
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 2

Assignment 2.1 MESI-Protocol.

We reconsider the example from the lecture.

Thread A test Thread B
a = 1; // A.1 while (b == 0) {}; // B.1
b = 1; // A.2 assert(a == 1) ; // B.2

Draw a happened-before diagram for the execution B.1 A.1 A.2 B.1 B.2. Assume the
underlying machine model to have caches and to be sequentially consistent using the
MESI-protocol. Start with the cache state, where CPU B exclusively has a and b in its
cache. Annotate each event of a cache line with the new state of the cache line.

Assignment 2.2 Happened-Before Diagram for Dekker.
Draw a happened-before diagram for the Dekker algorithm describing an interaction of
two threads for a case where one of the threads succeeds to enter the critical section.
Assume the underlying machine model to have caches and to be sequentially consistent
using the MESI-protocol. In the beginning, all variables have a value of zero and are in
shared state.

Assignment 2.3 Store Buffer and Invalidate Queues
Consider the following example program with Threads A and B executing a() and b(),
respectively:

struct G {
int b=0;
int a=0;

};

Thread A

void a(){
G.b=1;
int rega=G.a;
// *

}

Thread B

void b(){
G.a=1;
int regb=G.b;
// *

}

Given a machine model with a MESI-compliant cache and store buffers or invalidate
queues. Specify an execution of the program such that reaching the respective program
points ∗ both the variables rega and regb contain value 0. Draw a happened-before
diagram for this execution.

1



Assignment 2.4 Dekker Implementation.

1. Implement Dekker’s algorithm without memory barriers.
To implement Posix threads in C, you might want to look for pthread_create()
in pthread.h and compile with the -pthread compiler flag!

2. Demonstrate that out-of-order execution actually breaks Dekker’s algorithm when
implemented without memory barriers.
Hint: Clever instrumentation makes the difference!

3. Introduce memory barriers in your Dekker’s implementation; Test whether you can
still observe broken behaviour.
The statements to introduce memory barriers are compiler dependent.

• Clang or GNU C++ as in MingW/Orwell-Dev-C++ or Linux systems use
__sync_synchronize(void),

• MacOS’ Xcode uses OSMemoryBarrier(void) defined in libkern/OSAtomic.h

• MS’ Visual C++ uses _mm_mfence(void) defined in intrin.h

As an environment for threads, you may use Posix threads, e.g.

// gcc -pthread dekker.c -o dekker

#include <pthread.h>// pthread_create, pthread_exit
#include <stdio.h> // printf
#include <stdlib.h> // exit

int main(int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int rc;
long t;
flag[0] = false;
flag[1] = false;
for(t = 0; t < NUM_THREADS; t++) {

printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, dekker, (void *)t);
if(rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);

}
}

/* last thing that main() should do */
pthread_exit(NULL);

}

2


