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0 General

Contents of this lecture

• Correctness of programs

• Functional programming with OCaml
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Tweedback

Web page: tum.twbk.de
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1 Correctness of Programs

• Programmers make mistakes !?

• Programming errors can be expensive, e.g., when a rocket explodes

or a vital business system is down for hours ...

• Some systems must not have errors, e.g., control software of

planes, signaling equipment of trains, airbags of cars ...

Problem

How can it be guaranteed that a program behaves as it should behave?
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Approaches

• Careful engineering during software development

• Systematic testing

==⇒ formal process model (Software Engineering)

• proof of correctness

==⇒ verification

Tool: assertions
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• Systematic testing

==⇒ formal process model (Software Engineering)

• proof of correctness

==⇒ verification

Tool: assertions
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Example

public class GCD {

public static void main (String[] args) {

int x, y, a, b;

a = read(); x = a;

b = read(); y = b;

while (x != y)

if (x > y) x = x - y;

else y = y - x;

assert(x == y);

write(x);

} // End of definition of main();

} // End of definition of class GCD;
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Comments

• The static method assert() expects a Boolean argument.

• During normal program execution, every call assert(e); is

ignored !?

• If Java is launched with the option: –ea (enable assertions),

the calls of assert are evaluated:

⇒ If the argument expression yields true, program execution

continues.

⇒ If the argument expression yields false, the error

AssertionError is thrown.
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Caveat

The run-time check should evaluate a property of the program state

when reaching a particular program point.

The check should by no means change the program state (significantly)

!!!

Otherwise, the behavior of the observed system differs from the

unobserved system ???

Hint

In order to check properties of complicated data-structures, it is

recommended to realize distinct inspector classes whose objects allow to

inspect the data-structure without interference !?
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Problem

• In general, there are many program executions ...

• Validity of assertions can be checked by the Java run-time only for a

specific execution at a time.

==⇒

We require a general method in order to guarantee that a given assertion

is valid ...
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1.1 Program Verification

Robert W Floyd, Stanford U. (1936 – 2001)
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Simplification

For the moment, we consider MiniJava only:

• only a single static method, namely, main

• only int variables

• only if and while.
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Simplification

For the moment, we consider MiniJava only:

• only a single static method, namely, main

• only int variables

• only if and while.

Idea

• We annotate each program point with an assertion !

• At every program point, we argue that the assertion is valid ...

logic
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Simplification

For the moment, we consider MiniJava only:

• only a single static method, namely, main

• only int variables

• only if and while.

Idea

• We annotate each program point with a formula !

• At every program point, we prove that the assertion is valid

==⇒ logic
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Background: Logic

Assertion: “All humans are mortal”,

“Socrates is a human”, “Socrates is mortal”

,

Deduction:

Tautology:

16



Background: Logic

Assertion: “All humans are mortal”,

“Socrates is a human”, “Socrates is mortal”

∀ x. human(x) ⇒ mortal(x)

human(Socrates), mortal(Socrates)

Deduction:

Tautology:
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Background: Logic

Assertion: “All humans are mortal”,

“Socrates is a human”, “Socrates is mortal”

∀ x. human(x) ⇒ mortal(x)

human(Socrates), mortal(Socrates)

Deduction: If ∀ x. P(x) holds, then also P(a) for a specific a !

If A ⇒ B und A holds, then B must hold as well !

Tautology:
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Background: Logic

Assertion: “All humans are mortal”,

“Socrates is a human”, “Socrates is mortal”

∀ x. human(x) ⇒ mortal(x)

human(Socrates), mortal(Socrates)

Deduction: If ∀ x. P(x) holds, then also P(a) for a specific a !

If A ⇒ B und A holds, then B must hold as well !

Tautology: A ∨ ¬A

∀ x ∈ Z. x < 0 ∨ x = 0 ∨ x > 0
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Background: Logic (cont.)

Laws: ¬¬A ≡ A double negation

A ∧ A ≡ A idempotence

A ∨ A ≡ A

¬(A ∨ B) ≡ ¬A ∧ ¬B De Morgan

¬(A ∧ B) ≡ ¬A ∨ ¬B

A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C) distributivity

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)

A ∨ (B ∧ A) ≡ A absorption

A ∧ (B ∨ A) ≡ A
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Our Example

Start

 

x = a = read();

y = b = read();

no yes

Stop

yesno
write(x);

y=y−x;x=x−y;

x != y

x < y
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Discussion

• The program points correspond to the edges of the control-flow

diagram !

• We require one assertion per edge ...

Background

d | x holds iff x = d · z for some integer z.

For integers x, y, let gcd(x, y) = 0, if x = y = 0, and the greatest

number d which both divides x and y, otherwise.

Then the following laws hold:
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gcd(x, 0) = |x|
gcd(x, x) = |x|
gcd(x, y) = gcd(x, y − x)

gcd(x, y) = gcd(x − y, y)
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Idea for the Example

• Initially, nothing holds.

• After a=read(); x=a; a = x holds.

• Before entering and during the loop, we should have:

A ≡ gcd(a, b) = gcd(x, y)

• At program exit, we should have:

B ≡ A ∧ x = y
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Idea for the Example

• Initially, nothing holds.

• After a=read(); x=a; a = x holds.

• Before entering and during the loop, we should have:

A ≡ gcd(a, b) = gcd(x, y)

• At program exit, we should have:

B ≡ A ∧ x = y

• These assertions should be locally consistent ...

25



Our Example

Start

no yes

Stop

yesno
write(x);

y=y−x;x=x−y;

x != y

x < y

 y = b = read();

x = a = read();

A

B

B

A

A AA

true

a = x
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Question

How can we prove that the assertions are locally consistent?

Sub-problem 1: Assignments

Consider, e.g., the assignment: x = y+z;

In order to have after the assignment: x > 0, // post-condition

we must have before the assignment: y + z > 0. // pre-condition
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General Principle

• Every assignment transforms a post-condition B into a minimal

assumption that must be valid before the execution so that B

is valid after the execution.
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General Principle

• Every assignment transforms a post-condition B into a minimal

assumption that must be valid before the execution so that B

is valid after the execution.

• In case of an assignment x = e; the weakest pre-condition is

given by

WP[[x = e;]] (B) ≡ B[e/x]

This means: we simply substitute everywhere in B, x by e !!!
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General Principle

• Every assignment transforms a post-condition B into a minimal

assumption that must be valid before the execution so that B

is valid after the execution.

• In case of an assignment x = e; the weakest pre-condition is

given by

WP[[x = e;]] (B) ≡ B[e/x]

This means: we simply substitute everywhere in B, x by e !!!

• An arbitrary pre-condition A for a statement s is valid,

whenever

A ⇒ WP[[s]] (B)

// A implies the weakest pre-condition for B.
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Example

assignment: x = x-y;

post-condition: x > 0

weakest pre-condition: x − y > 0

stronger pre-condition: x − y > 2

even stronger pre-condition: x − y = 3
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... in the GCD Program (1):

assignment: x = x-y;

post-condition: A

weakest pre-condition:

A[x − y/x] ≡ gcd(a, b) = gcd(x − y, y)

≡ gcd(a, b) = gcd(x, y)

≡ A
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... in the GCD Program (2):

assignment: y = y-x;

post-condition: A

weakest pre-condition:

A[y − x/y] ≡ gcd(a, b) = gcd(x, y − x)

≡ gcd(a, b) = gcd(x, y)

≡ A
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Wrap-up

 
x = read(); x = e;write(e);

B[e/x]B

BBB

B∀ x.

WP[[;]](B) ≡ B

WP[[x = e;]](B) ≡ B[e/x]

WP[[x = read();]](B) ≡ ∀ x. B

WP[[write(e);]](B) ≡ B
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Discussion

• For all actions, the wrap-up provides the corresponding weakest

pre-conditions for a post-condition B.

• An output statement does not change any variable. Therefore, the

weakest pre-condition is B itself.

• An input statement x=read(); modifies the variable x

unpredictably.

In order B to hold after the input, B must hold for every

possible x before the input.
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Orientation

Start

no yes

Stop

yesno
write(x);

y=y−x;x=x−y;

x != y

x < y

 y = b = read();

x = a = read();

A

B

B

A

A AA

true

a = x
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For the statements: b = read(); y = b; we calculate:

WP[[y = b;]] (A) ≡ A[b/y]

≡ gcd(a, b) = gcd(x, b)
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For the statements: b = read(); y = b; we calculate:

WP[[y = b;]] (A) ≡ A[b/y]

≡ gcd(a, b) = gcd(x, b)

WP[[b = read();]] (gcd(a, b) = gcd(x, b))

≡ ∀ b. gcd(a, b) = gcd(x, b)

⇐ a = x
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Orientation

Start

no yes

Stop

yesno
write(x);

y=y−x;x=x−y;

x != y

x < y

 y = b = read();

x = a = read();

A

B

B

A

A AA

true

a = x
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For the statements: a = read(); x = a; we calculate:

WP[[x = a;]] (a = x) ≡ a = a

≡ true

WP[[a = read();]] (true) ≡ ∀ a. true

≡ true
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Sub-problem 2: Conditionals

no yes
b

B1

A

B0

It should hold:

• A ∧ ¬b ⇒ B0 and

• A ∧ b ⇒ B1 .
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This is the case, if A implies the weakest pre-condition of the

conditional branching:

WP[[b]] (B0, B1) ≡ ((¬b) ⇒ B0) ∧ (b ⇒ B1)

Die schwächste Vorbedingung können wir umschreiben in:
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This is the case, if A implies the weakest pre-condition of the

conditional branching:

WP[[b]] (B0, B1) ≡ ((¬b) ⇒ B0) ∧ (b ⇒ B1)

The weakest pre-condition can be rewritten into:

WP[[b]] (B0, B1) ≡ (b ∨ B0) ∧ (¬b ∨ B1)

≡ (¬b ∧ B0) ∨ (b ∧ B1) ∨ (B0 ∧ B1)

≡ (¬b ∧ B0) ∨ (b ∧ B1)
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Example

B0 ≡ x > y ∧ y > 0 B1 ≡ y > x ∧ x > 0

Assume that b is the condition y > x.

Then the weakest pre-condition is given by:
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Example

B0 ≡ x > y ∧ y > 0 B1 ≡ y > x ∧ x > 0

Assume that b is the condition y > x.

Then the weakest pre-condition is given by:

(x ≥ y ∧ x > y ∧ y > 0) ∨ (y > x ∧ y > x ∧ x > 0)

≡ (x > y ∧ y > 0) ∨ (y > x ∧ x > 0)

≡ x > 0 ∧ y > 0 ∧ x 6= y
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... for the GCD Example

b ≡ y > x

¬b ∧ A ≡ x ≥ y ∧ gcd(a, b) = gcd(x, y)

b ∧ A ≡ y > x ∧ gcd(a, b) = gcd(x, y)
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... for the GCD Example

b ≡ y > x

¬b ∧ A ≡ x ≥ y ∧ gcd(a, b) = gcd(x, y)

b ∧ A ≡ y > x ∧ gcd(a, b) = gcd(x, y)

==⇒ The weakest pre-condition is given by

gcd(a, b) = gcd(x, y)

... i.e., exactly A
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Orientation

Start

no yes

Stop

yesno
write(x);

y=y−x;x=x−y;

x != y

x < y

 y = b = read();

x = a = read();

A

B

B

A

A AA

true

a = x
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The argument for the assertion before the loop is analogous:

b ≡ y 6= x

¬b ∧ B ≡ B

b ∧ A ≡ A ∧ x 6= y

==⇒ A ≡ (A ∧ x = y) ∨ (A ∧ x 6= y) is the weakest pre-

condition for the conditional branching.
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Summary of the Approach

• Annotate each program point with an assertion.

• Program start should receive annotation true.

• Verify for each statement s between two assertions A and B,

that A implies the weakest pre-condition of s for B i.e.,

A ⇒ WP[[s]](B)

• Verify for each conditional branching with condition b, whether the

assertion A before the condition implies the weakest pre-condition

for the post-conditions B0 and B1 of the branching, i.e.,

A ⇒ WP[[b]] (B0, B1)

An annotation with the last two properties is called locally consistent.
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1.2 Correctness

Questions

• Which program properties can be verified by means of locally

consistent annotations ?

• How can we be sure that our method does not prove wrong claims

??
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Recap (1)

• In MiniJava, the program state σ consists of a variable

assignment, i.e., a mapping of program variables to integers (their

values), e.g.,

σ = {x 7→ 5, y 7→ −42}
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Recap (1)

• In MiniJava, the program state σ consists of a variable

assignment, i.e., a mapping of program variables to integers (their

values), e.g.,

σ = {x 7→ 5, y 7→ −42}

• A state σ satisfies an assertion A , if

A[σ(x)/x]x∈A

// every variable in A is substituted by its value in σ

is a tautology, i.e., equivalent to true.

We write: σ |= A.
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Example

σ = {x 7→ 5, y 7→ 2}
A ≡ (x > y)

A[5/x, 2/y] ≡ (5 > 2)

≡ true

54



Example

σ = {x 7→ 5, y 7→ 2}
A ≡ (x > y)

A[5/x, 2/y] ≡ (5 > 2)

≡ true

σ = {x 7→ 5, y 7→ 12}
A ≡ (x > y)

A[5/x, 12/y] ≡ (5 > 12)

≡ false
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Trivial Properties

σ |= true for every σ

σ |= false for no σ

σ |= A1 and σ |= A2 is equivalent to

σ |= A1 ∧ A2

σ |= A1 or σ |= A2 is equivalent to

σ |= A1 ∨ A2
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Recap (2)

• An execution trace π traverses a path in the control-flow graph.

• It starts in a program point u0 with an initial state σ0 and

leads to a program point um with a final state σm.

• Every step of the execution trace performs an action and (possibly)

changes program point and state.
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Recap (2)

• An execution trace π traverses a path in the control-flow graph.

• It starts in a program point u0 with an initial state σ0 and

leads to a program point um with a final state σm.

• Every step of the execution trace performs an action and (possibly)

changes program point and state.

==⇒ The trace π can be represented as a sequence

(u0,σ0)s1(u1,σ1) . . . sm(um,σm)

where si are elements of the control-flow graph, i.e., basic

statements or conditions (guards) ...
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Example

Start

 

x = a = read();

y = b = read();

no yes

Stop

yesno
write(x);

y=y−x;x=x−y;

x != y

x < y 3

5

6

2

4

1

0
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Assume that we start in point 3 with {x 7→ 6, y 7→ 12}.

Then we obtain the following execution trace:

π = (3, {x 7→ 6, y 7→ 12}) y = y-x;

(1, {x 7→ 6, y 7→ 6}) !(x != y)

(5, {x 7→ 6, y 7→ 6}) write(x);

(6, {x 7→ 6, y 7→ 6})
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Theorem

Let p be a MiniJava program, let π be an execution trace

starting in program point u and leading to program point v.

Assumptions:

• The program points in p are annotated by assertions which

are locally consistent.

• The program point u is annotated with A.

• The program point v is annotated with B.
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Theorem

Let p be a MiniJava program, let π be an execution trace

starting in program point u and leading to program point v.

Assumptions:

• The program points in p are annotated by assertions which

are locally consistent.

• The program point u is annotated with A.

• The program point v is annotated with B.

Conclusion:

If the initial state of π satisfies the assertion A, then the final

state satisfies the assertion B.
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Remarks

• If the start point of the program is annotated with true, then

every execution trace reaching program point v satisfies the

assertion at v.

• In order to prove that an assertion A holds at a program point

v, we require a locally consistent annotation satisfying:

(1) The start point is annotated with true.

(2) The assertion at v implies A.
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Remarks

• If the start point of the program is annotated with true, then

every execution trace reaching program point v satisfies the

assertion at v.

• In order to prove that an assertion A holds at a program point

v, we require a locally consistent annotation satisfying:

(1) The start point is annotated with true.

(2) The assertion at v implies A.

• So far, our method does not provide any guarantee that v is

ever reached !!!

• If a program point v can be annotated with the assertion

false, then v cannot be reached.
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Proof

Let π = (u0,σ0)s1(u1,σ1) . . . sm(um,σm)

Assume: σ0 |= A.

Proof obligation: σm |= B.

Idea

Induction on the length m of the execution trace.

m = 0:

Der Endpunkt der Ausführung ist gleich dem Startpunkt.

==⇒ σ0 = σm und A ≡ B

==⇒ Behauptung gilt.
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Conclusion

• The method of Floyd allows us to prove that an assertion B

holds whenever (or under certain assumptions) a program point is

reached ...

• For the implementation, we require:

• the assertion true at the start point

• assertions for each further program point

• a proof that the assertions are locally consistent

==⇒ Logic, automated theorem proving
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1.3 Optimization

Goal: Reduction of the number of required assertions

Observation

If the program has no loops, a weakest pre-condition can be calculated

for each program point !!!
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Example

x = x+2;

z = z+x;

i = i+1;

x=x+2;

z=z+x;

i=i+1;

B3

B

B1

B2
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Example (cont.)

Assume B ≡ z = i2 ∧ x = 2i − 1

Then we calculate:

B1 ≡ WP[[i = i+1;]](B) ≡ z = (i + 1)2 ∧ x = 2(i + 1)− 1

≡ z = (i + 1)2 ∧ x = 2i + 1
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Example (cont.)

Assume B ≡ z = i2 ∧ x = 2i − 1

Then we calculate:

B1 ≡ WP[[i = i+1;]](B) ≡ z = (i + 1)2 ∧ x = 2(i + 1)− 1

≡ z = (i + 1)2 ∧ x = 2i + 1

B2 ≡ WP[[z = z+x;]](B1) ≡ z + x = (i + 1)2 ∧ x = 2i + 1

≡ z = i2 ∧ x = 2i + 1
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Example (cont.)

Assume B ≡ z = i2 ∧ x = 2i − 1

Then we calculate:

B1 ≡ WP[[i = i+1;]](B) ≡ z = (i + 1)2 ∧ x = 2(i + 1)− 1

≡ z = (i + 1)2 ∧ x = 2i + 1

B2 ≡ WP[[z = z+x;]](B1) ≡ z + x = (i + 1)2 ∧ x = 2i + 1

≡ z = i2 ∧ x = 2i + 1

B3 ≡ WP[[x = x+2;]](B2) ≡ z = i2 ∧ x + 2 = 2i + 1

≡ z = i2 ∧ x = 2i − 1

≡ B
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Idea

• For every loop, select one program point.

Meaningful selections:

→ Before the condition

→ At the entry of the loop body

→ At the exit of the loop body ...

• Provide an assertion for each selected program point

==⇒ loop invariant

• For all other program points, the assertions are obtained by means

of WP[[...]]().

72



Example

int a, i, x, z;

a = read();

i = 0;

x = -1;

z = 0;

while (i != a) {

x = x+2;

z = z+x;

i = i+1;

}

assert(z==a*a);

write(z);
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Example

x=x+2;

z=z+x;

i=i+1;

write(z);

Stop

z = 0;

x = −1;

i = 0;

a = read();

Start

no yes

 

i != a

B

Bz = a2
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We verify:

WP[[i != a]](z = a2, B)

≡ (i = a ∧ z = a2) ∨ (i 6= a ∧ B)

≡ (i = a ∧ z = a2) ∨ (i 6= a ∧ z = i2 ∧ x = 2i − 1)

⇐ (i 6= a ∧ z = i2 ∧ x = 2i − 1) ∨ (i = a ∧ z = i2 ∧ x = 2i − 1)

≡ z = i2 ∧ x = 2i − 1 ≡ B
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Orientation

x=x+2;

z=z+x;

i=i+1;

write(z);

Stop

z = 0;

x = −1;

i = 0;

a = read();

Start

no yes

 

i != a

B

Bz = a2
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We verify:

WP[[z = 0;]](B) ≡ 0 = i2 ∧ x = 2i − 1

≡ i = 0 ∧ x = −1

WP[[x = -1;]](i = 0 ∧ x = −1) ≡ i = 0

WP[[i = 0;]](i = 0) ≡ true

WP[[a = read();]](true) ≡ true
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1.4 Termination

Problem

• By our approach, we can only prove that an assertion is valid at a

program point whenever that program point is reached !!!

• How can we guarantee that a program always terminates ?

• How can we determine a sufficient condition which guarantees

termination of the program ??
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Examples

• The GCD program only terminates for inputs a, b with a = b or

a > 0 and b > 0.

• The square program terminates only for inputs a ≥ 0.

• while (true) ; never terminates.

• Programs without loops terminate always!
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Examples

• The GCD program only terminates for inputs a, b with a = b or

a > 0 and b > 0.

• The square program terminates only for inputs a ≥ 0.

• while (true) ; never terminates.

• Programs without loops terminate always!

Can this example be generalized ??

80



Example int i, j, t;

t = 0;

i = read();

while (i>0) {

j = read();

while (j>0) { t = t+1; j = j-1; }

i = i-1;

}

write(t);

• The read number i (if non-negative) indicates how often j is read.

• The total running time (essentially) equals the sum of all

non-negative values read into j
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Example int i, j, t;

t = 0;

i = read();

while (i>0) {

j = read();

while (j>0) { t = t+1; j = j-1; }

i = i-1;

}

write(t);

• The read number i (if non-negative) indicates how often j is read.

• The total running time (essentially) equals the sum of all

non-negative values read into j

==⇒ the program always terminates !!!
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Programs with for-loops only of the form:

for (i=n; i>0; i--) {...}

// i is not modified in the body

... always terminate !
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Programs with for-loops only of the form:

for (i=n; i>0; i--) {...}

// i is not modified in the body

... always terminate !

Question

How can we turn this observation into a method that is applicable to

arbitrary loops ?
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Idea

• Make sure that each loop is executed only finitely often ...

• For each loop, identify an indicator value r, that has two

properties

(1) r > 0 whenever the loop is entered;

(2) r is decreased during every iteration of the loop.

• Transform the program in a way that, alongside ordinary program

execution, the indicator value r is computed.

• Verify that properties (1) and (2) hold!
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Example: Safe GCD Program

int a, b, x, y;

a = read(); b = read();

if (a < 0) x = -a; else x = a;

if (b < 0) y = -b; else y = b;

if (x == 0) write(y);

else if (y == 0) write(x);

else {

while (x != y)

if (y > x) y = y-x;

else x = x-y;

write(x);

}
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We choose: r = x + y

Transformation
int a, b, x, y, r;

a = read(); b = read();

if (a < 0) x = -a; else x = a;

if (b < 0) y = -b; else y = b;

if (x == 0) write(y);

else if (y == 0) write(x);

else { r = x+y;

while (x != y) {

if (y > x) y = y-x;

else x = x-y;

r = x+y; }

write(x);

}
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Start

a = read();

y = b; y = −b;

write(x);

write(y);

r=x+y;
b = read();

x = a; x = −a;

a < 0 
yesno

x=x−y; y=y−x;

r=x+y;

Stop

write(x);

 

yes
b < 0 

y == 0 
yesno

x == 0 
yesno

 

no

yesno
x < y

no yes
x != y

2

3 1

r > x + y

r > 0
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At program points 1, 2 and 3, we assert:

(1) A ≡ x 6= y ∧ x > 0 ∧ y > 0 ∧ r = x + y

(2) B ≡ x > 0 ∧ y > 0 ∧ r > x + y

(3) true

Then we have:

A ⇒ r > 0 und B ⇒ r > x + y
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We verify:

WP[[x != y]](true, A) ≡ x = y ∨ A

⇐ x > 0 ∧ y > 0 ∧ r = x + y

≡ C
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We verify:

WP[[x != y]](true, A) ≡ x = y ∨ A

⇐ x > 0 ∧ y > 0 ∧ r = x + y

≡ C

WP[[r = x+y;]](C) ≡ x > 0 ∧ y > 0

⇐ B
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We verify:

WP[[x != y]](true, A) ≡ x = y ∨ A

⇐ x > 0 ∧ y > 0 ∧ r = x + y

≡ C

WP[[r = x+y;]](C) ≡ x > 0 ∧ y > 0

⇐ B

WP[[x = x-y;]](B) ≡ x > y ∧ y > 0 ∧ r > x

WP[[y = y-x;]](B) ≡ x > 0 ∧ y > x ∧ r > y
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We verify:

WP[[x != y]](true, A) ≡ x = y ∨ A

⇐ x > 0 ∧ y > 0 ∧ r = x + y

≡ C

WP[[r = x+y;]](C) ≡ x > 0 ∧ y > 0

⇐ B

WP[[x = x-y;]](B) ≡ x > y ∧ y > 0 ∧ r > x

WP[[y = y-x;]](B) ≡ x > 0 ∧ y > x ∧ r > y

WP[[y > x]](. . . , . . .) ≡ (x > y ∧ y > 0 ∧ r > x) ∨
(x > 0 ∧ y > x ∧ r > y)

⇐ x 6= y ∧ x > 0 ∧ y > 0 ∧ r = x + y

≡ A
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Orientation

Start

a = read();

y = b; y = −b;

write(x);

write(y);

r=x+y;
b = read();

x = a; x = −a;

a < 0 
yesno

x=x−y; y=y−x;

r=x+y;

Stop

write(x);

 

yes
b < 0 

y == 0 
yesno

x == 0 
yesno

 

no

yesno
x < y

no yes
x != y

2

3 1

r > x + y

r > 0
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Further propagation of C through the control-flow graph completes

the locally consistent annotation with assertions.
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Further propagation of C through the control-flow graph completes

the locally consistent annotation with assertions.

We conclude:

• At program points 1 and 2, the assertions r > 0 and

r > x + y, respectively, hold.

• During every iteration, r decreases, but stays non-negative.

• Accordingly, the loop can only be iterated finitely often.

==⇒ the program terminates!
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General Method

• For every occurring loop while (b) s we introduce a fresh

variable r.

• Then we transform the loop into:

r = e0;

while (b) {

assert(r>0);

s

assert(r > e1);

r = e1;

}

for suitable expressions e0, e1.
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1.5 Modular Verification and Procedures

Tony Hoare, Microsoft Research, Cambridge
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Idea

• Modularize the correctness proof in a way that sub-proofs for

replicated program fragments can be reused.

• Consider statements of the form:

{A} p {B}

... this means:

If before the execution of program fragment p, assertion A

holds and program execution terminates, then

after execution of p assertion B holds.
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Idea

• Modularize the correctness proof in a way that sub-proofs for

replicated program fragments can be reused.

• Consider statements of the form:

{A} p {B}

... this means:

If before the execution of program fragment p, assertion A

holds and program execution terminates, then

after execution of p assertion B holds.

A : pre-condition

B : post-condition

100



Examples

{x > y} z = x-y; {z > 0}
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Examples

{x > y} z = x-y; {z > 0}

{true} if (x<0) x=-x; {x ≥ 0}
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Examples

{x > y} z = x-y; {z > 0}

{true} if (x<0) x=-x; {x ≥ 0}

{x > 7} while (x!=0) x=x-1; {x = 0}
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Examples

{x > y} z = x-y; {z > 0}

{true} if (x<0) x=-x; {x ≥ 0}

{x > 7} while (x!=0) x=x-1; {x = 0}

{true} while (true); {false}
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Modular verification can be used to prove the correctness of programs

using functions/methods.

Simplification

We only consider

• procedures, i.e., static methods without return values;

• global variables, i.e., all variables are static as well.

// will be generalized later
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Example

int a, b, x, y;

void main () {

a = read();

b = read();

mm();

write (x-y);

}

void mm() {

if (a>b) {

x = a;

y = b;

} else {

y = a;

x = b;

}

}

106



Comment

• for simplicity, we have removed all qualifiers static.

• The procedure definitions are not recursive.

• The program reads two numbers.

• The procedure minmax stores the larger number in x, and the

smaller number in y.

• The difference of x and y is returned.

• Our goal is to prove:

{a ≥ b} mm(); {a = x}
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Approach

• For every procedure f(), we provide a triple

{A} f(); {B}

• Relative to this global hypothesis H we verify for each

procedure definition void f() { ss } that

{A} ss {B}

holds.

• Whereever a procedure call occurs in the program, we rely on the

triple from H ...
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... in the Example

We verify:

mm()

no yes
a > b

x = a;

y = b;

x = b;

y = a;

Stop a = x

a ≥ b
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... in the Example

We verify:

mm()

no yes
a > b

x = a;

y = b;

x = b;

y = a;

Stop a = x

a ≥ b

truea = b
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Discussion

• The approach also works in case the procedure has a return value:

that can be simulated by means of a global variable return which

receives the respective function results.

• It is not obvious, though, how pre- and post-conditions of procedure

calls can be chosen if a procedured is called in multiple places ...

• Even more complicated is the situation when a procedure is

recursive: the it has possibly unboundedly many distinct calls !?
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Example

int x, m0, m1, t;

void main () {

x = read();

m0 = 1; m1 = 1;

if (x > 1) f();

write (m1);

}

void f() {

x = x-1;

if (x>1) f();

t = m1;

m1 = m0+m1;

m0 = t;

}
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Comment

• The program reads a number.

• If the number is at most 1, the program returns 1 ...

• Otherwise, the program computes the Fibonacci function fib.

• After a call to f, the variables m0 and m1 have the values fib(i − 1)

and fib(i), respectively ...

113



Problem

• In the logic, we must be able to distinguish between the ith and

the (i + 1)th call.

• This is easier, if we have logical auxiliaries l = l1, . . . , ln at hand

to store (selected) values before the call ...

In the Example

{A} f(); {B} where

A ≡ x = l ∧ x > 1 ∧ m0 = m1 = 1

B ≡ l > 1 ∧ m1 ≤ 2l ∧ m0 ≤ 2l−1
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General Approach

• Again, we start with a global hypothesis H which provides a

description

{A} f(); {B}
// both A and B may contain li

for each call of f();

• Given this global hypothesies H we verify for each procedure

definition void f() { ss } that

{A} ss {B}

holds.
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... in the Example

x = x−1;

m1=m1+m0;

t = m1;

m0 = t;

Stop

f()

f();

no yes
x > 1

B

C

D

A

x = l − 1 ∧ x > 0 ∧ m0 = m1 = 1
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• We start with an assertion for the end point:

B ≡ l > 1 ∧ m1 ≤ 2l ∧ m0 ≤ 2l−1

• The assertion C is obtained by means of WP[[. . .]] and

weakening ...

WP[[t=m1; m1=m1+m0; m0=t;]] (B)

≡ l − 1 > 0 ∧ m1 + m0 ≤ 2l ∧ m1 ≤ 2l−1

⇐ l − 1 > 1 ∧ m1 ≤ 2l−1 ∧ m0 ≤ 2l−2

≡ C
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Question

How can the global hypothesis be used to deal with a specific procedure

call ???

Idea

• The assertion {A} f(); {B} represents a value table for

f().

• This value table can be logically represented by the implication:

∀ l. (A[h/x] ⇒ B)

// h denotes a sequence of auxiliaries

The values of the variables x before the call are recorded in the

auxiliaries.
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Examples

Funktion: void double () { x = 2*x;}

Spezifikation: {x = l} double(); {x = 2l}
Tabelle: ∀ l.(h = l) ⇒ (x = 2l)

≡ (x = 2h)

For the Fibonacci function, we calculate:

∀ l. (h > 1 ∧ h = l ∧ h0 = h1 = 1) ⇒
l > 1 ∧ m1 ≤ 2l ∧ m0 ≤ 2l−1

≡ (h > 1 ∧ h0 = h1 = 1) ⇒ m1 ≤ 2h ∧ m0 ≤ 2h−1
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Another pair (A1, B1) of assertions forms a valid triple

{A1} f(); {B1} , if we are able to prove that

∀ l. A[h/x] ⇒ B A1[h/x]

B1
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Another pair (A1, B1) of assertions forms a valid triple

{A1} f(); {B1} , if we are able to prove that

∀ l. A[h/x] ⇒ B A1[h/x]

B1

Example: double()

A ≡ x = l B ≡ x = 2l

A1 ≡ x ≥ 3 B1 ≡ x ≥ 6
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Another pair (A1, B1) of assertions forms a valid triple

{A1} f(); {B1} , if we are able to prove that

∀ l. A[h/x] ⇒ B A1[h/x]

B1

Example: double()

A ≡ x = l B ≡ x = 2l

A1 ≡ x ≥ 3 B1 ≡ x ≥ 6

We verify:

x = 2h h ≥ 3

x ≥ 6
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Remarks

Valid pairs (A1, B1) are obtained, e.g.,

• by substituting logical variables:

{x = l} double(); {x = 2l}
{x = l − 1} double(); {x = 2(l − 1)}
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Remarks

Valid pairs (A1, B1) are obtained, e.g.,

• by substituting logical variables:

{x = l} double(); {x = 2l}
{x = l − 1} double(); {x = 2(l − 1)}

• by adding a condition C to the logical variables:

{x = l} double(); {x = 2l}
{x = l ∧ l > 0} double(); {x = 2l ∧ l > 0}
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Remarks (cont.)

Valid pairs (A1, B1) are also obtained,

• if the pre-condition is strengthened or the post-condition weakened:

{x = l} double(); {x = 2l}
{x > 0 ∧ x = l} double(); {x = 2l}

{x = l} double(); {x = 2l}
{x = l} double(); {x = 2l ∨ x = −1}
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Application to Fibonacci

Our goal is to prove: {D} f(); {C}

A ≡ x > 1 ∧ l = x ∧ m0 = m1 = 1

A[(l − 1)/l] ≡ x > 1 ∧ l − 1 = x ∧ m0 = m1 = 1

≡ D
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Application to Fibonacci

Our goal is to prove: {D} f(); {C}

A ≡ x > 1 ∧ l = x ∧ m0 = m1 = 1

A[(l − 1)/l] ≡ x > 1 ∧ l − 1 = x ∧ m0 = m1 = 1

≡ D

B ≡ l > 1 ∧ m1 ≤ 2l ∧ m0 ≤ 2l−1

B[(l − 1)/l] ≡ l − 1 > 1 ∧ m1 ≤ 2l−1 ∧ m0 ≤ 2l−2

≡ C
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Orientation

x = x−1;

m1=m1+m0;

t = m1;

m0 = t;

Stop

f()

f();

no yes
x > 1

B

C

D

A

x = l − 1 ∧ x > 0 ∧ m0 = m1 = 1
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For the conditional, we verify:

WP[[x>1]] (B, D) ≡ (x ≤ 1 ∧ l > 1 ∧ m1 ≤ 2l ∧ m0 ≤ 2l−1) ∨
(x > 1 ∧ x = l − 1 ∧ m1 = m0 = 1)

⇐ x > 0 ∧ x = l − 1 ∧ m0 = m1 = 1
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1.6 Procedures with Local Variables

• Procedures f() modify global variables.

• The values of local variables of the caller before and after the call

remain unchanged.

Example

{int y= 17; double(); write(y);}

Before and after the call of double() we have: y = 17.
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• The values of local variables are automatically preserved, if the

global hypothesis has the following properties:

→ The pre- and post-conditions: {A}, {B} of procedures

only speak about global variables !

→ The h are only used for global variables !!
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• The values of local variables are automatically preserved, if the

global hypothesis has the following properties:

→ The pre- and post-conditions: {A}, {B} of procedures

only speak about global variables !

→ The h are only used for global variables !!

• As a new specific instance of adaptation, we obtain:

{A} f(); {B}
{A ∧ C} f(); {B ∧ C}

if C only speaks about logical variables or local variables of the

caller.
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Summary

• Every further language construct requires dedicated verification

techniques.

• How to deal with dynamic data-structures, objects, classes,

inheritance ?

• How to deal with concurrency, reactivity ??

• Do the presented methods allow to prove everything ==⇒
completeness ?

• In how far can verification be automated ?

• How much help must be provided by the programmer and/or the

verifier ?
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Functional Programming
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John McCarthy, Stanford
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Xavier Leroy, INRIA, Paris
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2 Basics

• Interpreter Environment

• Expressions

• Definitions of Values

• More Complex Datatypes

• Lists

• Definitions (cont.)

• User-defined Datatypes
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2.1 The Interpreter Environment

The basic interpreter is called with ocaml.

seidl@linux:~> ocaml

Objective Caml version 4.07.0

#

Definitions of variables, functions, ... can now immediately be inserted.

Alternatively, they can be read from a file:

# #use "Hallo.ml";;
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2.2 Expressions

# 3+4;;

- : int = 7

# 3+

4;;

- : int = 7

#

→ At #, the interpreter is waiting for input.

→ The ;; causes evaluation of the given input.

→ The result is computed and returned together with its type.

Advantage: Individual functions can be tested without re-compilation !
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Pre-defined Constants and Operators

Type Constants: examples Operators

int 0 3 -7 + - * / mod

float -3.0 7.0 +. -. *. /.

bool true false not || &&

string "hallo" ^

char ’a’ ’b’
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Type Comparison operators

int = <> < <= >= >

float = <> < <= >= >

bool = <> < <= >= >

string = <> < <= >= >

char = <> < <= >= >
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Type Comparison operators

int = <> < <= >= >

float = <> < <= >= >

bool = <> < <= >= >

string = <> < <= >= >

char = <> < <= >= >

# -3.0/.4.0;;

- : float = -0.75

# "So"^" "^"it"^" "^"goes";;

- : string = "So it goes"

# 1>2 || not (2.0<1.0);;

- : bool = true
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2.3 Definitions of Values

By means of let, a variable can be assigned a value.

The variable retains this value for ever!

# let seven = 3+4;;

val seven : int = 7

# seven;;

- : int = 7

Caveat: Variable names are start with a small letter !!!
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Another definition of seven does not assign a new value to seven, but

creates a new variable with the name seven.

# let seven = 42;;

val seven : int = 42

# seven;;

- : int = 42

# let seven = "seven";;

val seven : string = "seven"

The old variable is now hidden (but still there)!

Apparently, the new variable may even have a different type.
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2.4 More Complex Datatypes

• Pairs

# (3,4);;

- : int * int = (3, 4)

# (1=2,"hello");;

- : bool * string = (false, "hallo")

• Tuples

# (2,3,4,5);;

- : int * int * int * int = (2, 3, 4, 5)

# ("hello",true,3.14159);;

-: string * bool * float = ("hello", true, 3.14159)
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Simultaneous Definition of Variables

# let (x,y) = (3,4.0);;

val x : int = 3

val y : float = 4.

# let (3,y) = (3,4.0);;

val y : float = 4.0
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Records: Example

# type person = {given:string; sur:string; age:int};;

type person = { given : string; sur : string; age : int; }

# let paul = { given="Paul"; sur="Meier"; age=24 };;

val paul : person = {given = "Paul"; sur = "Meier"; age = 24}

# let hans = { sur="kohl"; age=23; given="hans"};;

val hans : person = {given = "hans"; sur = "kohl"; age = 23}

# let hansi = {age=23; sur="kohl"; given="hans"}

val hansi : person = {given = "hans"; sur = "kohl"; age = 23}

# hans=hansi;;

- : bool = true
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Remark

... Records are tuples with named components whose ordering,

therefore, is irrelevant.

... As a new type, a record must be introduced before its use by

means of a type declaration.

... Type names and record components start with a small letter.
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Remark

... Records are tuples with named components whose ordering,

therefore, is irrelevant.

... As a new type, a record must be introduced before its use by

means of a type declaration.

... Type names and record components start with a small letter.

Access to Record Components

... via selection of components

# paul.given;;

- : string = "Paul"
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... with pattern matching

# let {given=x;sur=y;age=z} = paul;;

val x : string = "Paul"

val y : string = "Meier"

val z : int = 24

... and if we are not interested in everything:

# let {given=x} = paul;;

val x : string = "Paul"
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Case Distinction: match and if

match n

with 0 -> "Null"

| 1 -> "One"

| _ -> "uncountable!"

match e

with true -> e1

| false -> e2

The second example can also be written as

if e then e1 else e2
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Watch out for redundant and incomplete matches!

# let n = 7;;

val n : int = 7

# match n with 0 -> "null";;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

1

Exception: Match_failure ("", 5, -13).

# match n

with 0 -> "null"

| 0 -> "eins"

| _ -> "uncountable!";;

Warning: this match case is unused.

- : string = "uncountable!"

153



2.5 Lists

Lists are constructed by means of [] and :: .

Short-cut: [42; 0; 16]

# let mt = [];;

val mt : ’a list = []

# let l1 = 1::mt;;

val l1 : int list = [1]

# let l = [1;2;3];;

val l : int list = [1; 2; 3]

# let l = 1::2::3::[];;

val l : int list = [1; 2; 3]
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Caveat

All elements must have the same type:

# 1.0::1::[];;

This expression has type int but is here used with type float
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Caveat

All elements must have the same type:

# 1.0::1::[];;

This expression has type int but is here used with type float

tau list describes lists with elements of type tau.

The type ’a is a type variable:

[] denotes an empty list for arbitrary element types.

156



Pattern Matching on Lists

# match l

with [] -> -1

| x::xs -> x;;

-: int = 1
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2.6 Definition of Functions

# let double x = 2*x;;

val double : int -> int = <fun>

# (double 3, double (double 1));;

- : int * int = (6,4)

→ Behind the function name follow the parameters.

→ The function name is just a variable whose value is a function.
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→ Alternatively, we may introduce a variable whose value is a

function.

# let double = fun x -> 2*x;;

val double : int -> int = <fun>

→ This function definition starts with fun, followed by the sequence

of formal parameters.

→ After -> follows the specification of the return value.

→ The variables from the left can be accessed on the right.
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Caveat

Functions may additionally access the values of variables which have

been visible at their point of definition:

# let factor = 2;;

val factor : int = 2

# let double x = factor*x;;

val double : int -> int = <fun>

# let factor = 4;;

val factor : int = 4

# double 3;;

- : int = 6
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Caveat

A function is a value:

# double;;

- : int -> int = <fun>
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Recursive Functions

A function is recursive, if it calls itself (directly or indirectly).

# let rec fac n = if n<2 then 1 else n * fac (n-1);;

val fac : int -> int = <fun>

# let rec fib = fun x -> if x <= 1 then 1

else fib (x-1) + fib (x-2);;

val fib : int -> int = <fun>

For that purpose, Ocaml offers the keyword rec.
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If functions call themselves indirectly via other other functions, they are

called mutually recursive.

# let rec even n = if n=0 then "even" else odd (n-1)

and odd n = if n=0 then "odd" else even (n-1);;

val even : int -> string = <fun>

val odd : int -> string = <fun>

We combine their definitions by means of the keyword and.
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Definition by Case Distinction

# let rec len = fun l -> match l

with [] -> 0

| x::xs -> 1 + len xs;;

val len : ’a list -> int = <fun>

# len [1;2;3];;

- : int = 3
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Definition by Case Distinction

# let rec len = fun l -> match l

with [] -> 0

| x::xs -> 1 + len xs;;

val len : ’a list -> int = <fun>

# len [1;2;3];;

- : int = 3

... can be shorter written as

# let rec len = function [] -> 0

| x::xs -> 1 + len xs;;

val len : ’a list -> int = <fun>

# len [1;2;3];;

- : int = 3
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Case distinction for several arguments

# let rec app l y = match l

with [] -> y

| x::xs -> x :: app xs y;;

val app : ’a list -> ’a list -> ’a list = <fun>

# app [1;2] [3;4];;

- : int list = [1; 2; 3; 4]
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Case distinction for several arguments

# let rec app l y = match l

with [] -> y

| x::xs -> x :: app xs y;;

val app : ’a list -> ’a list -> ’a list = <fun>

# app [1;2] [3;4];;

- : int list = [1; 2; 3; 4]

... can also be written as

# let rec app = function [] -> fun y -> y

| x::xs -> fun y -> x::app xs y;;

val app : ’a list -> ’a list -> ’a list = <fun>

# app [1;2] [3;4];;

- : int list = [1; 2; 3; 4]
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Local Definitions

Definitions introduced by let may occur locally:

# let x = 5

in let sq = x*x

in sq+sq;;

- : int = 50

# let facit n = let rec

iter m yet = if m>n then yet

else iter (m+1) (m*yet)

in iter 2 1;;

val facit : int -> int = <fun>
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2.7 User-defined Datatypes

Example: playing cards

How to specify color and value of a card?

First Idea: pairs of strings and numbers, e.g.,

("diamonds",10) ≡ diamonds ten

("clubs",11) ≡ clubs lower

("gras",14) ≡ gras ace
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Disadvantages

• Testing of the color requires a comparison of strings

−→ inefficient!

• Representation of Jack as 11 is not intuitive

−→ incomprehensible program!

• Which card represents the pair ("culbs",9)?

(typos are recognized by the compiler)

Better: Enumeration types of Ocaml.
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Example: Playing cards

2. Idea: Enumeration Types

# type color = Diamonds | Hearts | Gras | Clubs;;

type color = Diamonds | Hearts | Gras | Clubs

# type value = Seven | Eight | Nine | Jack | Queen | King |

Ten | Ace;;

type value = Seven | Eight | Nine | Jack | Queen | King |

Ten | Ace

# Clubs;;

- : color = Clubs

# let gras_unter (Gras,Jack);;

val gras_unter : color * value = (Gras,Jack)
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Advantages

→ The representation is intuitive.

→ Typing errors are recognized:

# (Culbs,Nine);;

Unbound constructor Ecihel

→ The internal representation is efficient.

Remark

→ By type, a new type is defined.

→ The alternatives are called constructors and are separated by |.

→ Every constructor starts with a capital letter and is uniquely

assigned to a type.
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Enumeration Types (cont.)

Constructors can be compared:

# Clubs < Diamonds;;

- : bool = false;;

# Clubs > Diamonds;;

- : bool = true;;

Pattern Matching on constructors:

# let is_trump = function

| (Hearts,_) -> true

| (_,Jack) -> true

| (_,Queen) -> true

| (_,_) -> false
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val is_trump : color * value -> bool = <fun>

By that, e.g.,

# is_trump (Gras,Jack);;

- : bool = true

# is_trump (Clubs,Neun);;

- : bool = false

Another useful function:
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# let string_of_color = function

Diamonds -> "Diamonds"

| Hearts -> "Hearts"

| Gras -> "Gras"

| Clubs -> "Clubs";;

val string_of_color : color -> string = <fun>

Remark

The function string_of_color returns for a given color the

corresponding string in constant time (the compiler, hopefully, uses jump

tables).
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Now, Ocaml can (almost) play cards:

# let takes = function

| ((f1,Queen),(f2,Queen)) -> f1 > f2

| ((_,Queen),_) -> true

| (_,(_,Queen)) -> false

| ((f1,Jack),(f2,Jack)) -> f1 > f2

| ((_,Jack),_) -> true

| (_,(_,Jack)) -> false

| ((Hearts,w1),(Hearts,w2)) -> w1 > w2

| ((Hearts,_),_) -> true

| (_,(Hearts,_)) -> false

| ((f1,w1),(f2,w2)) -> if f1=f2 then w1 > w2

else false;;
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...

# let take (card2,card1) =

if takes (card2,card1) then card2 else card1;;

# let trick (card1,card2,card3,card4) =

take (card4, take (card3, take (card2,card1)));;

# trick ((Gras,Ace),(Gras,Nine),(Hearts,Ten),(Clubs,Jack));;

- : color * value = (Clubs,Jack)

# trick ((Clubs,Eight),(Clubs,King),(Gras,Ten),

(Clubs,Nine));;

- : color * value = (Clubs,King)
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Sum Types

Sum types generalize of enumeration types in that constructors now may

have arguments.

Example: Hexadecimal numbers

type hex = Digit of int | Letter of char;;

let char2dez c = if c >= ’A’ && c <= ’F’

then (Char.code c)-55

else if c >= ’a’ && c <= ’f’

then (Char.code c)-87

else -1;;

let hex2dez = function

Digit n -> n

| Letter c -> char2dez c;;
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Char is a module, which collects useful functions and values for char.

A constructor defined by type t = Con of <type> | ...

has functionality Con : <type> -> t — must, however, always

occur applied ...

# Digit;;

The constructor Digit expects 1 argument(s),

but is here applied to 0 argument(s)

# let a = Letter ’a’;;

val a : hex = Letter ’a’

# Letter 1;;

This expression has type int but is here used with type char

# hex2dez a;;

- : int = 10
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Datatypes can be recursive:

type sequence = End | Next of (int * sequence)

# Next (1, Next (2, End));;

- : sequence = Next (1, Next (2, End))

Note the similarity to lists!
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Recursive datatypes lead to recursive functions:

# let rec nth = function

(_,End) -> -1

| (0,Next (x,_)) -> x

| (n,Next (_, rest)) -> nth (n-1,rest);;

val nth : int * sequence -> int = <fun>

# nth (4, Next (1, Next (2, End)));;

- : int = -1

# nth (2, Next (1, Next(2, Next (5, Next (17, End)))));;

- : int = 5
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Another Example

# let rec down = function

0 -> End

| n -> Next (n, down (n-1));;

val down : int -> sequence = <fun>

# down 4;;

- : sequence = Next (4, Next (3, Next (2, Next (1, End))));;

# down -1;;

Stack overflow during evaluation (looping recursion?).
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The Option Datatype

Ocaml provides a built-in datatype option with the two

constructors None and Some.

# None;;

- : ’a option = None

# Some 10;

- : int option = Some 10
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It is the datatype of choice if a function is only partially defined:

# let rec nth = function

(n,End) -> None

| (0, Next (x,_)) -> Some x

| (n, Next (_,rest)) -> nth (n-1,rest);;

val nth : int * sequence -> int option = <fun>

# nth (4,Next (1, Next (2, End)));;

- : int option = None

# nth (2, Next (1, Next (2, Next (5, Next (17, End)))));;

- : int option = Some 5
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3 A closer Look at Functions

• Last Calls

• Higher-order Functions

→ Currying

→ Partial Application

• Polymorphic Functions

• Polymorphic Datatypes

• Anonymous Functions
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3.1 Last Calls

A last call in the body e of a function is a call whose value provides the

value of e ...

let f x = x+5

let g y = let z = 7

in if y>5 then f (-y)

else z + f y

The first call is last, the second is not.

==⇒ From a last call, we need not return to the calling function.

==⇒ The stack space of the calling function can immediately be

recycled !!!
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A recursive function f is called tail recursive, if all calls to f are last.

Examples

let rec fac1 = function

(1,acc) -> acc

| (n,acc) -> fac1 (n-1,n*acc);;

let rec loop x = if x<2 then x

else if x mod 2 = 0 then loop (x/2)

else loop (3*x+1);;
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Discussion

• Tail-recursive functions can be executed as efficiently as loops in

imperative languages.

• The intermediate results are handed from one recursive call to the

next in accumulating parameters.

• From that, a stopping rule computes the result.

• Tail-recursive functions are particularly popular for list processing ...
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Reversing a List – Version 1

let rec rev list = match list

with [] -> []

| x::xs -> app (rev xs) [x]
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Reversing a List – Version 1

let rec rev list = match list

with [] -> []

| x::xs -> app (rev xs) [x]

rev [0;...;n-1] calls function app with

[]

[n-1]

[n-1; n-2]

...

[n-1; ...; 1]

as first argument ==⇒ quadratic running-time!
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Reversing a List – Version 2

let rev list = let rec r a l =

match l

with [] -> a

| x::xs -> r (x::a) xs

in r [] list
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Reversing a List – Version 2

let rev list = let rec r a l =

match l

with [] -> a

| x::xs -> r (x::a) xs

in r [] list

The local function r is tail-recursive !

==⇒
linear running-time !!
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3.2 Higher Order Functions

Consider the two functions

let f (a,b) = a+b+1;;

let g a b = a+b+1;;

At first sight, f and g differ only in the syntax. But they also differ in

their types:

# f;;

- : int * int -> int = <fun>

# g;;

- : int -> int -> int = <fun>
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• Function f has a single argument, namely, the pair (a,b). The

return value is given by a+b+1.

• Function g has the argument a of type int. The result of

application to a is again a function that, when applied to another

argument b, returns the result a+b+1 :

# f (3,5);;

- : int = 9

# let g1 = g 3;;

val g1 : int -> int = <fun>

# g1 5;;

- : int = 9
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Haskell B. Curry, 1900–1982
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In honor of its inventor Haskell B. Curry, this principle is called Currying.

→ g is called a higher order function, because its result is again a

function.

→ The application of g to a single argument is called partial, because

the result takes another argument, before the body is evaluated.

The argument of a function can again be a function:

# let apply f a b = f (a,b);;

val apply : (’a * ’b -> ’c) -> ’a -> ’b -> ’c = <fun>

...
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...

# let plus (x,y) = x+y;;

val plus : int * int -> int = <fun>

# apply plus;;

- : int -> int -> int = <fun>

# let plus2 = apply plus 2;;

val plus2 : int -> int = <fun>

# let plus3 = apply plus 3;;

val plus3 : int -> int = <fun>

# plus2 (plus3 4);;

- : int = 9
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3.3 Some List Functions

let rec map f = function

[] -> []

| x::xs -> f x :: map f xs

let rec fold_left f a = function

[] -> a

| x::xs -> fold_left f (f a x) xs

let rec fold_right f = function

[] -> fun b -> b

| x::xs -> fun b -> f x (fold_right f xs b)
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let rec find_opt f = function

[] -> None

| x::xs -> if f x then Some x

else find_opt f xs

Remarks

→ These functions abstract from the behavior of the function f.

They specify the recursion according the list structure —

independently of the elements of the list.

→ Therefore, such functions are sometimes called recursion schemes

or (list) functionals.

→ List functionals are independent of the element type of the list.

That type must only be known to the function f.

→ Functions which operate on equally structured data of various

type, are called polymorphic.
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3.4 Polymorphic Functions

The Ocaml system infers the following types for the given functionals:

map : (’a -> ’b) -> ’a list -> ’b list

fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

find_opt : (’a -> bool) -> ’a list -> ’a option

→ ’a and ’b are type variables. They can be instantiated by any

type (but each occurrence with the same type).
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→ By partial application, some of the type variables may be

instantiated:

# Char.chr;;

val : int -> char = <fun>

# map Char.chr;;

- : int list -> char list = <fun>

# fold_left (+);;

val it : int -> int list -> int = <fun>
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→ If a functional is applied to a function that is itself polymorphic,

the result may again be polymorphic:

# let cons_r xs x = x::xs;;

val cons_r : ’a list -> ’a -> ’a list = <fun>

# let rev l = fold_left cons_r [] l;;

val rev : ’a list -> ’a list = <fun>

# rev [1;2;3];;

- : int list = [3; 2; 1]

# rev [true;false;false];;

- : bool list = [false; false; true]
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Some of the Simplest Polymorphic Functions

let compose f g x = f (g x)

let twice f x = f (f x)

let iter f g x = if g x then x else iter f g (f x);;

val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

val twice : (’a -> ’a) -> ’a -> ’a = <fun>

val iter : (’a -> ’a) -> (’a -> bool) -> ’a -> ’a = <fun>

# compose neg neg;;

- : bool -> bool = <fun>

# compose neg neg true;;

- : bool = true;;

# compose Char.chr plus2 65;;

- : char = ’C’
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3.5 Polymorphic Datatypes

User-defined datatypes may be polymorphic as well:

type ’a tree = Leaf of ’a

| Node of (’a tree * ’a tree)

→ tree is called type constructor, because it allows to create a new

type from another type, namely its parameter ’a.

→ In the right-hand side, only those type variables mya occur, which

have been listed on the left.

→ The application of constructors to data may instantiate type

variables:
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# Leaf 1;;

- : int tree = Leaf 1

# Node (Leaf (’a’,true), Leaf (’b’,false));;

- : (char * bool) tree = Node (Leaf (’a’, true),

Leaf (’b’, false))

Functions for polymorphic datatypes are, typically, again polymorphic ...
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let rec size = function

Leaf _ -> 1

| Node(t,t’) -> size t + size t’

let rec flatten = function

Leaf x -> [x]

| Node(t,t’) -> flatten t @ flatten t’

let flatten1 t = let rec doit = function

(Leaf x, xs) -> x :: xs

| (Node(t,t’), xs) -> let xs = doit (t’,xs)

in doit (t,xs)

in doit (t,[])

...
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...

val size : ’a tree -> int = <fun>

val flatten : ’a tree -> ’a list = <fun>

val flatten1 : ’a tree -> ’a list = <fun>

# let t = Node(Node(Leaf 1,Leaf 5),Leaf 3);;

val t : int tree = Node (Node (Leaf 1, Leaf 5), Leaf 3)

# size t;;

- : int = 3

# flatten t;;

val : int list = [1;5;3]

# flatten1 t;;

val : int list = [1;5;3]
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3.6 Application: Queues

Wanted:

Datastructure ’a queue which supports the operations

enqueue : ’a -> ’a queue -> ’a queue

dequeue : ’a queue -> ’a option * ’a queue

is_empty : ’a queue -> bool

queue_of_list : ’a list -> ’a queue

list_of_queue : ’a queue -> ’a list
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First Idea

• Represent the queue by a list:

type ’a queue = ’a list

The functions is_empty, queue_of_list, list_of_queue

then are trivial.
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First Idea

• Represent the queue by a list:

type ’a queue = ’a list

The functions is_empty, queue_of_list, list_of_queue

then are trivial.

• Extraction means access to the topmost element:

let dequeue = function

[] -> (None, [])

| x::xs -> (Some x, xs)
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First Idea

• Represent the queue by a list:

type ’a queue = ’a list

The functions is_empty, queue_of_list, list_of_queue

then are trivial.

• Extraction means access to the topmost element:

let dequeue = function

[] -> (None, [])

| x::xs -> (Some x, xs)

• Insertion means append:

let enqueue x xs = xs @ [x]
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Discussion

• The operator @ concatenates two lists.

• The implementation is very simple.

• Extraction is cheap.

• Insertion, however, requires as many calls of @ as the queue has

elements.

• Can that be improved upon ??
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Second Idea

• Represent the queue as two lists !!!

type ’a queue = Queue of ’a list * ’a list

let is_empty = function

Queue ([],[]) -> true

| _ -> false

let queue_of_list list = Queue (list,[])

let list_of_queue = function

Queue (first,[]) -> first

| Queue (first,last) ->

first @ List.rev last

• The second list represents the tail of the list and therefore in

reverse ordering ...
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Second Idea (cont.)

• Insertion is in the second list:

let enqueue x (Queue (first,last)) =

Queue (first, x::last)
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Second Idea (cont.)

• Insertion is in the second list:

let enqueue x (Queue (first,last)) =

Queue (first, x::last)

• Extracted are elements always from the first list:

Only if that is empty, the second list is consulted ...

let dequeue = function

Queue ([],last) -> (match List.rev last

with [] -> (None, Queue ([],[]))

| x::xs -> (Some x, Queue (xs,[])))

| Queue (x::xs,last) -> (Some x, Queue (xs,last))

215



Discussion

• Now, insertion is cheap!

• Extraction, however, can be as expensive as the number of

elements in the second list ...

• Averaged over the number of insertions, however, the extra costs

are only constant !!!

==⇒ amortized cost analysis
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3.7 Anonymous Functions

As we have seen, functions are data. Data, e.g., [1;2;3] can be used

without naming them. This is also possible for functions:

# fun x y z -> x+y+z;;

- : int -> int -> int -> int = <fun>

• fun initiates an abstraction.

This notion originates in the λ-calculus.

• -> has the effect of = in function definitions.

• Recursive functions cannot be defined in this way, as the recurrent

occurrences in their bodies require names for reference.
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Alonzo Church, 1903–1995
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• Pattern matching can be used by applying match ... with

for the corresponding argument.

• In case of a single argument, function can be considered ...

# function None -> 0

| Some x -> x*x+1;;

- : int option -> int = <fun>
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Anonymous functions are convenient if they are used just once in a

program. Often, they occur as arguments to functionals:

# map (fun x -> x*x) [1;2;3];;

- : int list = [1; 4; 9]

Often, they are also used for returning functions as result:

# let make_undefined () = fun x -> None;;

val make_undefined : unit -> ’a -> ’b option = <fun>

# let def_one (x,y) = fun x’ -> if x=x’ then Some y

else None;;

val def_one : ’a * ’b -> ’a -> ’b option = <fun>
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4 A Larger Application:

Balanced Trees

Recap: Sorted Array

3 5 72 11 13 17
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Properties

• Sorting algorithms allow to initialize with ≈ n · log(n) many

comparisons.

// n == size of the array

• Binary search allows to search for elements with ≈ log(n)

many comparisons.

• Arrays neither support insertion nor deletion of elements.
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Wanted:

Datastructure ’a d which allows to maintain a dynamic sorted

sequence of elements, i.e., which supports the operations

insert : ’a -> ’a d -> ’a d

delete : ’a -> ’a d -> ’a d

extract_min : ’a d -> ’a option * ’a d

extract_max : ’a d -> ’a option * ’a d

extract : ’a * ’a -> ’a d -> ’a list * ’a d

list_of_d : ’a d -> ’a list

d_of_list : ’a list -> ’a d
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First Idea

Use balanced trees ...
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First Idea

Use balanced trees ...

2

3

5

7

11

13

17
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Discussion

• Data are stored at internal nodes!

• A binary tree with n leaves has n − 1 internal nodes.

• In order to search for an element, we must compare with all

elements along a path ...

• The depth of a tree is the maximal number of internal nodes on a

path from the root to a leaf.

• A complete balanced binary tree with n = 2k leaves has depth

k = log(n).
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Discussion

• Data are stored at internal nodes!

• A binary tree with n leaves has n − 1 internal nodes.

• In order to search for an element, we must compare with all

elements along a path ...

• The depth of a tree is the maximal number of internal nodes on a

path from the root to a leaf.

• A complete balanced binary tree with n = 2k leaves has depth

k = log(n).

• How do we insert further elements ??

• How do we delete elements ???
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Second Idea

• Instead of balanced trees, we use almost balanced trees ...

• At each node, the depth of the left and right subtrees should be

almost equal !

• An AVL tree is a binary tree where the depths of left and right

subtrees at each internal node differs at most by 1 ...
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An AVL Tree
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An AVL Tree
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Not an AVL Tree
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G.M. Adelson-Velskij, 1922 E.M. Landis, Moskau, 1921-1997
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We prove:

(1) Each AVL tree of depth k > 0 has at least

fib(k) ≥ Ak−1

nodes where A =
√

5+1
2 // golden cut
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We calculate:

(1) Each AVL tree of depth k > 0 has at least

fib(k) ≥ Ak−1

nodes where A =
√

5+1
2 // golden cut

(2) Every AVL tree with n > 0 internal nodes has depth at most

1

log(A)
· log(n) + 1
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We calculate:

(1) Each AVL tree of depth k > 0 has at least

fib(k) ≥ Ak−1

nodes where A =
√

5+1
2 // golden cut

(2) Every AVL tree with n > 0 internal nodes has depth at most

1

log(A)
· log(n) + 1

Proof: We only prove (1)

Let N(k) denote the minimal number of internal nodes of an AVL

tree of depth k .

Induction on the number k > 0 ...
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k = 1 : N(1) = 1 = fib(1) = A0

k = 2 : N(2) = 2 = fib(2) ≥ A1
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k = 1 : N(1) = 1 = fib(1) = A0

k = 2 : N(2) = 2 = fib(2) ≥ A1

k > 2 : Assume that the assertion holds for k − 1 and k − 2

...

==⇒ N(k) = N(k − 1) + N(k − 2) + 1

≥ fib(k − 1) + fib(k − 2)

= fib(k)
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k = 1 : N(1) = 1 = fib(1) = A0

k = 2 : N(2) = 2 = fib(2) ≥ A1

k > 2 : Assume that the assertion holds for k − 1 and k − 2

...

==⇒ N(k) = N(k − 1) + N(k − 2) + 1

≥ fib(k − 1) + fib(k − 2)

= fib(k)
fib(k) = fib(k − 1) + fib(k − 2)

≥ Ak−2 + Ak−3

= Ak−3 · (A + 1)

= Ak−3 · A2

= Ak−1
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Second Idea (cont.)

• If another element is inserted, the AVL property may get lost !

• If some element is deleted, the AVL property may get lost !

• Then the tree must be re-structured so that the AVL property is

re-established ...

• For that, we require for each node the depths of the left and right

subtrees, respectively ...
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Representation
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Representation
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2 1

3

1

2

4
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Third Idea

• Instead of the absolute depth, we store at each node only whether

the difference in depth of the two subtrees is negative, positive or

equal to zero !!!

• As datatype, we therefore define

type ’a avl = Null

| Neg of ’a avl * ’a * ’a avl

| Pos of ’a avl * ’a * ’a avl

| Eq of ’a avl * ’a * ’a avl
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Representation
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Representation
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P

E
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Insertion

• If the tree is a leaf, i.e., empty, an internal node is created with two

new leaves.

• If the tree in non-empty, the new value is compared with the value

at the root.

→ If it is larger, it is inserted to the right.

→ Otherwise, it is inserted to the left.

• Caveat: Insertion may increase the depth and thus

Caveat: may destroy the AVL property !

• That must be subsequently dealt with ...
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let rec insert x avl = match avl

with Null -> (Eq (Null,x,Null), true)

| Eq (left,y,right) -> if x < y then

let (left,inc) = insert x left

in if inc then (Neg (left,y,right), true)

else (Eq (left,y,right), false)

else let (right,inc) = insert x right

in if inc then (Pos (left,y,right), true)

else (Eq (left,y,right), false)

...
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let rec insert x avl = match avl

with Null -> (Eq (Null,x,Null), true)

| Eq (left,y,right) -> if x < y then

let (left,inc) = insert x left

in if inc then (Neg (left,y,right), true)

else (Eq (left,y,right), false)

else let (right,inc) = insert x right

in if inc then (Pos (left,y,right), true)

else (Eq (left,y,right), false)

...

• Besides the new AVL tree, the function insert also returns

the information whether the depth of the result has increased.

• If the depth is not increased, the marking of the root need not be

changed.
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| Neg (left,y,right) -> if x < y then

let (left,inc) = insert x left

in if inc then let (avl,_) = rotateRight (left,y,right)

in (avl,false)

else (Neg (left,y,right), false)

else let (right,inc) = insert x right

in if inc then (Eq (left,y,right), false)

else (Neg (left,y,right), false)

| Pos (left,y,right) -> if x < y then

let (left,inc) = insert x left

in if inc then (Eq (left,y,right), false)

else (Pos (left,y,right), false)

else let (right,inc) = insert x right

in if inc then let (avl,_) = rotateLeft (left,y,right)

in (avl,false)

else (Pos (left,y,right), false);;
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Comments

• Insertion into the less deep subtree never increases the total depth.

The depths of the two subtrees, though, may become equal.

• Insertion into the deeper subtree may increase the difference in

depth to 2.

then the node at the root must be rotated in order to decrease the

difference ...
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rotateRight
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rotateRight
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let rotateRight (left, y, right) = match left

with Eq (l1,y1,r1) -> (Pos (l1, y1, Neg (r1,y,right)), false)

| Neg (l1,y1,r1) -> (Eq (l1, y1, Eq (r1,y,right)), true)

| Pos (l1, y1, Eq (l2,y2,r2)) ->

(Eq (Eq (l1,y1,l2), y2, Eq (r2,y,right)), true)

| Pos (l1, y1, Neg (l2,y2,r2)) ->

(Eq (Eq (l1,y1,l2), y2, Pos (r2,y,right)), true)

| Pos (l1, y1, Pos (l2,y2,r2)) ->

(Eq (Neg (l1,y1,l2), y2, Eq (r2,y,right)), true)

• The extra bit now indicates whether the depth of the tree after

rotation has decreased ...

• This is not the case only when the deeper subtree is of the form

Eq (...) — which does never occur here.
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let rotateLeft (left, y, right) = match right

with Eq (l1,y1,r1) -> (Neg (Pos (left,y,l1), y1, r1), false)

| Pos (l1,y1,r1) -> (Eq (Eq (left,y,l1), y1, r1), true)

| Neg (Eq (l1,y1,r1), y2 ,r2) ->

(Eq (Eq (left,y,l1),y1, Eq (r1,y2,r2)), true)

| Neg (Neg (l1,y1,r1), y2 ,r2) ->

(Eq (Eq (left,y,l1),y1, Pos (r1,y2,r2)), true)

| Neg (Pos (l1,y1,r1), y2 ,r2) ->

(Eq (Neg (left,y,l1),y1, Eq (r1,y2,r2)), true)

• rotateLeft is analogous to rotateRight — only with the

roles of Pos and Neg exchanged.

• Again, the depth shrinks almost always.
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Discussion

• Insertion requires at most as many calls of insert as the

depth of the tree.

• After returning from a call for a subtree, at most three nodes must

be re-arranged.

• The total effort therefore is bounded by a constand multiple to

log(n).

• In general, though, we are not interested in the extra bit at every

call. Therefore, we define:

let insert x tree = let (tree,_) = insert x tree

in tree
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Extraction of the Minimum

• The minimum occurs at the leftmost internal node.

• It is found by recursively visiting the left subtree.

The leftmost node is found when the left subtree equals Null.

• Removal of a leaf may reduce the depth and thus may destroy the

AVL property.

• After each call, the tree must be locally repaired ...
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let rec extract_min avl = match avl

with Null -> (None, Null, false)

| Eq (Null,y,right) -> (Some y, right, true)

| Eq (left,y,right) -> let (first,left,dec) = extract_min left

in if dec then (first, Pos (left,y,right), false)

else (first, Eq (left,y,right), false)

| Neg (left,y,right) -> let (first,left,dec) = extract_min left

in if dec then (first, Eq (left,y,right), true)

else (first, Neg (left,y,right), false)

| Pos (Null,y,right) -> (Some y, right, true)

| Pos (left,y,right) -> let (first,left,dec) = extract_min left

in if dec then let (avl,b) = rotateLeft (left,y,right)

in (first,avl,b)

else (first, Pos (left,y,right), false)
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Discussion

• Rotation is only required when extracting from a tree of the form

Pos (...) and the depth of the left subtree is decreased.

• Altogether, the number of recursive calls is bounded by the depth.

For every call, at most three nodes are re-arranged.

• Therefore, the total effort is bounded by a constant multiple of

log(n).

• Functions for maximum or last element from an interval are

constructed analogously ...
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5 Practical Features of Ocaml

• Exceptions

• Input and Output as Side-effects

• Sequences
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5.1 Exceptions

In case of a runtime error, e.g., division by zero, the Ocaml system

generates an exception:

# 1 / 0;;

Exception: Division_by_zero.

# List.tl (List.tl [1]);;

Exception: Failure "tl".

# Char.chr 300;;

Exception: Invalid_argument "Char.chr".

Here, the exceptions Division_by_zero, Failure ¨tl¨ and

Invalid_argument ¨Char.chr¨ are generated.
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Another reason for an exception is an incomplete match:

# match 1+1 with 0 -> "null";;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

1

Exception: Match_failure ("", 2, -9).

In this case, the exception Match_failure (¨¨, 2, -9) is

generated.
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Pre-defined Constructors for Exceptions

Division_by_zero division by 0

Invalid_argument of string wrong usage

Failure of string general error

Match_failure of string * int * int incomplete match

Not_found not found

Out_of_memory memory exhausted

End_of_file end of file

Exit for the user ...

An exception is a first class citizen, i.e., a value from a datatype exn ...
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# Division_by_zero;;

- : exn = Division_by_zero

# Failure "complete nonsense!";;

- : exn = Failure "complete nonsense!"

Own exception are introduced by extending the datatype exn ...

# exception Hell;;

exception Hell

# Hell;;

- : exn = Hell
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# Division_by_zero;;

- : exn = Division_by_zero

# Failure "complete nonsense!";;

- : exn = Failure "complete nonsense!"

Own exception are introduced by extending the datatype exn ...

# exception Hell of string;;

exception Hell of string

# Hell "damn!";;

- : exn = Hell "damn!"
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Ausnahmebehandlung

As in Java, exceptions can be raised and handled:

# let teile (n,m) = try Some (n / m)

with Division_by_zero -> None;;

# teile (10,3);;

- : int option = Some 3

# teile (10,0);;

- : int option = None

In this way, the member function can, e.g., be re-defined as
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let rec member x l = try if x = List.hd l then true

else member x (List.tl l)

with Failure _ -> false

# member 2 [1;2;3];;

- : bool = true

# member 4 [1;2;3];;

- : bool = false

Following the keyword with, the exception value can be inspected by

means of pattern matching for the exception datatype exn :

try <exp>

with <pat1> -> <exp1> | ... | <patN> -> <expN>

==⇒ several exceptions can be caught (and thus handled) at the

same time.
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The programmer may trigger exceptions on his/her own

by means of the keyword raise ...

# 1 + (2/0);;

Exception: Division_by_zero.

# 1 + raise Division_by_zero;;

Exception: Division_by_zero.

An exception is an error value which can replace any expression.

Handling of an exception, results in the evaluation of another expression

(of the correct type) — or raises another exception.
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Exception handling may occur at any sub-expression, arbitrarily nested:

# let f (x,y) = x / (y-1);;

# let g (x,y) = try let n = try f (x,y)

with Division_by_zero ->

raise (Failure "Division by zero")

in string_of_int (n*n)

with Failure str -> "Error: "^str;;

# g (6,1);;

- : string = "Error: Division by zero"

# g (6,3);;

- : string = "9"
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5.2 Textual Input and Output

• Reading from the input and writing to the output violates the

paradigm of purely functional programming !

• These operations are therefore realized by means of side-effects,

i.e., by means of functions whose return value is irrelevant (e.g.,

unit).

• During execution, though, the required operation is executed

==⇒ now, the ordering of the evaluation matters !!!
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• Naturally, Ocaml allows to write to standard output:

# print_string "Hello World!\n";;

Hello World!

- : unit = ()

• Analogously, there is a function: read_line : unit -> string

...

# read_line ();;

Hello World!

- : string = "Hello World!"

277



In order to read from file, the file must be opened for reading ...

# let infile = open_in "test";;

val infile : in_channel = <abstr>

# input_line infile;;

- : string = "Die einzige Zeile der Datei ...";;

# input_line infile;;

Exception: End_of_file

If there is no further line, the exception End_of_file is raised.

If a channel is no longer required, it should be explicitly closed ...

# close_in infile;;

- : unit = ()

278



Further Useful Values

stdin : in_channel

input_char : in_channel -> char

in_channel_length : in_channel -> int

• stdin is the standard input as channel.

• input_char returns the next character of the channel.

• in_channel_length returns the total length of the channel.
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Output to files is analogous ...

# let outfile = open_out "test";;

val outfile : out_channel = <abstr>

# output_string outfile "Hello ";;

- : unit = ()

# output_string outfile "World!\n";;

- : unit = ()

...

Die einzeln geschriebenen Wörter sind mit Sicherheit in der Datei erst zu

finden, wenn der Kanal geregelta The words written seperately, may only

occur inside the file, once the file has been closed ...

# close_out outfile;;

- : unit = ()
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5.3 Sequences

In presence of side-effects, ordering matters!

Several actions can be sequenced by means of the sequence operator ;

:

# print_string "Hello";

print_string " ";

print_string "world!\n";;

Hello world!

- : unit = ()
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Often, several strings must be output !

Given a list of strings, the list functional List.iter can be used:

# let rec iter f = function

[] -> ()

| x::[] -> f x

| x::xs -> f x; iter f xs;;

val iter : (’a -> unit) -> ’a list -> unit = <fun>
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6 The Module System of OCAML

→ Modules

→ Signatures

→ Information Hiding

→ Functors

→ Separate Compilation
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6.1 Modules

In order to organize larger software systems, Ocaml offers the concept of

modules:

module Pairs =

struct

type ’a pair = ’a * ’a

let pair (a,b) = (a,b)

let first (a,b) = a

let second (a,b) = b

end
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On this input, the compiler answers with the type of the module, its

signature:

module Pairs :

sig

type ’a pair = ’a * ’a

val pair : ’a * ’b -> ’a * ’b

val first : ’a * ’b -> ’a

val second : ’a * ’b -> ’b

end

The definitions inside the module are not visible outside:

# first;;

Unbound value first
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Access onto Components of a Module

Components of a module can be accessed via qualification:

# Pairs.first;;

- : ’a * ’b -> ’a = <fun>

Thus, several functions can be defined all with the same name:

# module Triples = struct

type ’a triple = Triple of ’a * ’a * ’a

let first (Triple (a,_,_)) = a

let second (Triple (_,b,_)) = b

let third (Triple (_,_,c)) = c

end;;

...
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...

module Triples :

sig

type ’a triple = Triple of ’a * ’a * ’a

val first : ’a triple -> ’a

val second : ’a triple -> ’a

val third : ’a triple -> ’a

end

# Triples.first;;

- : ’a Triples.triple -> ’a = <fun>
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... or several implementations of the same function:

# module Pairs2 =

struct

type ’a pair = bool -> ’a

let pair (a,b) = fun x -> if x then a else b

let first ab = ab true

let second ab = ab false

end;;
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Opening Modules

In order to avoid explicit qualification, all definitions of a module can be

made directly accessible:

# open Pairs2;;

# pair;;

- : ’a * ’a -> bool -> ’a = <fun>

# pair (4,3) true;;

- : int = 4

the keyword include allows to include the definitions of another

module into the present module ...
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# module A = struct let x = 1 end;;

module A : sig val x : int end

# module B = struct

open A

let y = 2

end;;

module B : sig val y : int end

# module C = struct

include A

include B

end;;

module C : sig val x : int val y : int end
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Nested Modules

Modules may again contain modules:

module Quads = struct

module Pairs = struct

type ’a pair = ’a * ’a

let pair (a,b) = (a,b)

let first (a,_) = a

let second (_,b) = b

end

type ’a quad = ’a Pairs.pair Pairs.pair

let quad (a,b,c,d) =

Pairs.pair (Pairs.pair (a,b), Pairs.pair (c,d))

...
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...

let first q = Pairs.first (Pairs.first q)

let second q = Pairs.second (Pairs.first q)

let third q = Pairs.first (Pairs.second q)

let fourth q = Pairs.second (Pairs.second q)

end

# Quads.quad (1,2,3,4);;

- : (int * int) * (int * int) = ((1,2),(3,4))

# Quads.Pairs.first;;

- : ’a * ’b -> ’a = <fun>
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6.2 Module Types or Signatures

Signatures allow to restrict what a module may export.

Explicit indication of the signature allows

• to restrict the set of exported variables;

• to restrict the set of exported types ...

... an Example
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module Sort = struct

let single list = map (fun x->[x]) list

let rec merge l1 l2 = match (l1,l2)

with ([],_) -> l2

| (_,[]) -> l1

| (x::xs,y::ys) -> if x<y then x :: merge xs l2

else y :: merge l1 ys

let rec merge_lists = function

[] -> [] | [l] -> [l]

| l1::l2::ll -> merge l1 l2 :: merge_lists ll

let sort list = let list = single list

in let rec doit = function

[] -> [] | [l] -> l

| l -> doit (merge_lists l)

in doit list

end
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The implementation allows to access the auxiliary functions single,

merge and merge_lists from the outside:

# Sort.single [1;2;3];;

- : int list list = [[1]; [2]; [3]]

In order to hide the functions single and merge_lists, we introduce the

signature

module type Sort = sig

val merge : ’a list -> ’a list -> ’a list

val sort : ’a list -> ’a list

end
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The functions single and merge_lists are no longer exported:

# module MySort : Sort = Sort;;

module MySort : Sort

# MySort.single;;

Unbound value MySort.single
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Signatures and Types

The types mentioned in the signature must be Instances of the types for

the exported definitions.

In that way, these types are spezialized:

module type A1 = sig

val f : ’a -> ’b -> ’b

end

module type A2 = sig

val f : int -> char -> int

end

module A = struct

let f x y = x

end
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# module A1 : A1 = A;;

Signature mismatch:

Modules do not match: sig val f : ’a -> ’b -> ’a end

is not included in A1

Values do not match:

val f : ’a -> ’b -> ’a

is not included in

val f : ’a -> ’b -> ’b

# module A2 : A2 = A;;

module A2 : A2

# A2.f;;

- : int -> char -> int = <fun>
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6.3 Information Hiding

For reasons of modularity, we often would like to prohibit that the

structure of exported types of a module are visible from the outside.

Example

module ListQueue = struct

type ’a queue = ’a list

let empty_queue () = []

let is_empty = function

[] -> true | _ -> false

let enqueue xs y = xs @ [y]

let dequeue (x::xs) = (x,xs)

end
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A signature allows to hide the implementation of a queue:

module type Queue = sig

type ’a queue

val empty_queue : unit -> ’a queue

val is_empty : ’a queue -> bool

val enqueue : ’a queue -> ’a -> ’a queue

val dequeue : ’a queue -> ’a * ’a queue

end
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# module Queue : Queue = ListQueue;;

module Queue : Queue

# open Queue;;

# is_empty [];;

This expression has type ’a list but is here used with type

’b queue = ’b Queue.queue

==⇒

The restriction via signature is sufficient to obfuscate the true nature of

the type queue.
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If the datatype should be exported together with all constructors, its

definition is repeated in the signature:

module type Queue =

sig

type ’a queue = Queue of (’a list * ’a list)

val empty_queue : unit -> ’a queue

val is_empty : ’a queue -> bool

val enqueue : ’a -> ’a queue -> ’a queue

val dequeue : ’a queue -> ’a option * ’a queue

end
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6.4 Functors

Since (almost) everything in Ocaml is higher order, it is no surprise that

there are modules of higher order: Functors.

• A functor receives a sequence of modules as parameters.

• The functor’s body is a module where the functor’s parameters can

be used.

• The result is a new module, which is defined relative to the

modules passed as parameters.
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First, we specify the functor’s argument and result by means of

signatures:

module type Decons = sig

type ’a t

val decons : ’a t -> (’a * ’a t) option

end

module type GenFold = functor (X:Decons) -> sig

val fold_left : (’b -> ’a -> ’b) -> ’b -> ’a X.t -> ’b

val fold_right : (’a -> ’b -> ’b) -> ’a X.t -> ’b -> ’b

val size : ’a X.t -> int

val list_of : ’a X.t -> ’a list

val iter : (’a -> unit) -> ’a X.t -> unit

end

...
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...

module Fold : GenFold = functor (X:Decons) ->

struct

let rec fold_left f b t = match X.decons t

with None -> b

| Some (x,t) -> fold_left f (f b x) t

let rec fold_right f t b = match X.decons t

with None -> b

| Some (x,t) -> f x (fold_right f t b)

let size t = fold_left (fun a x -> a+1) 0 t

let list_of t = fold_right (fun x xs -> x::xs) t []

let iter f t = fold_left (fun () x -> f x) () t

end;;

Now, we can apply the functor to the module to obtain a new module ...
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module MyQueue = struct open Queue

type ’a t = ’a queue

let decons = function

Queue([],xs) -> (match rev xs

with [] -> None

| x::xs -> Some (x, Queue(xs,[])))

| Queue(x::xs,t) -> Some (x, Queue(xs,t))

end

module MyAVL = struct open AVL

type ’a t = ’a avl

let decons avl = match extract_min avl

with (None,avl) -> None

| Some (a,avl) -> Some (a,avl)

end
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module FoldAVL = Fold (MyAVL)

module FoldQueue = Fold (MyQueue)

By that, we may define

let sort list = FoldAVL.list_of (

AVL.from_list list)

Caveat

A module satisfies a signature whenever it implements it !

It is not required to explicitly declare that !!
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6.5 Separate Compilation

• In reality, deployed Ocaml programs will not run within the

interactive shell.

• Instead, there is a compiler ocamlc ...

> ocamlc Test.ml

that interpretes the contents of the file Test.ml as a sequence

of definitions of a module Test.

• As a result, the compiler ocamlc generates the files

Test.cmo bytecode for the module

Test.cmi bytecode for the signature

a.out executable program
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• If there is already a file Test.mli this is interpreted as the

signature for Test. Then we call

> ocamlc Test.mli Test.ml

• Given a module A and a module B, then these should be

compiled by

> ocamlc B.mli B.ml A.mli A.ml

• If a re-compilation of B should be omitted, ocamlc may

receive a pre-compiled file

> ocamlc B.cmo A.mli A.ml

• For practical management of required re-compilation after

modification of files, Linux offers the tool make. The script of

required actions then is stored in a Makefile.

• ... alternatively, dune can be used.
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7 Formal Verification for Ocaml

Question

How can we make sure that an Ocaml program behaves as it should ???

We require:

• a formal semantics

• means to prove assertions about programs ...
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7.1 MiniOcaml

In order to simplify life, we only consider a fragment of Ocaml.

We consider ...

• only base types int, bool as well as tuples and lists

• recursive function definitions only at top level

We rule out ...

• modifiable datatypes

• input and output

• local recursive functions
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This fragment of Ocaml is called MiniOcaml.

Expressions in MiniOcaml can be described by the grammar

E :: = const | name | op1 E | E1 op2 E2 |
(E1, . . . , Ek) | let name = E1 in E0 |
match E with P1 -> E1 | ... | Pk -> Ek |
fun name -> E | E E1

P :: = const | name | (P1, . . . , Pk) | P1 :: P2
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This fragment of Ocaml is called MiniOcaml.

Expressions in MiniOcaml can be described by the grammar

E :: = const | name | op1 E | E1 op2 E2 |
(E1, . . . , Ek) | let name = E1 in E0 |
match E with P1 -> E1 | ... | Pk -> Ek |
fun name -> E | E E1

P :: = const | name | (P1, . . . , Pk) | P1 :: P2

Short-cut

fun x1 -> ...fun xk -> e ≡ fun x1 . . . xk -> e
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Caveat

• The set of admissible expressions must be further restricted to

those which are well typed, i.e., for which the Ocaml compiler

infers a type ...

(1, [true; false]) well typed

(1 [true; false]) not well typed

([1; true], false) not well typed

• We also rule out if ... then ... else ... , since it can be

simulated by match ... with true -> ... | false ->

....

• We could also have omitted let ... in ... (why?)
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A program then consists of a sequence of mutally recursive global

definitions of variables f1, . . . , fm :

let rec f1 = E1

and f2 = E2

. . .

and fm = Em
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7.2 A Semantics for MiniOcaml

Question

Which value is returned for the expression E ??

A value is an expression that cannot be further evaluated.

The set of all values can also be specified by means of a grammar:

V :: = const | fun name1 . . . namek -> E |
(V1, . . . , Vk) | [] | V1 :: V2
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A MiniOcaml Program ...

let rec comp = fun f g x -> f (g x)

and map = fun f list -> match list

with [] -> []

| x::xs -> f x :: map f xs
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A MiniOcaml Program ...

let rec comp = fun f g x -> f (g x)

and map = fun f list -> match list

with [] -> []

| x::xs -> f x :: map f xs

Examples of Values ...

1

(1, [true; false])

fun x -> 1 + 1

[fun x -> x+1; fun x -> x+2; fun x -> x+3]
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Idea

• We define a relation e ⇒ v between expressions and their

values ==⇒ big-step operational semantics.

• The relation is defined by means of axioms and rules that follow

the structure of e.

• Apparently, v ⇒ v holds for every value v.
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Tuples

e1 ⇒ v1 . . . ek ⇒ vk

(e1, . . . , ek) ⇒ (v1, . . . , vk)

Lists

e1 ⇒ v1 e2 ⇒ v2

e1 :: e2 ⇒ v1 :: v2

Global definitions

f = e e ⇒ v

f ⇒ v
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Local definitions

e1 ⇒ v1 e0[v1/x] ⇒ v0

let x = e1 in e0 ⇒ v0

Function calls

e ⇒ fun x -> e0 e1 ⇒ v1 e0[v1/x] ⇒ v0

e e1 ⇒ v0
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By repeated application of the rule for function calls, a rule for functions

with multiple arguments can be derived:

e0 ⇒ fun x1 . . . xk -> e e1 ⇒ v1 . . . ek ⇒ vk e[v1/x1, . . . , vk/xk] ⇒ v

e0 e1 . . . ek ⇒ v

This derived rule makes proofs somewhat simpler.
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Pattern Matching

e0 ⇒ v′ ≡ pi[v1/x1, . . . , vk/xk] ei[v1/x1, . . . , vk/xk] ⇒ v

match e0 with p1 -> e1 | ... | pm -> em ⇒ v

— given that v′ does not match any of the patterns p1, . . . , pi−1

;-)

Built-in operators

e1 ⇒ v1 e2 ⇒ v2 v1 op v2 ⇒ v

e1 op e2 ⇒ v

Unary operators are treated analogously.
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The built-in equality operator

v = v ⇒ true

v1 = v2 ⇒ false

given that v, v1, v2 are values that do not contain functions, and

v1, v2 are syntactically different.

Example 1

17+4 ⇒ 21 21 ⇒ 21 21=21 ⇒ true

17 + 4 = 21 ⇒ true
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Example 2

let f = fun x -> x+1

let s = fun y -> y*y

f = fun x -> x+1

f ⇒ fun x -> x+1 16+1 ⇒ 17

f 16 ⇒ 17

s = fun y -> y*y

s ⇒ fun y -> y*y 2*2 ⇒ 4

s 2 ⇒ 4 17+4 ⇒ 21

f 16 + s 2 ⇒ 21

// uses of v ⇒ v have mostly been omitted
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Example 3

let rec app = fun x y -> match x

with [] -> y

| h::t -> h :: app t y

Claim: app (1::[]) (2::[]) ⇒ 1::2::[]
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Proof

app = fun x y -> ...

app ⇒ fun x y -> ...

app = fun x y -> ...

app ⇒ fun x y -> ...

2::[] ⇒ 2::[]

match [] ... ⇒ 2::[]

app [] (2::[]) ⇒ 2::[]

1 :: app [] (2::[]) ⇒ 1::2::[]

match 1::[] ... ⇒ 1::2::[]

app (1::[]) (2::[]) ⇒ 1::2::[]

// uses of v ⇒ v have mostly been omitted
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Discussion

• The big-step operational semantics is not well suited for tracking

step-by-step how evaluation by MiniOcaml proceeds.

• It is quite convenient, though, for proving that the evaluation of a

function for particular argument values terminates:

For that, it suffices to prove that there are values to which the

corresponding function calls can be evaluated . . .
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Example Claim

app l1 l2 terminates for all list values l1, l2.

Proof

Induction on the length n of the list l1.

n = 0 I.e., l1 = []. Then

app = fun x y -> · · ·
app ⇒ fun x y -> · · · match [] with [] -> l2 | ... ⇒ l2

app [] l2 ⇒ l2
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n > 0 : I.e., l1 = h::t.

In particular, we assume that the claim already holds for all shorter lists.

Then we have:

app t l2 ⇒ l

for some l. We deduce

app = fun x y -> . . .

app ⇒ fun x y -> . . .

app t l2 ⇒ l

h :: app t l2 ⇒ h :: l

match h::t with · · · ⇒ h :: l

app (h::t) l2 ⇒ h :: l
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Discussion (cont.)

• The big-step semantis also allows to verify that optimizing

transformations are correct, i.e., preserve the semantics.

• Finally, it can be used to prove the correctness of assertions about

functional programs !

• The big-step operational semantics suggests to consider expressions

as specifications of values.

• Expressions which evaluate to the same values, should be

interchangeable ...

331



Caveat

• In MiniOcaml, equalitiy between values can only be tested if these

do not contain functions !!

• Such values are called comparable. They are of the form

C :: = const | (C1, . . . , Ck) | [] | C1 :: C2
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Caveat

• In MiniOcaml, equalitiy between values can only be tested if these

do not contain functions !!

• Such values are called comparable. They are of the form

C :: = const | (C1, . . . , Ck) | [] | C1 :: C2

• Apparently, a value of MiniOcaml is comparable if and only iff its

type does not contain functions:

c :: = bool | int | unit | c1 ∗ . . . ∗ ck | c list
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Discussion

• For program optimization, we sometimes may want to exchange

functions, e.g.,

comp (map f) (map g) = map (comp f g)

• Apparently, the functions to the right and left of the equality sign

cannot be compared by Ocaml for equality.

==⇒

Reasoning in logic requires an extended notion of equality!
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Extension of Equality

The equality = of Ocaml is extended to expression which may not

terminate, and functions.

Non-termination

e1, e2 both not terminating

e1 = e2

Termination

e1 ⇒ v1 e2 ⇒ v2 v1 = v2

e1 = e2
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Structured values

v1 = v′
1 . . . vk = v′

k

(v1, . . . , vk) = (v′
1, . . . , v′

k)

v1 = v′
1 v2 = v′

2

v1 :: v2 = v′
1 :: v′

2

Functions

e1[v/x1] = e2[v/x2] für alle v

fun x1 -> e1 = fun x2 -> e2

==⇒ extensional equality
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We have:

e ⇒ v

e = v

Assume that the type of e1, e2 is functionfree. Then

e1 = e2 e1 terminiert

e1 = e2 ⇒ true

e1 = e2 ⇒ true

e1 = e2 ei terminate

The crucial tool for our proofs is the ...
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Substitution Lemma

e1 = e2

e[e1/x] = e[e2/x]

We deduce for functionfree expressions e:

e1 = e2 e[e1/x] terminate

e[e1/x] = e[e2/x] ⇒ true
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Discussion

• The lemma tells us that in every context, all occurrences of the

expression e1 can be replaced by the expression e2 — whenever e1

and e2 represent the same values.

• The lemma can be proven by induction on the depth of the

required derivations (which we omit).

• The exchange of expressions proven equal, allows us to design a

calculus for proving the equivalence of expressions ...
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We provide us with a repertoir of rewrite rules for reducing the equality

of expressions to the equality of, possibly simpler expressions ...

Simplification of local definitions

e1 terminates

let x = e1 in e = e[e1/x]
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We provide us with a repertoir of rewrite rules for reducing the equality

of expressions to the equality of, possibly simpler expressions ...

Simplification of local definitions

e1 terminates

let x = e1 in e = e[e1/x]

Simplification of function calls

e0 = fun x -> e e1 terminates

e0 e1 = e[e1/x]
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Proof of the let rule

Since e1 terminates, there is a value v1 with

e1 ⇒ v1

Due to the Substitution Lemma, we have:

e[v1/x] = e[e1/x]

Case 1: e[v1/x] terminates.

Then a value v exists with

e[v1/x] ⇒ v
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Then

e[e1/x] = e[v1/x] = v

Because of the big-step semantics, however, we have:

let x = e1 in e ⇒ v and therefore,

let x = e1 in e = e[e1/x]

Case 2: e[v1/x] does not terminate.

Then e[e1/x] does not terminate and neither does let x = e1 in e.

Accordingly,

let x = e1 in e = e[e1/x]
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By repeated application of the rule for function calls, an extra rule for

functions with multiple arguments can be deduced:

e0 = fun x1 . . . xk-> e e1, . . . , ek terminate

e0 e1 . . . ek = e[e1/x1, . . . , ek/xk]

This derived rule allows to shorten some proofs consiberably.
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Rule for pattern matching

e0 = []

match e0 with [] -> e1 | ... | pm -> em = e1

e0 terminates e0 = e′1 :: e′2

match e0 with [] -> e1 | x :: xs -> e2 = e2[e′1/x, e′2/xs]
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Rule for pattern matching

e0 = []

match e0 with [] -> e1 | ... | pm -> em = e1

e0 terminates e0 = e′1 :: e′2

match e0 with [] -> e1 | x :: xs -> e2 = e2[e′1/x, e′2/xs]

We are now going to apply these rules ...
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7.3 Proofs for MiniOcaml Programs

Example 1

let rec app = fun x -> fun y -> match x

with [] -> y

| h::t -> h :: app t y

We want to verify that

(1) app x [] = x for all lists x.

(2) app x (app y z) = app (app x y) z

for all lists x, y, z.
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Idea: Induction on the length n of x

n = 0 Then x = [] holds.

We deduce:

app x [] = app [] []

= match [] with [] -> [] | h::t -> h :: app t []

= []

= x
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n > 0 Then: x = h::t where t has length n − 1.

We deduce:

app x [] = app (h::t) []

= match h::t with [] -> [] | h::t -> h :: app t []

= h :: app t []

= h :: t by induction hypothesis

= x
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Analogously we proceed for assertion (2) ...

n = 0 Then: x = []

We deduce:

app x (app y z) = app [] (app y z)

= match [] with [] -> app y z | h::t -> ...

= app y z

= app (match [] with [] -> y | ...) z

= app (app [] y) z

= app (app x y) z
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n > 0 Then x = h::t where t has length n − 1.

We deduce:

app x (app y z) = app (h::t) (app y z)

= match h::t with [] -> app y z

| h::t -> h :: app t (app y z)

= h :: app t (app y z)

= h :: app (app t y) z by induction hypothesis

= app (h :: app t y) z

= app (match h::t with [] -> []

| h::t -> h :: app t y) z

= app (app (h::t) y) z

= app (app x y) z

351



Discussion

• For the correctness of our induction proofs, we require that all

occurring function calls terminate.

• In the example, it suffices to prove that for all x, y, there exists

some v such that:

app x y ⇒ v

... which we have already proven, as usual, by induction.
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Example 2

let rec rev = fun x -> match x

with [] -> []

| h::t -> app (rev t) [h]

let rec rev1 = fun x -> fun y -> match x

with [] -> y

| h::t -> rev1 t (h::y)

Claim

rev x = rev1 x [] for all lists x.
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More general,

app (rev x) y = rev1 x y für alle Listen x, y.

Proof: Induction on the length n of x

n = 0 Then: x = []. We deduce:

app (rev x) y = app (rev []) y

= app (match [] with [] -> [] | ...) y

= app [] y

= y

= match [] with [] -> y | ...

= rev1 [] y

= rev1 x y
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n > 0 Then x = h::t where t has length n − 1.

We deduce (ommitting simple intermediate steps):

app (rev x) y = app (rev (h::t)) y

= app (app (rev t) [h]) y

= app (rev t) (app [h] y) by example 1

= app (rev t) (h::y)

= rev1 t (h::y) by induction hypothesis

= rev1 (h::t) y

= rev1 x y
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Discussion

• Again, we have implicitly assumed that all calls of app, rev and

rev1 terminate.

• Termination of these can be proven by induction on the length of

their first arguments.

• The claim:

rev x = rev1 x []

follows from:

app (rev x) y = rev1 x y

by setting: y = [] and assertion (1) from example 1.

356



Example 3

let rec sorted = fun x -> match x

with h1::h2::t -> (match h1 <= h2

with true -> sorted (h2::t)

| false -> false)

| _ -> true

and merge = fun x -> fun y -> match (x,y)

with ([],y) -> y

| (x,[]) -> x

| (x1::xs,y1::ys) -> (match x1 <= y1

with true -> x1 :: merge xs y

| false -> y1 :: merge x ys
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Claim

sorted x ∧ sorted y → sorted (merge x y)

for all lists x, y.

Proof: Induction on the sum n of lengthes of x, y.

Assume that sorted x ∧ sorted y holds.

n = 0 Then: x = [] = y

We deduce:

sorted (merge x y) = sorted (merge [] [])

= sorted []

= true

358



n > 0

Case 1: x = [].

We deduce:

sorted (merge x y) = sorted (merge [] y)

= sorted y

= true

Case 2: y = [] analogous.
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Case 3: x = x1::xs ∧ y = y1::ys ∧ x1 ≤ y1.

We deduce:

sorted (merge x y) = sorted (merge (x1::xs) (y1::ys))

= sorted (x1 :: merge xs y)

= ...

Case 3.1: xs = []

We deduce:

... = sorted (x1 :: merge [] y)

= sorted (x1 :: y)

= sorted y

= true
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Case 3.2: xs = x2::xs’ ∧ x2 ≤ y1.

In particular: x1 ≤ x2 ∧ sorted xs.

We deduce:

... = sorted (x1 :: merge (x2::xs’) y)

= sorted (x1 :: x2 :: merge xs’ y)

= sorted (x2 :: merge xs’ y)

= sorted (merge xs y)

= true by induction hypothesis
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Case 3.3: xs = x2::xs’ ∧ x2 > y1.

In particular: x1 ≤ y1 < x2 ∧ sorted xs.

We deduce:

... = sorted (x1 :: merge (x2::xs’) (y1::ys))

= sorted (x1 :: y1 :: merge xs ys)

= sorted (y1 :: merge xs ys)

= sorted (merge xs y)

= true by induction hypothesis
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Case 4: x = x1::xs ∧ y = y1::ys ∧ x1 > y1.

We deduce:

sorted (merge x y) = sorted (merge (x1::xs) (y1::ys))

= sorted (y1 :: merge x ys)

= ...

Case 4.1: ys = []

We deduce:

... = sorted (y1 :: merge x [])

= sorted (y1 :: x)

= sorted x

= true
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Case 4.2: ys = y2::ys’ ∧ x1 > y2.

In particular: y1 ≤ y2 ∧ sorted ys.

We deduce:

... = sorted (y1 :: merge x (y2::ys’))

= sorted (y1 :: y2 :: merge x ys’)

= sorted (y2 :: merge x ys’)

= sorted (merge x ys)

= true by induction hypothesis

364



Case 4.3: ys = y2::ys’ ∧ x1 ≤ y2.

In particular: y1 < x1 ≤ y2 ∧ sorted ys.

We deduce:

... = sorted (y1 :: merge (x1::xs) (y2::ys’))

= sorted (y1 :: x1 :: merge xs ys)

= sorted (x1 :: merge xs ys)

= sorted (merge x ys)

= true by induction hypothesis
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Discussion

• Again, we have assumed for the proof that all calls of the functions

sorted and merge terminate.

• As an additional techniques, we required a sorrow case distinction

over the various possibilities for arguments in calls.

• The case distinction made the proof longish and cumbersome.

// The case n = 0 is in fact superfluous.

// since it is covered by the cases 1 and 2
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8 Parallel Programmimg

The threads library threads.cma supports the implementation of

systems using more than a single ...

Example

module Echo = struct open Thread

let echo () = print_string (read_line () ^ "\n")

let main = let t1 = create echo ()

in join t1;

print_int (id (self ()));

print_string "\n"

end
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Comments

• The module Thread collects basic functionality for the creation

of concurrency.

• The function create: (’a -> ’b) -> ’a -> t creates a

new thread with the following properties:

✷ The thread evaluates the function for its argument.

✷ The creating thread receives the thread id as the return value

and proceeds independently.

✷ By means of the functions: self : unit -> t and id

: t -> int, the own thread id can be queried and turned

into an int, respectively.
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Further useful Functions

• The function join: t -> unit blocks the current thread until

the evaluation of the given thread has terminated.

• The function kill: t -> unit stops a given thread (not

implemented);

• The function delay: float -> unit delays the current

thread by a time period in seconds;

• The function exit: unit -> unit terminates the current

thread.
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Caveat

• Within the interactive environment, threads can be enabled via the

option #thread;; !

• Alternatively, we can compile with the option -thread :

> ocamlc -thread unix.cma threads.cma Echo.ml

• The library threads.cma requires auxiliary functionality from

the library unix.cma.

// for Windows, the situation might be different

• The program can then be tested via the call

> ./a.out
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> ./a.out

> abcdefghijk

> abcdefghijk

> 0

>

• Ocaml threads are only emulated by the runtime system.

• The creation of threads is cheap.

• Program execution terminates with the termination of the thread

with the id 0 .

371



8.1 Channels

Threads communicate via channels.

The module Event provides basic functionality for the creation of

channels, sending and receiving:

type ’a channel

new_channel : unit -> ’a channel

type ’a event

always : ’a -> ’a event

sync : ’a event -> ’a

send : ’a channel -> ’a -> unit event

receive : ’a channel -> ’a event
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• Each call new_channel() creates another channel.

• Arbitrary data may be sent across a channel !!!

• always wraps a value into an event.

• Sending and receiving generates events ...

• Synchronization on event returns their values.

module Exchange = struct open Thread open Event

let thread ch = let x = sync (receive ch)

in print_string (x ^ "\n");

sync (send ch "got it!")

let main = let ch = new_channel () in create thread ch;

print_string "main is running ...\n";

sync (send ch "Greetings!");

print_string ("He " ^ sync (receive ch) ^ "\n")

end
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Discussion

• sync (send ch str) exposes the event of sending to the

outside world and blocks the sender, until another thread has read

the value from the channel ...

• sync (receive ch) blocks the receiver, until a value has been

made available on the channel. Then this value is returned as the

result.

• Synchronous communication is one alternative for exchange of data

between threads as well as for orchestration of concurrency

==⇒ rendezvous

• In particular, it can be use to realize asonchronous communication

between threads.
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In the example, main spawns a thread. Then it sends it a string and

waits for the answer. Accordingly, the new thread waits for the transfer

of a string value over the channel. As soon as the string is received, an

answer is sent on the same channel.

Caveat

If the ordering of Ist die Abfolge von send and receive is not carefully

designed, threads easily get blocked ...

Execution of the program yields:

> ./a.out

main is sending ...Greetings!

He got it!

>
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Example: A global memory cell

Eine globale Speicherzelle, insbesondere in Anwesenheit mehrerer

Threads sollte die Signatur A global memory cell, in particular in

presence of multiple threads, can be realized by implementing the

signature Cell:

module type Cell = sig

type ’a cell

val new_cell : ’a -> ’a cell

val get : ’a cell -> ’a

val put : ’a cell -> ’a -> unit

end

The implementation must take care that the get and put calls are

sequentialized.
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This task is delegated to a server thread that reacts to get and put:

type ’a req = Get of ’a channel | Put of ’a

type ’a cell = ’a req channel

The channel transports requests to the memory cell, which either provide

the new value or the back channel ...
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let get cell = let reply = new_channel ()

in sync (send cell (Get reply));

sync (receive reply)

The function get sends a new back channel on the channel cell. If the

latter is received, it waits for the return value.

let put cell x = sync (send cell (Put x))

The function put sendsends a Put element which contains the new value

for the memory cell.
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Of interest now is the implementation of the cell itself:

let new_cell x = let cell = new_channel ()

in let rec serve x = match sync (receive cell)

with Get reply -> sync (send reply x);

serve x

| Put y -> serve y

in

create serve x;

req
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Creation of the cell with initial value x spawns a server thread that

evaluates the call serve x.

Caveat

The server thread is possibly non-terminating!

This is why it can respond to arbitrarily many requests.

Only because it is tail-recursive, it does not successively consume the

whole storage ...
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let main = let x = new_cell 1

in print_int (get x); print_string "\n";

put x 2;

print_int (get x); print_string "\n"

Now, the execution yields

> ./a.out

1

2

>

Instead of get and put, also more complex query or update operations

could be executed by the cell server ...
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Example: Locks

Often, only one at a time out of several active threads should be allowed

access to a given resource. In order to realize such a mutual exclusion,

locks can be applied:

module type Lock = sig

type lock

type ack

val new_lock : unit -> lock

val acquire : lock -> ack

val release : ack -> unit

end
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Execution of the operation acquire returns an element of type

ack which is used to return the lock:

type ack = unit channel

type lock = ack channel

For simplicity, ack is chosen itself as the channel by which the lock

is returned.

let acquire lock = let ack = new_channel ()

in sync (send lock ack);

ack
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The unlock channel is created by acquire itself

let release ack = sync (send ack ())

... and used by the operation release.

let new_lock () = let lock = new_channel ()

in let rec acq_server () =

rel_server (sync (receive lock))

and rel_server ack =

sync (receive ack);

acq_server ()

in create acq_server ();

lock
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Core of the implementation are the two mutually recursive functions

acq_server and rel_server.

acq_server expects an element ack, i.e., a channel, and upon

reception, calls rel_server.

rel_server expects a signal on the received channel indicated that the

lock is released ...

Now we are in the position to realize a decent deadlock:

let dead = let l1 = new_lock ()

in let l2 = new_lock ()

...
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in let th (l1,l2) = let a1 = acquire l1

in let _ = delay 1.0

in let a2 = acquire l2

in release a2; release a1;

print_int (id (self ()));

print_string " finished\n"

in let t1 = create th (l1,l2)

in let t2 = create th (l2,l1)

in join t1

The result is

> ./a.out

Ocaml waits for ever ...
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Example: Semaphores

Occasionally, there is more than one copy of a resource. Then

semaphores are the method of choice ...

module type Sema = sig

type sema

new_sema : int -> sema

up : sema -> unit

down : sema -> unit

end
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Idea

Again, a server is realized using an accumulating parameter, now

maintaining the number of free resources or, if negative, the number of

waiting threads ...

module Sema = struct open Thread open Event

type sema = unit channel option channel

let up sema = sync (send sema None)

let down sema = let ack = (new_channel() : unit channel)

in sync (send sema (Some ack));

sync (receive ack)

...
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...

let new_sema n = let sema = new_channel ()

in let rec serve (n,q) =

match sync (receive sema)

with None -> (match dequeue q

with (None,q) -> serve (n+1,q)

| (Some ack,q) -> sync (send ack ());

serve (n,q))

| Some ack -> if n>0 then (sync (send ack ());

serve (n-1,q))

else serve (n, enqueue ack q)

in create serve (n,new_queue()); sema

end

Apparently, the queue does not maintain the waiting threads, but only

their back channels.
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8.2 Selective Communication

A thread need not necessarily know which of several possible

communication rendezvous will occur or will occur first.

Required is a non-deterministic choice between several actions ...

Example: The function

add : int channel * int channel * int channel -> unit

is meant to read integers from two channels and send their sum to the

third.
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First Attempt

let forever f init =

let rec loop x = loop (f x)

in create loop init

let add1 (in1, in2, out) = forever (fun () ->

sync (send out (sync (receive in1) +

sync (receive in2))

)) ()

Disadvantage

If a value arrives at the second input channel first, the thread nontheless

must wait.
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Second Attempt

let add (in1, in2, out) = forever (fun () ->

let (a,b) = select [

wrap (receive in1) (fun a -> (a, sync (receive in2)));

wrap (receive in2) (fun b -> (sync (receive in1), b))

]

in sync (send out (a+b))

) ()

This program must be digested slowly ...
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Idea

→ Initiating input or output operations, generates events.

→ Events are data objects of type ’a event.

→ The function

wrap : ’a event -> (’a -> ’b) -> ’b event

applies a function a posteriori to the value of an event — given

that it occurs.
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The list thus consists of (int*int) events.

The functions

choose : ’a event list -> ’a event

select : ’a event list -> ’a

non-deterministically choose an event from the event list.

select synchronizes with the selected event, i.e., performs the

corresponding communication task and returns the event:

let select = comp sync choose

Typically, that event is occurs that finds its communication partner first.
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Further Examples

Die Funktion

copy : ’a channel * ’a channel * ’a channel -> unit

is meant to copy a read element into two channels:
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let copy (in, out1, out2) = forever (fun () ->

let x = sync (receive in)

in select [

wrap (send out1 x)

(fun () -> sync (send out2 x));

wrap (send out2 x)

(fun () -> sync (send out1 x))

]

) ()

Apparently, the event list may also consist of send events — or contain

both kinds.

type ’a cell = ’a channel * ’a channel

...
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...

let get (get_chan,_) = sync (receive get_chan)

let put (_,put_chan) x = sync (send put_chan x)

let new_cell x = let get_chan = new_channel ()

in let put_chan = new_channel ()

in let serve x = select [

wrap (send get_chan x) (fun () -> serve x);

wrap (receive put_chan) serve

]

in

create serve x;

(get_chan, put_chan)
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In general, there could be a tree of events:

sync

f2f1

g

f3 f4

receive c2receive c1

send c4 ysend c3 x
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→ The leaves are basic events.

→ A wrapper function may be applied to any given event.

→ Several events of the same type may be combined into a choice.

→ Synchronization on such an event tree activates a single leaf

event. The result is obtained by successively applying the wrapper

functions from the path to the root.
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Example: A Swap Channel

Upon rendezvous, a swap channel is meant to exchange the values of the

two participating threads. The signature is given by

module type Swap = sig

type ’a swap

val new_swap : unit -> ’a swap

val swap : ’a swap -> ’a -> ’a event

end

In the implementation with ordinary channels, every participating thread

must offer the possibility to receive and to send.
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As soon as a thread successfully completed to send (i.e., the other

thread successfully synchronized on a receive event), the second value

must be transmitted in opposite direction.

Together with the first value, we therefore transmit a channel for the

second value:

module Swap =

struct open Thread open Event

type ’a swap = (’a * ’a channel) channel

let new_swap () = new_channel ()

...
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...

let swap ch x = let c = new_channel ()

in choose [

wrap (receive ch) (fun (y,c) ->

sync (send c x); y);

wrap (send ch (x,c)) (fun () ->

sync (receive c))

]

A specific exchange can be realized by replacing choose with select.
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Timeouts

Often, our patience is not endless.

Then, waiting for a send or receive event should be terminated ...

module type Timer = sig

set_timer : float -> unit event

timed_receive : ’a channel -> float -> ’a option event

timed_send : ’a channel -> ’a -> float -> unit option event

end
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module Timer = stuct open Thread open Event

let set_timer t = let ack = new_channel ()

in let serve () = delay t;

sync (receive ack)

in create serve (); send ack ()

let timed_receive ch time = choose [

wrap (receive ch) (fun a -> Some a);

wrap (set_timer time) (fun () -> None)

]

let timed_send ch x time = choose [

wrap (send ch x) (fun a -> Some ());

wrap (set_timer time) (fun () -> None)

]

end
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8.3 Threads and Exceptions

An exception must be handled within the thread where it has been

raised.

module Explode = struct open Thread

let thread x = (x / 0);

print_string "thread terminated regularly ...\n"

let main = create thread 0; delay 1.0;

print_string "main terminated regularly ...\n"

end
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... yields

> /.a.out

Thread 1 killed on uncaught exception Division_by_zero

main terminated regularly ...

The thread was killed, the Ocaml program terminated nontheless.

Also, uncaught exceptions within the wrapper function terminate the

running thread:

module ExplodeWrap = struct open Thread open Event open Timer

let main = try sync (wrap (set_timer 1.0) (fun () -> 1 / 0))

with _ -> 0;

print_string "... this is the end!\n"

end
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Then we have

> ./a.out

Fatal error: exception Division_by_zero

Caveat

Exceptions can only be caught in the body of the wrapper function itself,

not behind the sync !
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8.4 Buffered Communication

A channel for buffered communication allows to send without blocking.

Empfangen dagegen blockiert, sofern keine Nachrichten Receiving still

may block, if no messages are available. For such channels, we realize a

module Mailbox:

module type Mailbox = sig

type ’a mbox

val new_mailbox : unit -> ’a mbox

val send : ’a mbox -> ’a -> unit

val receive : ’a mbox -> ’a event

end

For the implementation, we rely on a server which maintains a queue of

sent but not yet received messages.
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Then we implement:

module Mailbox =

struct open Thread open Queue open Event

type ’a mbox = ’a channel * ’a channel

let send (in_chan,_) x = sync (send in_chan x)

let receive (_,out_chan) = receive out_chan

let new_mailbox () = let in_chan = new_channel ()

and out_chan = new_channel ()

...
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...

in let rec serve q = if (is_empty q) then

serve (enqueue (

sync (Event.receive in_chan)) q)

else select [

wrap (Event.receive in_chan)

(fun y -> serve (enqueue y q));

wrap (Event.send out_chan (first q))

(fun () -> let (_,q) = dequeue q

in serve q)

]

in create serve (new_queue ());

(in_chan, out_chan)

end

... where first : ’a queue -> ’a returns the first element in the

queue without removing it.
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8.5 Multicasts

For sending a message to many receivers, a module Multicast is

provided that implements the signature Multicast:

module type Multicast = sig

type ’a mchannel and ’a port

val new_mchannel : unit -> ’a mchannel

val new_port : ’a mchannel -> ’a port

val multicast : ’a mchannel -> ’a -> unit

val receive : ’a port -> ’a event

end
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The operation new_port generates a fresh port where a messatge

can be received.

The (non-blocking) operation multicast sends to all registered

ports.

module Multicast = struct open Thread open Event

module M = Mailbox

type ’a port = ’a M.mbox

type ’a mchannel = ’a channel * ’a port channel

let new_port (_, req) = let m = M.new_mailbox() in

sync (send req m); m

let multicast (send_ch,_) x = sync (send send_ch x)

let receive mbox = M.receive mbox

...
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The operation multicast sends the message on channel send_ch. Die

Operation receive reads from the mailbox of the port.

The multicast channel itself is guarded by a server thread which

maintains the list of port to be served:

let new_mchannel () = let send_ch = new_channel ()

in let req = new_channel ()

in let send_port x mbox = M.send mbox x

...
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...

in let rec serve ports = select [

wrap (Event.receive req) (fun p ->

serve (p :: ports));

wrap (Event.receive send_ch) (fun x ->

create (iter (send_port x)) ports;

serve ports)

]

in create serve [];

(send_ch, req)

...
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Note that the server thread must respond both to port requests over the

channel req and to send requests over send_ch.

Caveat

Our implementation supports addition, but not removal of obsolete ports.

For an example run, we use a test expression main:
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...

let main = let mc = new_mchannel ()

in let thread i = let p = new_port mc

in while true do let x = sync (receive p)

in print_int i; print_string ": ";

print_string (x^"\n")

done

in create thread 1; create thread 2;

create thread 3; delay 1.0;

multicast mc "Hallo!";

multicast mc "World!";

multicast mc "... the end.";

delay 10.0

end

end

416



We obtain

- ./a.out

3: Hallo!

2: Hallo!

1: Hallo!

3: World!

2: World!

1: World!

3: ... the end.

2: ... the end.

1: ... the end.
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Summary

• The programming language Ocaml offers convenient possibilities to

orchestrate concurrent programs.

• Channels with synchronous communicatino allow to simulate other

concepts of concurrency such as asynchronous communication,

global variables, locks for mutual exclusion and semaphors.

• Concurrent functional programs can be as obfuscated and

incomprehensible and concurrent Java programs.

• Methods are required in order to systematically verify the

correctnes of such programs ...
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Perspectives

• Beyond the language concepts discussed in the lecture, Ocaml has

diverse further concepts, which also enable object oriented

programming.

• Moreover, Ocaml has elegant means to access functionality of the

operating system, to employ graphical libraries and to communicate

with other computers ...

==⇒ Ocaml is an interesting alternative to Java.
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9 Datalog: Computing with Relations

Example 1: The Study Program of a TU

Telefon

Email

+

+

+

Title

Room

Time

+

+

+

Matr.nr.

Name

Sem.

+

+

+

Name attends

Module StudentLecturer

offers

==⇒ entity-relationship diagram
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Discussion

• Many application domains can be described by entity-relationship

diagrams.

• Entities in the example: lecturer, module, student.

• The set of all occurring entities, i.e., of all instances can be

decribed by a table ...

Lecturer:

Name Telefon Email

Esparza 17204 esparza@in.tum.de

Nipkow 17302 nipkow@in.tum.de

Seidl 18155 seidl@in.tum.de
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Module:

Titel Raum Zeit

Diskrete Strukturen MI 1 Do 12:15-13, Fr 10-11:45

Perlen der Informatik III MI 3 Do 8:30-10

Einführung in die Informatik II MI 1 Di 16-18

Optimierung MI 2 Mo 12-14, Di 12-14

Student:

Matr.nr. Name Sem.

123456 Hans Dampf 03

007042 Fritz Schluri 11

543345 Anna Blume 03

131175 Effi Briest 05
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Discussion (cont.)

• The rows correspond to the instances.

• The columns correspond to the attributes.

• Assumption: the first attribute identifies the instance

==⇒ primary key

Consequence: Relationships are also tables ...

offers:
Name Titel

Esparza Diskrete Strukturen

Nipkow Perlen der Informatik III

Seidl Einführung in die Informatik II

Seidl Optimierung
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attends:

Matr.nr. Titel

123456 Einführung in die Informatik II

123456 Optimierung

123456 Diskrete Strukturen

543345 Einführung in die Informatik II

543345 Diskrete Strukturen

131175 Optimierung
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Possible Queries

• In which semester are students attending the module “Diskrete

Strukturen” ?

• Who attends a module of lecturer “Seidl” ?

• Who attends both “Diskrete Strukturen” and “Einführung in

die Informatik II” ?

==⇒ Datalog
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Idea: Table ⇐=⇒ Relation

A relation R is a set of tupels, i.e.,

R ⊆ U1 × . . . ×Un

where Ui is the set of all possible values for the ith component. In

our example, there are:

int, string, possibly enumeration types

// unary relations represent sets.

Relations can be described by predikates ...
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Predicates can be defined by enumeration of facts ...

... in the Example

offers ("Esparza", "Diskrete Strukturen").

offers ("Nipkow", "Perlen der Informatik III").

offers ("Seidl", "Einführung in die Informatik II").

offers ("Seidl", "Optimierung").

attends (123456, "Optimierung").

attends (123456, "Einführung in die Informatik II").

attends (123456, "Diskrete Strukturen").

attends (543345, "Einführung in die Informatik II").

attends (543345, "Diskrete Strukturen").

attends (131175, "Optimierung").
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Rules can be used to deduce further facts ...

... in the Example

hat_attendant (X,Y) :- offers (X,Z), attends (M,Z), student (M,Y,_).

semester (X,Y) :- attends (Z,X), student (Z,_,Y).

• :- represents the logical implication “⇐”.

• The comma-separated list collects the assumptions.

• The left-hand side, the head of the rule, represents the conclusion.

• Variables start with a calital letter.

• The anonymous variable _ refers to irrelevant values.
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The knowledge base consisting of facts and rules now can be queried ...

... in the Example

?- hat_attendant ("Seidl", Z).

• Datalog finds all values for Z so that the query can be deduced

from the given facts by means of the rules.

• In our examples these are:

Z = "Hans Dampf"

Z = "Anna Blume"

Z = "Effi Briest"
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Further Queries

?- semester ("Diskrete Strukturen", X).

X = 2

X = 4

?- attends (X, "Einführung in die Informatik II"),

attends (X, "Diskrete Strukturen").

X = 123456

X = 543345
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Further Queries

?- semester ("Diskrete Strukturen", X).

X = 2

X = 4

?- attends (X, "Einführung in die Informatik II"),

attends (X, "Diskrete Strukturen").

X = 123456

X = 543345

Caveat

A query may contain none, one or several variables.
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An Example Proof

The rule

has_attendant (X,Y) :- offers (X,Z), attends (M,Z), student (M,

holds for all X, M, Y, Z.
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An Example Proof

The rule

has_attendant (X,Y) :- offers (X,Z), attends (M,Z), student (M,

holds for all X, M, Y, Z. By means of the substitution

"Seidl"/X "Einführung ..."/Z 543345/M "Anna Blume"/Y

we deduce

offers ("Seidl", "Einführung ...")

hört (543345, "Einführung ....")

student (543345, "Anna Blume", 3)

has_attendant ("Seidl", "Anna Blume")
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Example 2: A Weblog

Title+
ID

Contents

Date

+

+

+

Account

Name

Password

+

+

−

contains

ownshas member

trusts

Group

Weblog

Person

edits

Eintrag
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Task: Specification of access rights

• Every member of the group of editors is entitled to add an entry.

• Only the owner of an entry is allowed to delete it.

• Everybody trusted by the owner, is entitled to modify.

• Every member of the group as well as everybody directly or

indirectly trusted by a memober of the group, is allowed to read ...
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Specification in Datalog

may_add (X,W) :- edits (Z,W),

has_member (Z,X).

may_delete (X,E) :- owns (X,E).

may_modify (X,E) :- owns (X,E).

may_modify (X,E) :- owns (Y,E),

trusts (Y,X).

may_read (X,E) :- contains (W,E),

may_add (X,W).

may_read (X,E) :- may_read (Y,E),

trusts (Y,X).
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Remark

• All available predicates or even fresh auxiliary predicates can be

used for the definition of new predicates.

• Apparently, predicate definitions may be recursive.

• Together with a person X owning an entry, also all persons are

entitled to modify trusted by X.

• Together with a person Y entitled to read, also all persons are

entitled to read trusted by Y.
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9.1 Answering a Query

Given: a set of facts and rules

Wanted: the set of all deducible facts

Problem

equals (X,X).

==⇒ the set of all deducible facts is infinite.
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Theorem

Assume that W is a finite set of facts and rules with the following

properties:

(1) Facts do not contain variables.

(2) Every variable in the head, also occurs in the body.

Then the set of deducible facts is finite.
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Theorem

Assume that W is a finite set of facts and rules with the following

properties:

(1) Facts do not contain variables.

(2) Every variable in the head, also occurs in the body.

Then the set of deducible facts is finite.

Proof Sketch

For every deducible fact p(a1,...,ak), it is shown that each

constant ai already occurs in W.
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Calculation of All Deducible Facts

Berechne sukzessiv Mengen R(i) der Fakten, die mithilfe von

Beweisen der Tiefe maximal i abgeleitet werden können ...

R(0) = ∅ R(i+1) = F (R(i))

where the operator F is defined by

F (M) = {h[a/X] | ∃ h :- l1, . . . , lk. ∈ W :

l1[a/X], . . . , lk[a/X] ∈ M}

// [a/X] a substitution of the variables X

// k can be equal to 0.
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We have: R(i) = F i(∅) ⊆ F i+1(∅) = R(i+1)
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We have: R(i) = F i(∅) ⊆ F i+1(∅) = R(i+1)

The set R of all implied facts is given by

R =
⋃

i≥0 R(i) = R(n)

for a suitable n — since R is finite.
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We have: R(i) = F i(∅) ⊆ F i+1(∅) = R(i+1)

The set R of all implied facts is given by

R =
⋃

i≥0 R(i) = R(n)

for a suitable n — since R is finite.

Example

edge (a,b).

edge (a,c).

edge (b,d).

edge (d,a).

t (X,Y) :- edge (X,Y).

t (X,Y) :- edge (X,Z), t (Z,Y).
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Relation edge :

a b c d

a

b

d

c
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a b c d

a

b

d

c

a b c d

a

b

d

c

(1)t(0)t
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a b c d

a

b

d

c

a b c d

a

b

d

c

(2)t (3)t
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Discussion

• Our considerations are strong enough to calculate all facts implied

by a Datalog program.

• From that, the set of answer substitutions can be extracted.
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Discussion

• Our considerations are strong enough to calculate all facts implied

by a Datalog program.

• From that, the set of answer substitutions can be extracted.

• The naive approach, however, is hopelessly inefficient.

• Smarter approaches try to avoid multiple calculations of the ever

identical same facts ...

• In particular, only those facts need be deduced which are useful for

answering the query ==⇒ compiler construction, databases
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9.2 Operations on Relations

• We use predicates in order to describe relations.

• There are natural operations on relations which we would like to

express in Datalog, i.e., define for predicates.
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1. Union
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... in Datalog:

r(X1, . . . , Xk) :- s1(X1, . . . , Xk).

r(X1, . . . , Xk) :- s2(X1, . . . , Xk).

Example

hört_Esparza_oder_Seidl (X) :- hat_Hörer ("Esparza", X).

hört_Esparza_oder_Seidl (X) :- hat_Hörer ("Seidl", X).
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2. Intersection
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... in Datalog:

r(X1, . . . , Xk) :- s1(X1, . . . , Xk),

s2(X1, . . . , Xk).

Example

hört_Esparza_und_Seidl (X) :- hat_Hörer ("Esparza", X),

hat_Hörer ("Seidl", X).
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3. Relative Complement
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... in Datalog:

r(X1, . . . , Xk) :- s1(X1, . . . , Xk), not(s2(X1, . . . , Xk)).

i.e., r(a1, . . . , ak) follows when s1(a1, . . . , ak) holds but

s2(a1, . . . , ak) is not provable.

Example

hört_nicht_Seidl (X) :- student (_,X,_),

not (hat_Hörer ("Seidl", X)).
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Caveat

The query

p("Hallo!").

?- not (p(X)).

results in infinitely many answers.

==⇒ we allow negated literals only if all occurring variables

==⇒ have already occurred to the left in non-negated literals.

p("Hallo!").

q("Damn ...").

?- q(X), not (p(X)).

X = "Damn ..."
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Caveat (cont.):

Negation is only meaningful when s does not recursively depend on

r ...

p(X) :- not (p(X)).

... is not easy to interpret.

==⇒ We allow not(s(. . .)) only in rules for

==⇒ predicates r of which s is independent

==⇒ stratified negation

// Without recursive predicates, every negation is stratified.
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4. Cartesisches Produkt

S1 × S2 = {(a1, . . . , ak, b1, . . . , bm) | (a1, . . . , ak) ∈ S1,

(b1, . . . , bm) ∈ S2 }

... in Datalog:

r(X1, . . . , Xk, Y1, . . . , Ym) :- s1(X1, . . . , Xk), s2(Y1, . . . , Ym).
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a

b

d

c

a

b

d

c

a

b

d

c

a b c d

460



Example

dozent_student (X,Y) :- dozent (X,_,_),

student (_,Y,_).

Comments

• The product of independent relations is very expensive.

• It should be avoided whenever possible ;-)
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5. Projection

πi1 ,...,ik
(S) = {(ai1

, . . . , aik
) | (a1, . . . , am) ∈ S}

... in Datalog:

r(Xi1
, . . . , Xik

) :- s(X1, . . . , Xm).
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a

b

d

c

a

b

d

c1

a b c d
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1,1

a

b

d

c

a b c d

a

b

d

c

a b c d
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6. Join

S1 ✶ S2 = {(a1, . . . , ak, b1, . . . , bm) | (a1, . . . , ak+1) ∈ S1,

(b1, . . . , bm) ∈ S2,

ak+1 = b1 }

... in Datalog:

r(X1, . . . , Xk, Y1, . . . , Ym) :- s1(X1, . . . , Xk, Y1), s2(Y1, . . . , Ym).
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Discussion

Joins can be defined by means of the other operations ...

S1 ✶ S2 = π1,...,k,k+2,...,k+1+m (

S1 × S2 ∩
U k × π1,1(U )×Um−1)

// For simplicity, we have assumed that U is the

// joint universe of all components.

Joins often allow to avoid expensive cartesian products.

The presented operations on relations form the basis of relational algebra

...
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Background

Relational Algebra ...

+ is the basis underlying the query languages of relational databases

==⇒ SQL

+ allows optimization of queries.

Idea: Replace expensive sub-expressions of the query with cheaper

expressions of the same semantics !
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Background

Relational Algebra ...

+ is the basis underlying the query languages of relational databases

==⇒ SQL

+ allows optimization of queries.

Idea: Replace expensive sub-expressions of the query with cheaper

expressions of the same semantics !

− is rather cryptic

− does not support recursive definitions.
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Example

The Datalog predicate

semester (X,Y) :- hört (Z,X), student (Z,_,Y)

... can be expressed in SQL by

SELECT hört.Titel, Student.Semester

FROM hört, Student

WHERE hört.Matrikelnummer = Student.Matrikelnummer
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Perspective

• Besides a query language, a realistic database language must also

offer the possibility for insertion / modification / deletion.

• The implementation of a database must be able to handle not just

toy applications like our examples, but to deal with gigantic mass

data !!!

• It must be able to reliably execute multiple concurrent transactions

without messing up individual tasks.

• A database also should be able to survive power supply failure

==⇒ database lecture
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