
Compiler Construction

Dr. Michael Petter, Raphaela Palenta SS 2019
Exercise Sheet 9

Assignment 9.1 Type Checking
This exercise is about checking the types of expressions given in our C-like language. Use
a deduction tree to check whether the statements are well-typed. Make sure to only use
the rules given in the lecture and specify the rule for each step.

1. Given the declarations Γ := {int x, int a[]}, check whether the statement int y =
x + a[42]; is well-typed.

2. Given the declarations Γ := {int y, double a[], struct {double a[]; } g, int (∗f)(double)},
check whether the statement int x = f(g.a[y + 2]); is well-typed.

Suggested Solution 9.1

1.

Op
Var

Γ ` x : int
Array

Var
Γ ` a : int[]

Const
Γ ` 42 : int

Γ ` a[42] : int
Γ ` x + a[42] : int

2.

1



A
rr

ay
st

ru
ct

V
ar

Γ
`

g
:s

tr
u
ct
{d

ou
bl

e[
]a

;}
Γ
`

g
.a

:d
ou

bl
e[

]
O

p
V

ar
Γ
`

y
:i

n
t

C
on

st
Γ
`

2
:i

n
t

Γ
`

y
+

2
:i

nt
Γ
`

g
.a

[y
+

2]
:d

ou
bl

e

E

V
ar

Γ
`

f
:i

nt
(*

)(
do

ub
le)

Γ
`

g
.a

[y
+

2]
:d

ou
bl

e
Γ
`

f
(g

.a
[y

+
2]

):
?

T
he
re

is
no

ru
le

in
ou

r
ty
pe

sy
st
em

th
at

ca
n
be

ap
pl
ie
d
to

f:
in

t(
*)

(d
ou

bl
e)

an
d

g.
a[

y+
2]

:
do

ub
le

.

2



Assignment 9.2 Subtyping
Consider the following C structs:

struct A {
A f (B, C) ;
C g (C) ;

}

struct B {
B f (A, D) ;
A g (D) ;

}

struct C {
C f (B, B) ;
D g (A) ;

}

struct D {
D f (B, B) ;
D g (B) ;
int a ;

}
We are going to use the non-standard subtyping rules for C structures which have

been introduced in the lecture. Let ≤ be the type comparison operator, that is, for two
types A and B the following holds:

A ≤ B ⇔ A is a subtype of B (1)

Now, proof the assertions below either right or wrong:

1. A ≤ B

2. A ≤ C

Suggested Solution 9.2

1.

A ≤ B

A(B,C) ≤ B(A,D)

f

C(C) ≤ A(D)

g

A ≤ B A ≤ B D ≤ C C ≤ A D ≤ C

D(B, B) ≤ C(B, B)

f

D(B) ≤ D(A)

g

C(B, B) ≤ A(B, C)

f

D(A) ≤ C(C)

g

D ≤ C B ≤ B B ≤ B D ≤ D A ≤ B C ≤ A B ≤ B C ≤ B D ≤ C C ≤ A

C(B, B) ≤ B(A, D)

f

D(A) ≤ A(D)

g

C ≤ B A ≤ B D ≤ B D ≤ A D ≤ A

D(B, B) ≤ B(A, D)

f

D(B) ≤ A(D)

g

D(B, B) ≤ A(B, C)

f

D(B) ≤ C(C)

g

D ≤ B A ≤ B D ≤ B D ≤ A D ≤ B D ≤ A B ≤ B C ≤ B D ≤ C C ≤ B

Since no contradictions can be found, it follows that A ≤ B holds.

3



2.

A ≤ C

A(B,C) ≤ C(B,B)

f

C(C) ≤ D(A)

g

A ≤ C B ≤ B B ≤ C C ≤ D A ≤ C

Since D contains a field (D.a) that is not contained in C, C ≤ D cannot hold. The-
refore, A ≤ C does not hold.

4


