

1

class A { };
class B : public virtual A { };
class C : public virtual A { };
class D : public B, public C { };
...
C c; A* a = &c; (C*)a;

Is the cast correct?

Suggested Solution 8.1

1. Yes, each class has exactly one corresponding virtual table. However, e.g., a class A
may be a super-class of the classes B and C where the virtual subtable of A in the
virtual tables of B and C is different. Consider the following code:

class A { virtual void f(); };
class B : public A { void f(); };
class C : public B { void f(); };

The virtual subtable of A in the virtual table of B contains an entry for function f
which delegates to the function f in class B. Whereas the virtual subtable of A in the
virtual table of C contains an entry for function f which delegates to the function f
in class C.

2. see before...

3. xxx

A int a
vptr

int dD

D::f()

0

D::Vf()

V int v
vptr

{V

V

V -
V

A

4. No, the cast is not correct. At compile time we do not know the exact distance from
the class A to C. But a dynamic cast works!

Memory layout of an object C: Memory layout of an object D:

C
A

B
C
D
A

2

Assignment 8.2 Multiple Inheritance

This C++ code defines a few classes:

1 class A {
2 public:
3 int a;
4 virtual int f(int);
5 virtual int g(int);
6 };
7 class B : public A {
8 public:
9 int b;

10 int f(int);
11 virtual int h(int);
12 };
13 class C : virtual public A {
14 public:
15 int c;
16 int f(int);
17 };
18 class D: public C, B {
19 public:
20 int d;
21 int f(int);
22 };

This is the Virtual Table for class D:

Entry| Value
0 | vbase_offset (40)
1 | offset_to_top (0)
2 | D RTTI
3 | int D::f(int)
4 | offset_to_top (-16)
5 | D RTTI
6 | int D::f(int)
7 | int A::g(int)
8 | int B::h(int)
9 | vcall_offset (0)

10 | vcall_offset (-40)
11 | offset_to_top (-40)
12 | D RTTI
13 | int D::f(int)
14 | int A::g(int)

1. Draw the layout for a class D object memory representation!

2. For each vptr-attribute in your drawing, give the entry number to which Vtable-
entry this pointer is pointing.

3. D’s virtual table is composed of several subtables. Your object memory representa-
tion is also composed of several parts, corresponding to particular subclasses.
For each subclass part of your memory represenation, give the entry numbers, where
the corresponding subtable within D’s virtual table starts and ends.

4. Thunks were not highlighted in the virtual table. Compare the entries 3, 6 and 13
in the virtual table. Which of them are thunks, which are virtual thunks, and which
are direct addresses of D::f(int)?

Suggested Solution 8.2

3

C

int a

int b

int c

B

A

vptrA int a

vptr

vptr

int dD

3

6

13

direct

thunk

virtual thunk

0-3

4-7

4-8

9-14

0-14

4.3 4.1 4.2 4.4: 2P

4

Assignment 8.3 Multiple Inheritance I
Provide a C++ class structure and a main function, which failes to compile, due to
multiple inheritance causing

1. ... an ambiguously resolvable call expression

2. ... ambiguous casting target types

Suggested Solution 8.3

class D { };
class C { public: void f(); };
class B : virtual public D { public: void f(); };
class A : public B, public C { };
int main(){

A *a = new A();
a->f(); // error: request for member ‘f’ is ambiguous

D* d = &a;
a = (A*)d; // error: cannot convert from pointer to base class ‘D’ to

// pointer to derived class ‘A’ because the base is virtual
return 0;

}

Assignment 8.4 Multiple Inheritance II
In this assignment, we program an interpreter for C++-Classes. The following C++-
instruction sequence is our main concern; from that, we generate the corresponding Java-
code to be interpreted with our framework:

C* pc = new C();
A* pa = pc;
pa->f();

⇒

// C* pc = new C();
Type C = Type.getTypeFor("C");
Pointer pc = Pointer.malloc(C.getSize());
C.getConstructor().callDirect(pc);
// A* pa = pc;
Pointer pa = C.castPointerTo(pc,"A");
// pa->f();
C.callVirtual(pa,"f");

The signatures of the Java-Classes/Interfaces used in this generated code can be found
in the Appendix.

1. Consider the following C++-Classes:

class A { public: int a; virtual void f(); }
class B : public A { public: int b; virtual void f(); }
class C : public B { public: int c; virtual void f(); }

Draw a memory representation diagram for a C-Object, and the virtual table dia-
gram for class C!

5

2. Give implementations of the methods castPointerTo and callVirtual for the type
corresponding to C from directly above, that matches with the code generation and
the representation/vtable layout that you have determined above!

3. Consider the following C++-Classes:

class A { public: int a; virtual void f(); }
class B { public: int b; virtual void f(); }
class C : public B, public A { public: int c; virtual void f(); }

Draw a memory representation diagram for a C-Object, and the virtual table dia-
gram for class C!

4. Give implementations of the methods castPointerTo and callVirtual for the type
corresponding to C from directly above, that matches with the code generation and
the representation/vtable layout that you have determined above!

5. One of the above virtual tables has a thunk as implementation for f. Which one?
Provide an implementation of the interface method Method::callDirect, that per-
forms the necessary actions in our framework, such that it is compatible with your
representation/vtable layout.

Suggested Solution 8.4

1. xxx

A int c
vptr

int cC
C::f()

0

int bB

2. Object callVirtual(Pointer p, String m, Object... ps){
Pointer vtable = (Pointer)p.deref();
Method f = (Method)vtable.deref();
return f.callDirect(pc,ps);

}
Object castPointerTo(Pointer p, String c){

return p;
}

3. xxx

B int b
vptr

int cC

C::f()

0

A int a
vptr

C::Af()

A

A {

6

4. Object callVirtual(Pointer p, String m, Object... ps){
Pointer vtable = (Pointer)p.deref();
Method f = (Method)vtable.deref();
return f.callDirect(pc,ps);

}
Object castPointerTo(Pointer p, String c){

if ("A".equals(c)) return p.add(Type.getTypeFor("B").getSize());
return p;

}

5. Object callDirect(Pointer receiver, Object... parameters){
Pointer pc = receiver.sub(Type.getTypeFor("B").getSize());
return Type.getTypeFor("C").callVirtual(pc,"f",parameters);

}

7

Appendix for Assignment 4:
Let the following Java-Interfaces be given as an API for the runtime components of

our interpreter:

interface Type {
/** obtain an object, representing the type denoted by the name t */
default Type getTypeFor(String t) { ... }
/** perform a virtual method call to method m on p with params ps */
Object callVirtual(Pointer p,String m, Object... ps);
/** returns a pointer to the cast target c wrt. the current type/pointer */
Pointer castPointerTo(Pointer p,String c);
/** obtain the constructor for the type, given there is one */
Method getConstructor();
/** obtain the size in bytes for the type */
default int getSize() { ... }

}
public class Pointer {

/** obtains fresh memory from the heap */
public static Pointer malloc(int sizeInBytes) { ... }
/** pointerarithmetics; add/sub returns the modified pointer
* without changing this
*/

public Pointer add(int offset) { ... }
public Pointer sub(int offset) { ... }
/** derefenciate the pointer and return whatever is found in the memory
* you still need to cast to whatever is expected to be found there */

public Object deref() { ... }
}
interface Method { // implementations are given by the framework

Object callDirect(Pointer receiver, Object... parameters) { ... }
}

8

