
Compiler Construction

Dr. Michael Petter, Raphaela Palenta SS 2019
Exercise Sheet 9

Assignment 9.1 Type Checking
This exercise is about checking the types of expressions given in our C-like language. Use
a deduction tree to check whether the statements are well-typed. Make sure to only use
the rules given in the lecture and specify the rule for each step.

1. Given the declarations Γ := {int x, int a[]}, check whether the statement int y =
x + a[42]; is well-typed.

2. Given the declarations Γ := {int y, double a[], struct {double a[]; } g, int (∗f)(double)},
check whether the statement int x = f(g.a[y + 2]); is well-typed.

Assignment 9.2 Subtyping
Consider the following C structs:

struct A {
A f (B, C) ;
C g (C) ;

}

struct B {
B f (A, D) ;
A g (D) ;

}

struct C {
C f (B, B) ;
D g (A) ;

}

struct D {
D f (B, B) ;
D g (B) ;
int a ;

}
We are going to use the non-standard subtyping rules for C structures which have

been introduced in the lecture. Let ≤ be the type comparison operator, that is, for two
types A and B the following holds:

A ≤ B ⇔ A is a subtype of B (1)

Now, proof the assertions below either right or wrong:

1. A ≤ B

2. A ≤ C

1


