
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 4

Assignment 4.1 Memory Consistency

1. Given an execution path for each thread, what property does the hardware (or the
model) have if only a single interleaving is possible?

� strict consistency

� sequential consistency

� weak consistency

2. What consistency guarantee does a system with a MESI cache but without store or
invalidate buffers give?

� strict consistency

� sequential consistency

� weak consistency

3. A program reaching a state S (declared variables, values of variables, etc.) on weakly
consistent hardware can always reach the same state S on sequentially consistent
hardware. �yes�no

Assignment 4.2 Semaphores, Locks, and Monitors

Are the following statements true or false?
true false

1. A semaphore can be used to implement a mutex. � �
2. A mutex is always re-entrant. � �
3. A monitor can be used as a mutex. � �
4. Any deadlock-free program must acquire locks in a fixed order. � �
5. When acquiring locks in a fixed order to ensure deadlock-freedom, there is no ad-

vantage in releasing them in the opposite order. � �
6. The use of which concurrency construct may lead to starvation?

� a wait-free algorithm

� a lock-free algorithm

� a lock where blocking threads are put into a queue

� a signal-and-urgent-wait monitor where all waiting threads are tracked in queu-
es

1

7. Consider all program points p with the statement lock(ap) and a lock set Lp. Which
statement is true?

� The program is free of deadlocks if ap is a lock and ap ∈ Lp.

� The program may have a deadlock if ap is a lock and ap ∈ Lp.

� The program will deadlock if ap is a lock and ap ∈ Lp.

� The program is free of deadlocks if ap ∈ Lp implies that ap is a monitor.

8. Consider the program P whose synchronization between its two threads is given by
the following two program fragments. According to the definition of a deadlock

wait(A);
if (rnd()) {

wait(B);
if (rnd()) {

wait(C);
// compute
signal(C)

}
signal(B);

}
signal(A);

wait(B);
if (rnd()) {

wait(C);
if (rnd()) {

wait(D);
// compute

}
}
signal(B);
signal(C);
signal(D);

� P may deadlock. There exists a lock order between the locks.

� P may deadlock. There exists no lock order between the locks.

� P cannot deadlock. There exists a lock order between the locks.

� P cannot deadlock. There exists no lock order between the locks.

9. By recording an interleaving of a program at runtime, we observe the following:
Thread 1 releasing a lock A is descheduled and another Thread 2 is scheduled that
then executes holding the same lock A.

� This behavior should never happen since it violates the mutual exclusion pro-
perty, so there must be an error in the program.

� The lock is a signal-and-urgent-wait monitor.

� The lock must be a signal-and-continue monitor.

Assignment 4.3 Deadlocks
Consider the following four functions:

1 f() {
2 ...
3 wait(A);
4 u();
5 signal(A);
6 ...
7 }

8 g() {
9 ...

10 wait(A);
11 v();
12 signal(A);
13 ...
14 }

15 u() {
16 ...
17 wait(B);
18 wait(C);
19 ...
20 signal(C);
21 signal(B);
22 ...
23 }

24 v() {
25 ...
26 wait(C);
27 wait(B);
28 ...
29 signal(B);
30 signal(C);
31 ...
32 }

2

1. Additionally, we are given a main function that runs f and g in parallel:

33 main() {
34 f(); || g();
35 }

Can this possibly cause a deadlock? If not, try to prove it using the freedom of
deadlock theorem.

2. Assuming there is no possible deadlock, how can we change the main function in a
simple way to render a deadlock possible?

3. Finally, we change the main function so that it runs f and g sequentially:

36 main() {
37 f();
38 g();
39 }

Obviously, no deadlock can occur (no parallelism and no lock is acquired multiple
times without releasing it in between). Again try to prove this using the freedom of
deadlock theorem.

3

