
Compiler Construction

Dr. Michael Petter, Raphaela Palenta SS 2019
Exercise Sheet 2

Assignment 2.1 Berry-Sethi Algorithm (Sophisticated Approach)
Use the Berry-Sethi Algorithm and transform the expression r = (ε|ba)(c(a|b)∗) as follows:

1. Draw the regular expression as a tree.

2. Compute the empty attribute.

3. Compute the first attribute.

4. Compute the next attribute.

5. Compute the last attribute.

6. Construct and draw the automaton.

7. Is the resulting automaton deterministic or not?

8. Is the resulting automaton minimal or not?

Assignment 2.2 Berry-Sethi is alive!
Get your hands dirty! Basically your task is to implement the sophisticated Berry-Sethi
approach in Java. In order to do so we have to represent a regular expression as a tree.
You might want to start with the following class layout:

RegexTree

+ epsilon() : Epsilon
+ letter(l : int) : Letter
+ concat(l : RegexTree, r : RegexTree) : Concat
+ or(l : RegexTree, r : RegexTree) : Or
+ star(r : RegexTree) : Star

Concat
- left : RegexTree
- right : RegexTree

LetterEpsilon Or
- left : RegexTree
- right : RegexTree

Star
- r : RegexTree

We represent elements from our alphabet Σ by objects of the class Letter and assume
that our alphabet Σ are all unicode characters.

So far, we cannot properly parse (we will change this in the following weeks). Therefore,
as an input we do not parse a regular expression given as a string and construct our tree
from that, instead, we construct the tree directly via helper methods defined in the class
RegexTree. For example, the following call

concat(star(or(letter(’a’), letter(’b’))),
concat(letter(’a’),

or(letter(’a’), letter(’b’))))

1

returns a corresponding tree of the regular expression (a|b)*(a(a|b)).
Extend the classes to suit your needs. Compute the attributes empty, first, next, and

last. Hint: You can traverse the tree by directly implementing corresponding methods in
the tree-classes, or, you can implement the visitor-pattern. The latter approach is typically
the better way to do the job (in a few weeks you will learn the visitor-pattern in class
anyway).

Now we want to visualize the non-deterministic finite automata. Make use of the
Graphviz DOT language in order to visualize the automata. A corresponding NFA from
the example regular expression from above is given in the DOT language as follows:

digraph nfa {
rankdir=LR;
size="8,5"
node [shape=none,width=0,height=0,margin=0]; start [label=""];
node [shape=doublecircle];
4;5;
node [shape=circle];
0 -> 1 [label="a"];
0 -> 3 [label="a"];
0 -> 2 [label="b"];
1 -> 1 [label="a"];
1 -> 3 [label="a"];
1 -> 2 [label="b"];
3 -> 4 [label="a"];
3 -> 5 [label="b"];
2 -> 1 [label="a"];
2 -> 3 [label="a"];
2 -> 2 [label="b"];
start -> 0;

}

Assuming that the content from above is saved in a file named nfa.gv, you can then
layout the automata via the command dot -Tpdf nfa.gv -O resulting in a PDF file
nfa.gv.pdf:

0 4

5

1a

3a

2

b

a

a

b

a

b

a
a

b

2

http://www.graphviz.org/content/dot-language

Assignment 2.3 Powerset Construction
Transform the following NFAs to DFAs using the powerset construction. If necessary add
a ∅-state.

1.

0 1 2a a

a, b

2.

0 1 2a b

a, b

3.

0 1 2
a

ε

ε

a, b

b

a

Assignment 2.4 Partial Powerset Construction
Consider the following NFA from the lecture:

0

1

2

3

4

5

a

b

a

a
b

a

a
a

b

a

b

Construct only the part of the corresponding DFA that is needed for the input baaa.

3

