
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 2

Assignment 2.1 MESI-Protocol.

We reconsider the example from the lecture.

Thread A test Thread B
a = 1; // A.1 while (b == 0) {}; // B.1
b = 1; // A.2 assert(a == 1) ; // B.2

Draw a happened-before diagram for the execution B.1 A.1 A.2 B.1 B.2. Assume the
underlying machine model to have caches and to be sequentially consistent using the
MESI-protocol. Start with the cache state, where CPU B exclusively has a and b in its
cache. Annotate each event of a cache line that changes the state with the new state of
the cache line.

Suggested Solution 2.1

a

a=1
A

B

b

a
b

b==0

re
ad

in
va
lid

at
e

re
ad

re
sp
on

se
in
va
lid

at
e
ac
k

re
ad

in
al
id
at
e

re
ad

re
sp
on

se

b=1

b==0 a==1

re
ad

w
rit

e
ba

ck

re
ad

w
rit

e
ba

ck

ca
ch
e

ca
ch
e

E0
E0

I
I

I
I

M1
M1 S1

S1

S1
S1

in
va
lid

at
e
ac
k

Assignment 2.2 Happened-Before Diagram for Dekker.
Draw a happened-before diagram for the Dekker algorithm describing an interaction of
two threads for a case where one of the threads succeeds to enter the critical section.
Assume the underlying machine model to have caches and to be sequentially consistent
using the MESI-protocol. In the beginning, all variables have a value of zero/false and are
in shared state. Annotate each event of a cache line that changes the state with the new
state of the cache line.

Suggested Solution 2.2

1

f [0]

f[0]=1;
T0

T1

f [1]

f [1]
turn

f[1]=1;

in
va
lid

at
e

in
va
lid

at
e
ac
k

f[1]==1

f[0]==1

in
va
lid

at
e

in
va
lid

at
e
ac
k

ca
ch
e

ca
ch
e

M1

M1
I

S0

f [0]

turn
S0

S0
S0

S0

S0

I

re
ad wr
ite

ba
ck

S0

S0

re
ad

wr
ite

ba
ck

turn!=1

S1

S1

f[1]=0;

M0

Assignment 2.3 Dekker with Store Buffers
Draw a happened-before diagram for an execution of the Dekker algorithm such that both
processes/threads enter the critical section “to the same time”. Assume the underlying
machine model to have caches and to be sequentially consistent using the MESI-protocol.
In the beginning, all variables have a value of zero/false and are in shared state. Annotate
each event of a cache line that changes the state with the new state of the cache line.
Additonally annotate after each event that changes the content of the store buffer the
new content of it. Suggested Solution 2.3

f0
P0

P1

f1

ca
ch
e

ca
ch
e

S0
S0

S0
S0

turn
store

S0

f0
f1
turn
store S0

f0 = 1;

[f0=1]

f1 == 1

f1 = 1; f0 == 1

P0 enters
the critical
section

P1 enters
the critical
section

in
va
lid

at
e

invalidate
ack

I

M1

[]

[f1=1] []

M1

in
va
lid

at
e invalidate

ack

I

Assignment 2.4 Store Buffer and Invalidate Queues
Consider the following example program with Threads A and B executing a() and b(),
respectively:

2

struct G {
int b=0;
int a=0;

};

Thread A

void a(){
G.b=1;
int rega=G.a;
// *

}

Thread B

void b(){
G.a=1;
int regb=G.b;
// *

}

Given a machine model with a MESI-compliant cache and store buffers or invalidate
queues. Specify an execution of the program such that reaching the respective program
points ∗ both the variables rega and regb contain value 0. Draw a happened-before
diagram for this execution.

Suggested Solution 2.4
Store buffers: A possible execution order is G.b = 1; G.a = 1; int rega = G.a; int
regb = G.b;. But as the stores of G.b = 1; and G.a = 1; are “delayedïn the store buffers
in the following reads the old values of these variables are read.

G.b

G.b=1;
A

B

store

G.a
store

G.a=1;

in
va
lid

at
e

in
va
lid

at
e
ac
k

rega=G.a;

regb=G.b;

in
va
lid

at
e

in
va
lid

at
e
ac
k

ca
ch
e

ca
ch
e

M1

M1

I

I

S0

G.b

G.a
S0

S0
S0
[]

[] [b=1]

[a=1]

[]

[]

Invalidate buffers: A possible execution order is G.b = 1; G.a = 1; int rega =
G.a; int regb = G.b;. But as the invalidates caused by G.b = 1; and G.a = 1; are
“delayedïn the invalidate buffers of Thread B and A, respectively. Therefore the following
reads see the old values of these variables.

3

G.b

G.b=1;
A

B

invalid

G.a
invalid

G.a=1;

in
va
lid

at
e

in
va
lid

at
e
ac
k

rega=G.a;

regb=G.b;

in
va
lid

at
e

in
va
lid

at
e
ac
k

ca
ch
e

ca
ch
e

I

I

S0

G.b

G.a
S0

S0
S0

M1

M1

[]

[]

[a] []

[][b]

Assignment 2.5 Dekker Implementation.

1. Implement Dekker’s algorithm without memory barriers.
To implement Posix threads in C, you might want to look for pthread_create()
in pthread.h and compile with the -pthread compiler flag!

2. Demonstrate that out-of-order execution actually breaks Dekker’s algorithm when
implemented without memory barriers. Take care of compiler optimizations! To avo-
id optimizations that break the semantics of your code use the volatile keyword.
Hint: Clever instrumentation makes the difference!

3. Introduce memory barriers in your Dekker’s implementation; Test whether you can
still observe broken behaviour.
The statements to introduce memory barriers are compiler dependent.

• Clang or GNU C++ as in MingW/Orwell-Dev-C++ or Linux systems use
__sync_synchronize(void),

• MacOS’ Xcode uses OSMemoryBarrier(void) defined in libkern/OSAtomic.h

• MS’ Visual C++ uses _mm_mfence(void) defined in intrin.h

As an environment for threads, you may use Posix threads, e.g.

// gcc -pthread dekker.c -o dekker

#include <pthread.h>// pthread_create, pthread_exit
#include <stdio.h> // printf
#include <stdlib.h> // exit

int main(int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int rc;
long t;
flag[0] = false;
flag[1] = false;

4

for(t = 0; t < NUM_THREADS; t++) {
printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, dekker, (void *)t);
if(rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}
}

/* last thing that main() should do */
pthread_exit(NULL);

}

Suggested Solution 2.5

1. see dekker.c

2. see dekker-fences.c With memory barriers, no assert fails anymore. Note that
only one __syncsynchronize() is needed if the volatile keyword is used for the
shared variables. Otherwise more __syncsynchronize() are needed because the
memory barriers avoid compiler optimizations as well.

5

