
Compiler Construction

Dr. Michael Petter, Raphaela Palenta SS 2019
Exercise Sheet 3

Assignment 3.1 Derivation orders
For the example grammar with start symbol E:

E → E + T 0 | T 1

T → T ∗ F 0 | F 1

F → (E) 0 | name 1 | int 2

Draw derivation trees and give yields for the following
• leftmost derivation:

(E,1) (T,0) (T,1) (F,0) (E,0) (E,1) (T,1) (F,2) (T,1) (F,1) (F,0) (E,1) (T,1) (F,2)

• reverse rightmost derivation:
(F,2) (T,1) (F,1) (T,0) (E,1) (F,1) (T,1) (F,1) (T,0) (E,0)

Assignment 3.2 Uniqueness
For each grammar G below with start symbol A.
• What is the language of the grammar (use the set notation)?
• Is the language of the grammar a regular language?
• Is the grammar unique?
• If the grammar is not unique (ambiguous) give two derivation trees with the same

yield as a counterexample.
• If the grammar is not unique (ambiguous) give an equivalent unique grammar.
1.

A→ AA 0 | a 1

2.
A→ aA 0 | a 1 | B 2

B → bB 0 | b 1 | A 2

3.
A→ aB 0 | b 1

B → aA 0

4.
A→ BA 0 | ε 1

B → Bb 0 | aBb 1 | ab 2

Assignment 3.3 Berry-Sethi is still alive!
Last week we implemented the sophisticated Berry-Sethi approach in order to derive an
NFA from a regular expression. This week we implement the next step in order to derive
a (partial) DFA from the NFA for a given word and check if this is accepted by the
NFA/DFA or not.

Your task is to implement a method String getPartialDFA(String in) which re-
turns a (partial) DFA from the NFA for a given word in. If you call the method twice
or several times in row, the previously computed (partial) DFA should be reused and
extended if necessary. Again we represent our resulting automata by the Graphviz DOT
language. The method should print on the console if the word is accepted or not.

1

