Programming Languages

Dr. Michael Petter, Raphaela Palenta Exercise Sheet 1

Assignment 1.1 Quick Quiz.

Answer the following questions:

- 1. Can a happened-before diagram depict several executions of a distributed system or only one?
- 2. Can a single happened-before diagram illustrate all the executions (runs) that a synchronization algorithm can perform?

Assignment 1.2 Happened-Before Diagram

For each of the following diagrams, decide if they are valid happened-before diagrams. Prove your answer by defining a mapping $C: E \to \mathbb{N}$ that satisfies the clock condition or by showing that no such mapping exists. Here $E = \{e_1, \ldots, e_{15}\}$ is the set of events. (The clock condition states that for all $p_i, p_j \in P$, if p_i happens before p_j then $C(p_i) < C(p_j)$.)

• Diagram one:

• Diagram two: as the diagram of 1., but with the arrow between e_6 and e_7 pointing in the opposite direction

• Diagram three: as the diagram of 1., but with the arrow between e_6 and e_3 pointing in the opposite direction

Assignment 1.3 Concurrent events

- 1. List for Diagram one from above three pairs of concurrent events. Use the notion (e_i, e_j) for e_i and e_j are concurrent events.
- 2. Proof by example that the following statements do not hold:
 - If e_1 and e_2 are concurrent and e_2 and e_3 are concurrent then e_1 and e_3 are concurrent. (With other words: If (e_1, e_2) and (e_2, e_3) then (e_1, e_3) .)
 - If e_1 and e_2 are concurrent and e_2 happened before e_3 then e_1 and e_3 are concurrent. (With other words: If (e_1, e_2) and $e_2 \rightarrow e_3$ then (e_1, e_3) .)

Assignment 1.4 Transitions in the MESI-Protocol.

Consider a distributed system with CPUs A, B, C. For a cache line z in the cache of CPU A explain the transition $b(E \to M), f(M \to S), h(I \to M), i(E \to I)$, from one state $s \in \{M, E, S, I\}$ to another state $s' \in \{M, E, S, I\}$. Which messages (Read (Response), Invalidate (Acknowledge), Read Invalidate, Writeback (Read Response)) are sent between the CPUs?