
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 4

Assignment 4.1 Memory Consistency
1. Given an execution path for each thread, what property does the hardware (or the

model) have if only a single interleaving is possible?

� strict consistency

� sequential consistency

� weak consistency

2. What consistency guarantee does a system with a MESI cache but without store or
invalidate buffers give?

� strict consistency

� sequential consistency

� weak consistency

3. A program reaching a state S (declared variables, values of variables, etc.) on weakly
consistent hardware can always reach the same state S on sequentially consistent
hardware. �yes�no

Assignment 4.2 Semaphores, Locks, and Monitors

Are the following statements true or false?
true false

1. A semaphore can be used to implement a mutex. � �
A mutex is a special kind of semaphore, thus: yes

2. A mutex is always re-entrant. � �
No, the monitor is a variant of the mutex, which is re-entrant

3. A monitor can be used as a mutex. � �
Use the monitor to protect the semaphore counter s, and use a condition variable
for wait() and signal()

4. Any deadlock-free program must acquire locks in a fixed order. � �
No, this is only a condition that is sufficient to ensure that deadlocks do not occur.

5. When acquiring locks in a fixed order to ensure deadlock-freedom, there is no ad-
vantage in releasing them in the opposite order. � �
No, releasing them in opposite order has a performance advantage. Releasing them
in the same order as they were acquired may be less efficient: Suppose thread A
acquires three locks in the order l1, l2, l3. A second thread B requires locks l2 and l3

1

and will therefore try to acquire l2 before l3. If thread A releases them in the sequence
l1, l2, l3 then as soon as l2 is unlocked, the OS might schedule thread B which then
immediately blocks again waiting for l3. Thread A must now be scheduled in order
to release l3 before the OS can re-schedule B to acquire lock l3. Thus, releasing lock
in any order that is not the reverse of the locking order can incur a performance
penalty.

6. The use of which concurrency construct may lead to starvation?

� a wait-free algorithm
by definition never waits, nor fails, thus eventually completes

� a lock-free algorithm
might fail and start over, thus might get trapped in an infinite loop

� a lock where blocking threads are put into a queue
given enough signals, the critical section will eventually be executed

� a signal-and-urgent-wait monitor where all waiting threads are tracked in queu-
es
same here: given enough signals, the critical section will eventually be executed

7. Consider all program points p with the statement lock(ap) and a lock set Lp. Which
statement is true?

� The program is free of deadlocks if ap is a lock and ap ∈ Lp.
contrarily, this would rather indicate, that there may be a deadlock

� The program may have a deadlock if ap is a lock and ap ∈ Lp.
depending on ap being either a monitor or semaphore, the program maybe or
definitely has a deadlock – however, we can rule out that it is definitely free
from deadlocks

� The program will deadlock if ap is a lock and ap ∈ Lp.
would rely on ap being either a semaphore or a monitor. However, with ap a
lock only, a definitely occuring deadlock is to strong

� The program is free of deadlocks if ap ∈ Lp implies that ap is a monitor.
for freedom of deadlocks, the ordering between different monitors needs to be
globally irreflexive – which is not guaranteed just from this local property.

8. Consider the program P whose synchronization between its two threads is given by
the following two program fragments. According to the definition of a deadlock

wait(A);
if (rnd()) {

wait(B);
if (rnd()) {

wait(C);
// compute
signal(C)

}
signal(B);

}
signal(A);

wait(B);
if (rnd()) {

wait(C);
if (rnd()) {

wait(D);
// compute

}
}
signal(B);
signal(C);
signal(D);

2

� P may deadlock. There exists a lock order between the locks.

� P may deadlock. There exists no lock order between the locks.

� P cannot deadlock. There exists a lock order between the locks.
all locksets at wait instructions together with their locksets contribute to the
lockorder A < B < C < D. Thus the freedom of deadlock theorem holds.

� P cannot deadlock. There exists no lock order between the locks.

9. By recording an interleaving of a program at runtime, we observe the following:
Thread 1 releasing a lock A is descheduled and another Thread 2 is scheduled that
then executes holding the same lock A.

� This behavior should never happen since it violates the mutual exclusion pro-
perty, so there must be an error in the program.

� The lock is a signal-and-urgent-wait monitor.

� The lock must be a signal-and-continue monitor.

Assignment 4.3 Deadlocks
Consider the following four functions:

1 f() {
2 ...
3 wait(A);
4 u();
5 signal(A);
6 ...
7 }

8 g() {
9 ...

10 wait(A);
11 v();
12 signal(A);
13 ...
14 }

15 u() {
16 ...
17 wait(B);
18 wait(C);
19 ...
20 signal(C);
21 signal(B);
22 ...
23 }

24 v() {
25 ...
26 wait(C);
27 wait(B);
28 ...
29 signal(B);
30 signal(C);
31 ...
32 }

1. Additionally, we are given a main function that runs f and g in parallel:

33 main() {
34 f(); || g();
35 }

Can this possibly cause a deadlock? If not, try to prove it using the freedom of
deadlock theorem.

2. Assuming there is no possible deadlock, how can we change the main function in a
simple way to render a deadlock possible?

3. Finally, we change the main function so that it runs f and g sequentially:

36 main() {
37 f();
38 g();
39 }

Obviously, no deadlock can occur (no parallelism and no lock is acquired multiple
times without releasing it in between). Again try to prove this using the freedom of
deadlock theorem.

3

Suggested Solution 4.3

1. The parallel execution cannot cause a deadlock because both threads need to hold
the lock A before entering u or v, respectively: u and v are executed sequentially.
Additionally, it is obvious that in any of the two sequential executions of u and v no
individual lock is reacquired before releasing it. In order to prove deadlock freedom,
we first calculate the lock sets λ(p) for each program point p (identified by its line
number) and the respective new elements added to the lock order:

• λ(2) = ∅
• λ(3) = {A}, new lock order elements: ∅
• λ(4) = {A}
• λ(5) = ∅
• λ(6) = ∅
• λ(9) = ∅
• λ(10) = {A}, new lock order elements: ∅
• λ(11) = {A}
• λ(12) = ∅
• λ(13) = ∅
• λ(16) = {A}
• λ(17) = {A,B}, new lock order elements: {A / B}
• λ(18) = {A,B,C}, new lock order elements: {A / C,B / C}
• λ(19) = {A,B,C}
• λ(20) = {A,B}
• λ(21) = {A}
• λ(22) = {A}
• λ(25) = {A}
• λ(26) = {A,C}, new lock order elements: {A / C}
• λ(27) = {A,B,C}, new lock order elements: {A / B,C / B}
• λ(28) = {A,B,C}
• λ(29) = {A,C}
• λ(30) = {A}
• λ(31) = {A}
• λ(33) = ∅
• λ(34) = ∅

Altogether, we obtain the following set of lock order elements:

{A / B,A / C,B / C,C / B}

This results in the following graph representation of the ≺ relation (the dashed red
arrows show additional elements contained in the transitive closure of / only):

4

A
B

C

2. A deadlock is possible as soon as we refrain from always obtaining the protective
lock A, e.g. by changing the main function as follows:

33 main() {
34 f(); || v();
35 }

3. The proof does not change and, thus, fails to ascertain freedom of deadlocks, again.
We thereby notice that even in very obvious cases one cannot rely on the freedom
of deadlock theorem to indicate the presence of deadlocks if it fails to prove the
freedom of deadlocks.

5

