
Compiler Construction

Dr. Michael Petter, Raphaela Palenta SS 2019
Exercise Sheet 4

Assignment 4.1 Top-Down-Parsing
Consider the grammar G = (N, T, δ, S) with T = {s, a}, N = {S,A}, start state S and
the following production rules

δ : S → As
A → aA 0 | ε 1

1. Construct the Item Pushdown Automaton ML
G for G following the algorithm intro-

duced in the lecture. Split your set of transitions in the three disjoint sets expansions,
shifts, and reductions.

2. Can the automaton ML
G be used to construct a deterministic LL(0)-Parser? Justify

your answer!

3. Construct the lookahead sets First1 for S and A!

4. Construct the Follow1 sets for S and A!

5. Construct the lookahead table for ML
G with lookahead 1!

Suggested Solution 4.1

1. start state [S → •As] , end state [S → As•], transition relations:

1 e [S → •As] ε [S → •As][A→ •aA]
2 e [S → •As] ε [S → •As][A→ •]
3 s [A→ •aA] a [A→ a • A]
4 r [S → •As][A→ •] ε [S → A • s]
5 s [S → A • s] s [S → As•]
6 r [A→ a • A][A→ •] ε [A→ aA•]
7 e [A→ a • A] ε [A→ a • A][A→ •]
8 e [A→ a • A] ε [A→ a • A][A→ •aA]
9 r [A→ a • A][A→ aA•] ε [A→ aA•]

10 r [S → •As][A→ aA•] ε [S → A • s]

Expansions are marked by ‘e’, shifts by ‘s’ and reduces by ‘r’.

2. No! Conflicts arise between transitions (1,2) and (7,8), respectively.

3. empty(S) = false
empty(A) = true
Fε(S) ⊇ Fε(A) ⊇ Fε(a) ⊇ {a}
Fε(S) ⊇ Fε(s) ⊇ {s}
a A S s

Each node is in a separate strongly connected component.

1



Fε(A) = {a}
Fε(S) = {a, s}
First1(A) = Fε(A) ∪ {ε} = {a, ε}
First1(S) = Fε(S) = {a, s}

4. empty(S) = false
empty(A) = true
Follow1(S) ⊇ {ε}
Follow1(A) ⊇ Fε(s) ⊇ {s}
Follow1(A) ⊇ Follow1(A)

ε S s A

Follow1(S) = {ε}
Follow1(A) = {s}

5.
A-rule 0: First1(aA)�1 Follow1(A) = {a} �1 {s} = {a}
A-rule 1: First1(ε)�1 Follow1(A) = {ε} �1 {s} = {s}

LL(1)-lookahead table:
a s

A 0 1

Assignment 4.2 Recursive descent parser
Complete the implementation (Parser.java) of the recursive descent parser for the gram-
mar of Assignment 4.1. If the input is accepted a success message should be printed out.
Otherwise the reason why the parsing failed should be printed out.

Assignment 4.3 Grammar for regular expressions
We want to prepare a implementation of a parser for string-reperesented regular expres-
sions. (The implementation is part of the next exercise sheet.)

1. Give a grammar for regular expressions that is LL(1). We consider regular expres-
sions as defined in the lecture, i.e., we have operators ·, |, ∗.

2. Prove that the grammar is LL(1).

Hint: You may start with any grammar for regular expressions and then transform this
grammar if it is not already LL(1).

Suggested Solution 4.3

1. Functionally, we would like to use something like the Arithmetic Expression Gram-

2



mar, just with regular expression operators:

δ1 : < regex > → < concat > ′|′ < regex >
| < concat >
| ε

< concat > → < rep > < concat >
| < rep >

< rep > → < atom > ′∗′

| < atom >
< atom > → ′(′ < regex > ′)′

| [′a′ −′ z′]

However, since production of the form A→ Bβ|B immediately introduce alternati-
ves with intersecting first sets, we transform the grammar a little:

δ2 : < regex > → < concat > A1
A1 → ′|′ < regex >

| ε
< concat > → < rep > A2

A2 → < concat >
| ε

< rep > → < atom > A3
A3 → ′∗′

| ε
< atom > → ′(′ < regex > ′)′

| [′a′ . . .′ z′,′ ε′]

2. We need to concentrate on differenciating the alternatives from each other by means
of determining the First1 Sets of their right hand sides 1-concatenated with their
Follow1 sets. This means, we need to determine Fε sets, thus we get

Fε(< regex >) ⊇ Fε(< concat >) ⊇ Fε(< rep >) ⊇ Fε(< atom >)
Fε(A1) ⊇ {′|′} F (A2) ⊇ Fε(< concat >) Fε(A3) ⊇ {′∗′}
Fε(< atom >) ⊇ {′(′,′ a′ −′ z′,′ ε′}

... while the relevant first set is:
First1(< concat >) = {′(′,′ a′ . . .′ z′,′ ε′}

Let’s continue with Follow1 Sets:

Follow1(A1) ⊇ Follow1(< regex >)
Follow1(A2) ⊇ Follow1(< concat >)
Follow1(A3) ⊇ Follow1(< rep >)
Follow1(< regex >) ⊇ Follow1(A1) ∪ {′)′} ∪ {ε}
Follow1(< concat >) ⊇ Follow1(A2) ∪ Fε(A1) ∪ Follow1(< regex >)
Follow1(< rep >) ⊇ Fε(A2) ∪ Follow1(< concat >))

Now, we can compare the First1 of the alternatives for A1, A2 and A3:

3



First1(A1, 1) : ′|′
First1(A1, 2) : ′)′, ε
F irst1(A2, 1) : ′(′,′ a′ . . .′ z′,′ ε′

First1(A2, 2) : ′|′,′ )′, ε
F irst1(A3, 1) : ′∗′

First1(A3, 2) : ′|′,′ )′, ε

and we see, that their respective intersection is empty

4


