
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2017/18
Exercise Sheet 5

Assignment 5.1 Restricted Transactional Memory
Consider the following code fragment on a machine with RTM and Caches:

int data = 0;
int s=0;

thread P0:

while (s!=-1)

if((s=_xbegin())==-1){

data++;

_xend();

}

thread P1:

if (_xbegin()==-1){

data++;

_xend();

}else {

data++;

}

1. Fill in the gap with either “will”, “will not” or “may or may not”:

After P0 and P1 both terminate, data may or may not evaluate to 1.
Reason: The fail branch of P1 is unprotected and may race the TM instruction of

P0

2. Fill in the gap with either “will”, “will not” or “may or may not”:

After P0 and P1 both terminate, data will not evaluate to 3.
Reason: P0 will leave s evaluating to -1 as soon, as its transaction terminates

successfully, thus P0 will terminate the loop after P0 has incremented data exactly
once and commited. P1 also only increments data once.

3. Consider the following interleaving of paths through the program:
P0 s!=-1 (s=_xbegin())==-1 data++; s!=-1 (s=_xbegin())==-1 data++ _xend()
P1 _xbegin()==-1 data++;

> time
Draw a happened-before diagram of this interleaving. The initial cache states for s
and data are S0, S0. (No store buffer and invalidate queue.)

1



s
P0

P1

data S0
S0

(s=_xbegin())

I

data S0

_xbegin()
re
ad

in
va
lid

at
e

data++

read
resp

TM1

s!=-1

in
va
lid

at
e

in
v
ac
k

TM1

I

in
va
lid

at
e

in
v
ac
k

I

s!=-1

s S0

TM-1

mem

I TM-1

re
ad

in
va
lid

at
e

rea
d
res

p

I

M0

in
v
ac
k

in
v
ac
k

TM1 M1
M-1

abort

re
ad

in
v

re
ad

re
sp

in
v
ac
k

_xend()data++
(s=_xbegin())

abort

data++

4. Fix the program, such that 2 is the only value, that data may evaluate to after
termination of both threads. (Of course without hardcoding!)

Suggested Solution 5.1
as follows:

int data = 0;
int s=0;
int mutex=1;

thread P0:

while (s!=-1)

if((s=_xbegin())==-1){
if (!mutex>0) _xabort();
data++;

_xend();

}

thread P1:

if (_xbegin()==-1){

data++;

_xend();

}else {
wait(mutex);
data++;
signal(mutex);

}

Assignment 5.2 STM vs. RTM
This time, we want to compare Tranactional Memory implementations with each other
as well as the old implementations from tutorial sheet 3. Thus, we will equip the bumper
allocator with TM implementations.
Equip the bumper allocation implementation with

• explicit RTM (this will only run on a CPU with transactional memory)

• GCC transaction extensions

2



Suggested Solution 5.2

1. with explicit RTM instructions: see bumperrtm.c

2. with gcc-extensions: see bumpergcc.c

3. with HLE (this is a bonus and was not asked in the assignment): see bumperhle.c

3


