
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 1

Assignment 1.1 Quick Quiz.

Answer the following questions:

1. Can a happened-before diagram depict several executions of a distributed system
or only one?

2. Can a single happened-before diagram illustrate all the executions (runs) that a
synchronization algorithm can perform?

Suggested Solution 1.1

1. It depicts several, namely as many as there are total orderings of the happened
before partial order.

2. No, one diagram only depicts one causal dependency between states. Thus, if an
event A occurring before B leads to a different outcome than event B happening
before A then two diagrams are necessary to depict these different executions.

Assignment 1.2 Happened-Before Diagram

For each of the following diagrams, decide if they are valid happened-before diagrams.
Prove your answer by defining a mapping C : E → N that satisfies the clock condition or
by showing that no such mapping exists. Here E = {e1, . . . e15} is the set of events. (The
clock condition states that for all pi, pj ∈ P , if pi happens before pj then C(pi) < C(pj).)

• Diagram one:

P

R

T

Q

S

e3e1 e2 e4

e5

e6

e7 e8 e9

e10 e11

e12 e13 e14 e15

1



• Diagram two: as the diagram of 1., but with the arrow between e6 and e7 pointing
in the opposite direction

P

R

T

Q

S

e3e1 e2 e4

e5

e6

e7 e8 e9

e10 e11

e12 e13 e14 e15

• Diagram three: as the diagram of 1., but with the arrow between e6 and e3 pointing
in the opposite direction

P

R

T

Q

S

e3e1 e2 e4

e5

e6

e7 e8 e9

e10 e11

e12 e13 e14 e15

Suggested Solution 1.2

• Diagram one: valid. There are several mappings that satisfy the clock condition;
here are two:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C−1 e1 e5 e2 e3 e4 e6 e7 e10 e12 e8 e9 e13 e14 e11 e15
C−1 e1 e5 e2 e3 e4 e6 e7 e12 e10 e8 e9 e13 e14 e11 e15

• Diagram two: valid. There are many mappings. Any interleaving of Ca and Cb are
possible as long as e7 ∈ Cb happens before e6 ∈ Ca.

2



i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C−1

a e1 e5 e2 e3 e4 e6
C−1

b e7 e12 e10 e8 e9 e13 e14 e11 e15

• Diagram three: invalid. The mapping C would have to obey C(e3) < C(e4) <
C(e6) < C(e3) which means that < would not be a strict partial order.

Assignment 1.3 Concurrent events

1. List for Diagram one from above three pairs of concurrent events. Use the notion
(ei, ej) for ei and ej are concurrent events.

2. Proof by example that the following statements do not hold:

• If e1 and e2 are concurrent and e2 and e3 are concurrent then e1 and e3 are
concurrent. (With other words: If (e1, e2) and (e2, e3) then (e1, e3).)

• If e1 and e2 are concurrent and e2 happened before e3 then e1 and e3 are
concurrent. (With other words: If (e1, e2) and e2 → e3 then (e1, e3).)

Suggested Solution 1.3

1. This is a (hopefully) full list of all concurrent events in Diagram one:
(e10, e8)
(e10, e9)
(e10, e12)
(e10, e13)
(e10, e14)
(e12, e8)
(e12, e9)

2. test

• e1 and e3 are not concurrent as e1 → e4 → e3.

test

e1 e4

e2

e3

• e1 and e3 are not concurrent as e1 → e4 → e3.

test

e1 e4

e2

e3

3



Assignment 1.4 Transitions in the MESI-Protocol.

M

S

E

I

a

b

c

d

e f
g

h
ij

k

l

Consider a distributed system with CPUs A, B, C. For a cache line z in the cache of CPU
A explain the transition b(E → M), f(M → S), h(I → M), i(E → I), from one state
s ∈ {M, E, S, I} to another state s′ ∈ {M, E, S, I}. Which messages (Read (Response),
Invalidate (Acknowledge), Read Invalidate, Writeback (Read Response)) are sent between
the CPUs?

Suggested Solution 1.4
We give the full list of transitions. The requested ones are marked bold.

• Transition a (M → E): CPU A does a Writeback on cache line z. Therefore the
prior made modifications on data in cache line z are written back to the memory
and cache line z is know unmodified and exclusive in the cache of CPU A.

• Transition b (E → M): CPU A writes to cache line z. No messages are sent.

• Transition c (S → E): CPU A sends an Invalidate or Read Invalidate message. The-
refore CPUs B and C evicts the cache line in its cache and both send an Invalidate
Acknowledge.

• Transition d (E → S): CPU B or C send a Read for some date in cache line z. CPU
A changes the state of cache line z from E to S and then sends a Read Response
with the requested data.

• Transition e (S → M): CPU A sends an Invalidate message for cache line z, CPU
B and C evict this cache line in their caches and then send both a Invalidate
Acknowledge. After CPU A receives all Invalidate Acknowledge messages it modifies
the data item in cache line z and therefore changes the state of this cache line to
M .

• Transition f (M → S): CPU B or C send a Read for a data item in cache line z.
CPU A has to writeback cacheline z because it is modified. It therefore changes the
state of z to S and sends a Writeback Read Response for cache line z.

• Transition g (M → I): CPU B or C send a Read Invalidate for a data item in cache
line z. CPU A needs to writeback the cache line z and responses to the request of
CPU B. It therefore sends a Writeback Read Response for cache line z. All CPUs
that have not sent the initial Read Invalidate evict the cache line z in their cache
and send a Invalidate Acknowledge.

• Transition h (I → M): CPU A sends a Read Invalidate for some data item that
is currently not in the cache and will be stored in cache line z. After receiving the
Read Response from CPU B or C or the memory and after receiving the Invalidate
Response of both CPU B and C it can modify the data item. Therefore the state
of cache line z changes to M .

4



• Transition i (E → I): CPU B or C send an (Read) Invalidate for a data item in
cache line z. In case of a Read Invalidate CPU A sends a Read Response for cache
line z. CPU A evicts this cache line and sends an Invalidate Acknowledge. All other
CPUs that have not sent the (Read) Invalidate send a Invalidate Acknowledge, too.

• Transition j (I → E): CPU A sends a Read (Invalidate) for some data item that is
currently not in the cache and will be stored in cache line z. In the case of a Read
Message the requested data item is sent by the memory and therefore CPU A knows
that it holds the cache line z exclusively. In the case of an Read Invalidate the data
item is sent by CPU B or C or the memory and CPU B and C has to send an
Invalidate Acknowledge. After CPU A receives this Invalidate Acknowledge it can
change the state of the cache line.

• Transition k (I → S): CPU A sends a Read for some data item that it currently not
in the cache and will be stored in cache line z. CPU B or C send a Read Response
for the requested data. As CPU A receives the data from some other CPU it sets
the status of the cache line to S.

• Transition l (S → I): CPU A receives an (Read) Invalidate message for a data
item in cacheline z. It therefore changes the state of the cache line to I and sends
a Invalidate Acknowledge. All other CPUs that have not sent the inital (Read)
Invalidate need to send a Invalidate Acknowledge as well.

5


