
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2017/18
Exercise Sheet 5

Assignment 5.1 Restricted Transactional Memory
Consider the following code fragment on a machine with RTM and Caches:

int data = 0;
int s=0;

thread P0:

while (s!=-1)

if((s=_xbegin())==-1){

data++;

_xend();

}

thread P1:

if (_xbegin()==-1){

data++;

_xend();

}else {

data++;

}

1. Fill in the gap with either “will”, “will not” or “may or may not”:

After P0 and P1 both terminate, data evaluate to 1.

2. Fill in the gap with either “will”, “will not” or “may or may not”:

After P0 and P1 both terminate, data evaluate to 3.

3. Consider the following interleaving of paths through the program:
P0 s!=-1 (s=_xbegin())==-1 data++; s!=-1 (s=_xbegin())==-1 data++ _xend()
P1 _xbegin()==-1 data++;

> time
Draw a happened-before diagram of this interleaving. The initial cache states for s
and data are S0, S0. (No store buffer and invalidate queue.)

4. Fix the program, such that 2 is the only value, that data may evaluate to after
termination of both threads. (Of course without hardcoding!)

Assignment 5.2 STM vs. RTM
This time, we want to compare Tranactional Memory implementations with each other
as well as the old implementations from tutorial sheet 3. Thus, we will equip the bumper
allocator with TM implementations.
Equip the bumper allocation implementation with

• explicit RTM (this will only run on a CPU with transactional memory)

• GCC transaction extensions

1


