

TECHNISCHE FAKULTÄT

UNIVERSITÄT

FÜR

MÜNCHEN

INFORMATIK

Compiler Construction I

Dr. Michael Petter

SoSe 2020

Organizing

- Master or Bachelor in the 6th Semester with 5 ECTS
- Prerequisites
 - Basic Programming: Java
 - Introduction to Theory of Computation
 - Basic Principles: Operating Systems and System Software
 - Automata Theory
- Delve deeper with
 - Virtual Machines
 - Program Optimization
 - Programming Languages
 - Labcourse Compiler Construction

Materials:

- TTT-based lecture recordings
- The slides
- Related literature list online (⇒ Wilhelm/Seidl/Hack Compiler Design)
- Tools for visualization of abstract machines (VAM)
- Tools for generating components of Compilers (JFlex/CUP)

Flipped Classroom

... is a concept to focus more on students learning process – and fits quite well into plague time.

Content delivery:

Mandatory recordings:

http://ttt.in.tum.de/lectures/index_ws.php?year=20&s=true#COMP

- Presented as lessons
- To be prepared single-handedly within a week
- Starting Apr 23rd

Virtual Classroom:

Thursdays 14:00-16:00 via bbb.in.tum.de, starting Thu, Apr 23rd

- Discussion
- AMA (Ask me [almost] Anything)
- Content Practice
- Further Insights

Flipped Classroom

Tutorial:

Monday 14:15-15:45 via either bbb.in.tum.de or tum-conf.zoom.us (will be announced on Moodle)

- Exercise sheet released each week to be solved at home
- In the tutorial: Discussion of the solution and your questions
- Recording of tutorial will also be published
- First session: May 4th
- For questions about the tutorial, email Michael Schwarz at m.schwarz@tum.de
- All information about the tutorial and exercise sheets: https://www.moodle.tum.de/course/view.php?id=53342

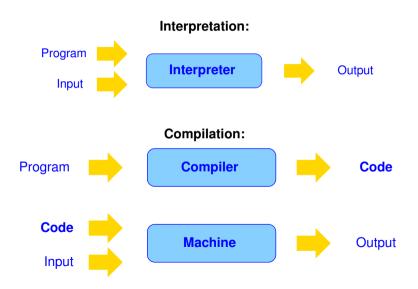
Exam:

- One Exam in the summer, none in the winter
- The date will be announced by the central examination committee

Topic:

Overview

Extremes of Program Execution



Interpretation vs. Compilation

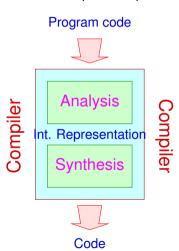
Interpretation

- No precomputation on program text necessary
 - ⇒ no/small startup-overhead
- More context information allows for specific aggressive optimization

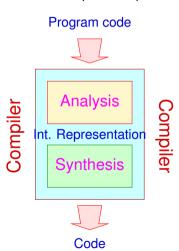
Compilation

- Program components are analyzed once, during preprocessing, instead of multiple times during execution
 - ⇒ smaller runtime-overhead
- Runtime complexity of optimizations less important than in interpreter

General Compiler setup:



General Compiler setup:



The Analysis-Phase consists of several subcomponents:

The Analysis-Phase consists of several subcomponents:

Program code lexicographic Analysis: Scanner Partitioning in tokens Token-Stream

The Analysis-Phase consists of several subcomponents:

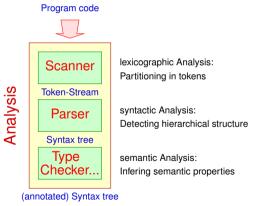
Program code Scanner Analysis Token-Stream syntactic Analysis: Parser Syntax tree

lexicographic Analysis:

Partitioning in tokens

Detecting hierarchical structure

The Analysis-Phase consists of several subcomponents:

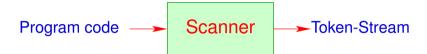


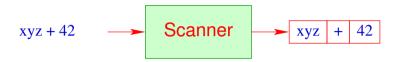
Content on the Way

- Regular expressions and finite automata
- Specification and implementation of scanners
- Context free grammars and pushdown automata
- Top-Down/Bottom-Up syntax analysis
- Attribute systems
- Typechecking
- Codegeneration for register machines

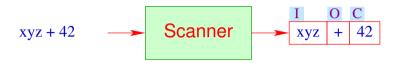
Topic:

Lexical Analysis





- A Token is a sequence of characters, which together form a unit.
- Tokens are subsumed in classes. For example:
 - \rightarrow Names (Identifiers) e.g. xyz, pi, ...
 - \rightarrow Constants e.g. 42, 3.14, "abc", ...
 - \rightarrow Operators e.g. +, ...
 - \rightarrow Reserved terms e.g. if, int, ...



- A Token is a sequence of characters, which together form a unit.
- Tokens are subsumed in classes. For example:
 - → Names (Identifiers) e.g. xyz, pi, ...
 - \rightarrow Constants e.g. 42, 3.14, "abc", ...
 - \rightarrow Operators e.g. +, ...
 - \rightarrow Reserved terms e.g. if, int, ...

The Lexical Analysis - Siever

Classified tokens allow for further pre-processing:

- Dropping irrelevant fragments e.g. Spacing, Comments,...
- Collecting Pragmas, i.e. directives for the compiler, often implementation dependent, directed at the code generation process, e.g. OpenMP-Statements;
- Replacing of Tokens of particular classes with their meaning / internal representation, e.g.
 - → Constants;
 - → Names: typically managed centrally in a Symbol-table, maybe compared to reserved terms (if not already done by the scanner) and possibly replaced with an index or internal format (⇒ Name Mangling).

Discussion:

- Scanner and Siever are often combined into a single component, mostly by providing appropriate callback actions in the event that the scanner detects a token.
- Scanners are mostly not written manually, but generated from a specification.

The Lexical Analysis - Generating:

... in our case:

The Lexical Analysis - Generating:

... in our case:

Specification of Token-classes: Regular expressions; Generated Implementation: Finite automata + X Lexical Analysis

Chapter 1:

Basics: Regular Expressions

Basics

- \bullet Program code is composed from a finite alphabet $\quad \Sigma \quad$ of input characters, e.g. Unicode
- The sets of textfragments of a token class is in general regular.
- Regular languages can be specified by regular expressions.

Basics

- ullet Program code is composed from a finite alphabet Σ of input characters, e.g. Unicode
- The sets of textfragments of a token class is in general regular.
- Regular languages can be specified by regular expressions.

Definition Regular Expressions

The set \mathcal{E}_{Σ} of (non-empty) regular expressions is the smallest set \mathcal{E} with:

- $\epsilon \in \mathcal{E}$ (ϵ a new symbol not from Σ);
- $a \in \mathcal{E}$ for all $a \in \Sigma$;
- $(e_1 | e_2), (e_1 \cdot e_2), e_1^* \in \mathcal{E}$ if $e_1, e_2 \in \mathcal{E}$.

Stepnen Kleene

... Example:

$$\begin{array}{l} ((a \cdot b^*) \cdot a) \\ (a \mid b) \\ ((a \cdot b) \cdot (a \cdot b)) \end{array}$$

... Example:

$$((a \cdot b^*) \cdot a)$$

$$(a \mid b)$$

$$((a \cdot b) \cdot (a \cdot b))$$

Attention:

- We distinguish between characters a, 0, \$,... and Meta-symbols (, |,),...
- To avoid (ugly) parantheses, we make use of Operator-Precedences:

and omit "."

... Example:

$$((a \cdot b^*) \cdot a)$$

$$(a \mid b)$$

$$((a \cdot b) \cdot (a \cdot b))$$

Attention:

- We distinguish between characters a, 0, \$,... and Meta-symbols (, |,),...
- To avoid (ugly) parantheses, we make use of Operator-Precedences:

and omit "."

Real Specification-languages offer additional constructs:

$$e? \equiv (\epsilon \mid e)$$
 $e^+ \equiv (e \cdot e^*)$

and omit " ϵ "

Specification needs Semantics

...Example:

Specification	Semantics
abab	$\{abab\}$
$a \mid b$	$\{a,b\}$
ab^*a	$\{ab^na \mid n \ge 0\}$

For $e \in \mathcal{E}_{\Sigma}$ we define the specified language $[\![e]\!] \subseteq \Sigma^*$ inductively by:

$$\begin{array}{lll} \llbracket \epsilon \rrbracket & = & \{ \epsilon \} \\ \llbracket a \rrbracket & = & \{ a \} \\ \llbracket e^* \rrbracket & = & (\llbracket e \rrbracket)^* \\ \llbracket e_1 | e_2 \rrbracket & = & \llbracket e_1 \rrbracket \cup \llbracket e_2 \rrbracket \\ \llbracket e_1 \cdot e_2 \rrbracket & = & \llbracket e_1 \rrbracket \cdot \llbracket e_2 \rrbracket \end{array}$$

Keep in Mind:

• The operators $(_)^*, \cup, \cdot$ are interpreted in the context of sets of words:

$$(L)^* = \{w_1 \dots w_k \mid k \ge 0, w_i \in L\} L_1 \cdot L_2 = \{w_1 w_2 \mid w_1 \in L_1, w_2 \in L_2\}$$

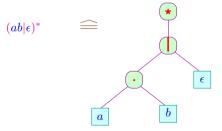
Keep in Mind:

• The operators $(_)^*, \cup, \cdot$ are interpreted in the context of sets of words:

$$(L)^* = \{w_1 \dots w_k \mid k \ge 0, w_i \in L\}$$

$$L_1 \cdot L_2 = \{w_1 w_2 \mid w_1 \in L_1, w_2 \in L_2\}$$

Regular expressions are internally represented as annotated ranked trees:



Inner nodes: Operator-applications; Leaves: particular symbols or ϵ .

Example: Identifiers in Java:

```
le = [a-zA-Z\setminus \S]
di = [0-9]
Id = \{le\} (\{le\} | \{di\})*
```

Example: Identifiers in Java:

```
le = [a-zA-Z\setminus \$]
di = [0-9]
Id = \{le\} (\{le\} \mid \{di\}) *
Float = \{di\} * (\setminus \{di\} \mid \{di\} \setminus .) \{di\} * ((e|E) (\setminus + | \setminus -) ? \{di\} +) ?
```

Example: Identifiers in Java:

```
le = [a-zA-Z\setminus \$]
di = [0-9]
Id = \{le\} (\{le\} \mid \{di\}) *
Float = \{di\} * (\setminus \{di\} \mid \{di\} \setminus .) \{di\} * ((e|E) (\setminus + | \setminus -) ? \{di\} +) ?
```

Remarks:

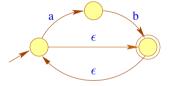
- "le" and "di" are token classes.
- Defined Names are enclosed in "{", "}".
- Symbols are distinguished from Meta-symbols via "\".

Lexical Analysis

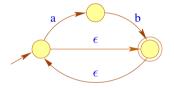
Chapter 2:

Basics: Finite Automata

Example:



Example:



Nodes: States;

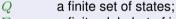
Edges: Transitions;

Lables: Consumed input;

Definition Finite Automata

A non-deterministic finite automaton

(NFA) is a tuple $A=(Q,\Sigma,\delta,I,F)$ with:



a finite alphabet of inputs;

 $I \subseteq Q$ the set of start states; $F \subseteq Q$ the set of final states and

 δ the set of transitions (-relation)

Definition Finite Automata

A non-deterministic finite automaton

(NFA) is a tuple $A = (Q, \Sigma, \delta, I, F)$ with:

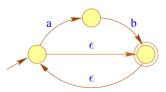
Q	a finite set of states;
\sum	a finite alphabet of inputs;
$I \subseteq Q$	the set of start states;
$F \subseteq Q$	the set of final states and
δ	the set of transitions (-relation)

For an NFA, we reckon:

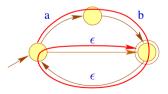
Definition Deterministic Finite Automata

Given $\delta: Q \times \Sigma \to Q$ a function and |I| = 1, then we call the NFA A deterministic (DFA).

- Computations are paths in the graph.
- ullet Accepting computations lead from I to F.
- An accepted word is the sequence of lables along an accepting computation ...



- Computations are paths in the graph.
- ullet Accepting computations lead from I to F.
- An accepted word is the sequence of lables along an accepting computation ...



Once again, more formally:

• We define the transitive closure δ^* of δ as the smallest set δ' with:

```
(p, \epsilon, p) \in \delta' and (p, xw, q) \in \delta' if (p, x, p_1) \in \delta and (p_1, w, q) \in \delta'.
```

 δ^* characterizes for a path between the states p and q the words obtained by concatenating the labels along it.

• The set of all accepting words, i.e. A's accepted language can be described compactly as:

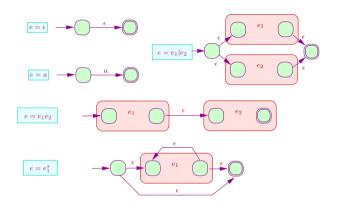
$$\mathcal{L}(A) = \{ w \in \Sigma^* \mid \exists i \in I, f \in F : (i, w, f) \in \delta^* \}$$

Lexical Analysis

Chapter 3:

Converting Regular Expressions to NFAs

In Linear Time from Regular Expressions to NFAs



Thompson's Algorithm

Produces $\mathcal{O}(n)$ states for regular expressions of length n.

Ken Thompson

A formal approach to Thompson's Algorithm

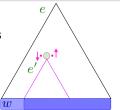
Berry-Sethi Algorithm

Produces exactly n+1 states without ϵ -transitions and demonstrates \to *Equality Systems* and \to *Attribute Grammars*

Idea:

An automaton covering the syntax tree of a regular expression e tracks (conceptionally via markers " \bullet "), which subexpressions e' are reachable consuming the rest of input w.

- markers contribute an entry or exit point into the automaton for this subexpression
- edges for each layer of subexpression are modelled after Thompson's automata



A formal approach to Thompson's Algorithm

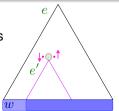
Produces exactly n+1 states without ϵ -transitions and demonstrates \to *Equality Systems* and \to *Attribute Grammars*

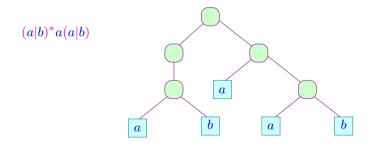
Viktor M. Glushk

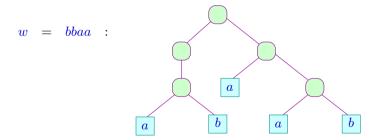
Idea:

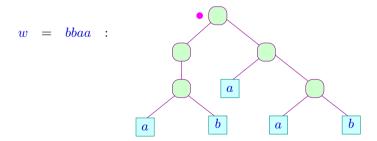
An automaton covering the syntax tree of a regular expression e tracks (conceptionally via markers "•"), which subexpressions e' are reachable consuming the rest of input w.

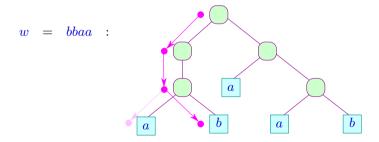
- markers contribute an entry or exit point into the automaton for this subexpression
- edges for each layer of subexpression are modelled after Thompson's automata

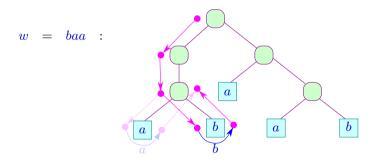


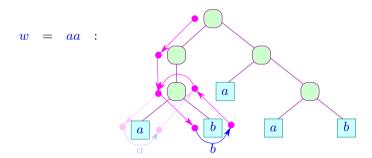


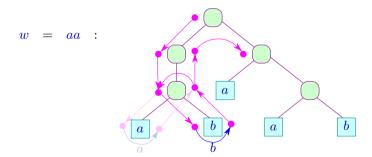


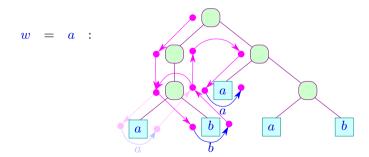


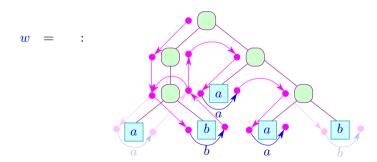


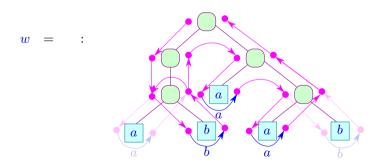






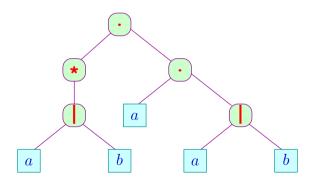


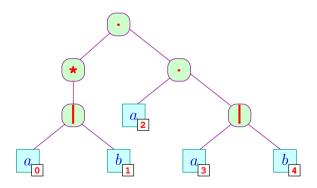


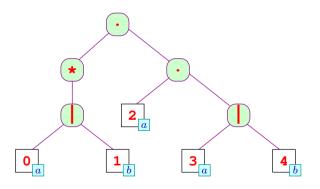


In general:

- Input is only consumed at the leaves.
- Navigating the tree does not consume input $\rightarrow \epsilon$ -transitions
- For a formal construction we need identifiers for states.
- For a node n's identifier we take the subexpression, corresponding to the subtree dominated by n.
- There are possibly identical subexpressions in one regular expression.
 - we enumerate the leaves ...







Berry-Sethi Approach (naive version)

Construction (naive version):

```
States: •r, r• with r nodes of e;

Start state: •e;

Final state: e•;

Transitions: for leaves r \equiv [i]x we require: (•r, x, r•).
```

The leftover transitions are:

r	Transitions
$r_1 \mid r_2$	$(ullet r,\epsilon,ullet r_1)$
	$(ullet r, \epsilon, ullet r_2)$
	$(r_1 ullet, \epsilon, rullet)$
	$(r_2 ullet, \epsilon, rullet)$
$r_1 \cdot r_2$	$(ullet r,\epsilon,ullet r_1)$
	$(r_1 ullet, \epsilon, ullet r_2)$
	$(r_2 \bullet, \epsilon, r \bullet)$

r	Transitions
r_1^*	$(ullet r,\epsilon,rullet)$
	$(ullet r,\epsilon,ullet r_1)$
	$(r_1ullet,\epsilon,ullet r_1)$
	$(r_1ullet,\epsilon,rullet)$
r_1 ?	$(ullet r,\epsilon,rullet)$
	$(ullet r,\epsilon,ullet r_1)$
	$(r_1ullet,\epsilon,rullet)$

Discussion:

- Most transitions navigate through the expression
- The resulting automaton is in general nondeterministic

Discussion:

- Most transitions navigate through the expression
- The resulting automaton is in general nondeterministic
 - Strategy for the sophisticated version:
 Avoid generating ε-transitions

Discussion:

- Most transitions navigate through the expression
- The resulting automaton is in general nondeterministic

 \Rightarrow Strategy for the sophisticated version: Avoid generating ϵ -transitions

Idea:

Pre-compute helper attributes during D(epth)F(irst)S(earch)!

Discussion:

- Most transitions navigate through the expression
- The resulting automaton is in general nondeterministic

\Rightarrow Strategy for the sophisticated version: Avoid generating ϵ -transitions

Idea:

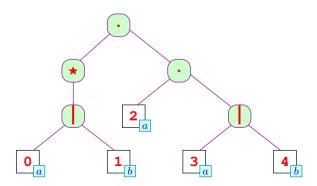
Pre-compute helper attributes during D(epth)F(irst)S(earch)!

Necessary node-attributes:

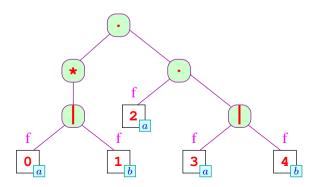
first the set of read states below r, which may be reached first, when descending into r. next the set of read states, which may be reached first in the traversal after r.

last the set of read states below r, which may be reached last when descending into r. empty can the subexpression r consume ϵ ?

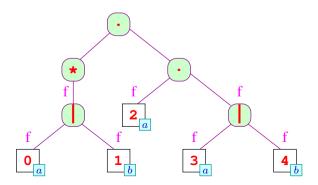
```
\operatorname{empty}[{\color{red} r}] = t \quad \text{if and only if} \quad \epsilon \in [\![ {\color{red} r} ]\!]
```



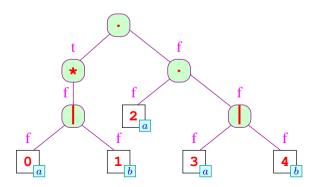
```
\operatorname{empty}[{\color{red} r}] = t \quad \text{if and only if} \quad \epsilon \in [\![ {\color{red} r} ]\!]
```



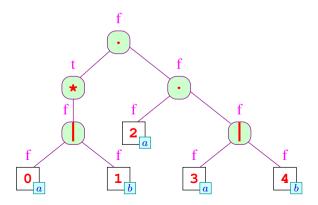
```
\operatorname{empty}[{\color{red} r}] = t \quad \text{if and only if} \quad \epsilon \in [\![ {\color{red} r} ]\!]
```



```
\operatorname{empty}[{\color{red} r}] = t \quad \text{if and only if} \quad \epsilon \in [\![ {\color{red} r} ]\!]
```



```
\operatorname{empty}[{\color{red} r}] = t \quad \text{if and only if} \quad \epsilon \in [\![ {\color{red} r} ]\!]
```



Implementation:

DFS post-order traversal

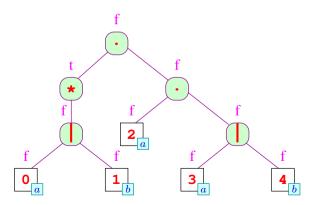
```
\text{for leaves} \quad \pmb{r} \; \equiv \; \boxed{\textit{i} \quad \textit{x}} \quad \text{we find} \quad \operatorname{empty}[\pmb{r}] \; = \; (x \equiv \epsilon).
```

Otherwise:

```
\begin{array}{lll} \operatorname{empty}[r_1 \mid r_2] &=& \operatorname{empty}[r_1] \vee \operatorname{empty}[r_2] \\ \operatorname{empty}[r_1 \cdot r_2] &=& \operatorname{empty}[r_1] \wedge \operatorname{empty}[r_2] \\ \operatorname{empty}[r_1^*] &=& t \\ \operatorname{empty}[r_1?] &=& t \end{array}
```

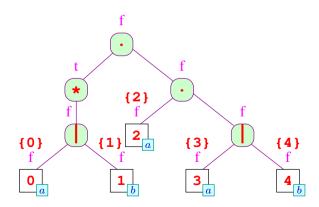
The may-set of first reached read states: The set of read states, that may be reached from $\bullet r$ (i.e. while descending into r) via sequences of ϵ -transitions:

$$\mathsf{first}[r] = \{ i \text{ in } r \mid (\bullet r, \epsilon, \bullet \underbrace{\quad i \quad x}) \in \delta^*, x \neq \epsilon \}$$



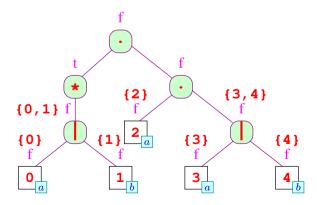
The may-set of first reached read states: The set of read states, that may be reached from $\bullet r$ (i.e. while descending into r) via sequences of ϵ -transitions:

$$\mathsf{first}[r] = \{ i \text{ in } r \mid (\bullet r, \epsilon, \bullet \underbrace{\quad i \quad x}) \in \delta^*, x \neq \epsilon \}$$



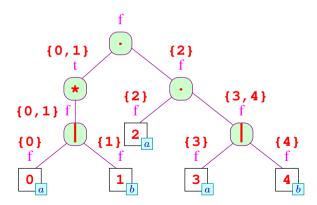
The may-set of first reached read states: The set of read states, that may be reached from $\bullet r$ (i.e. while descending into r) via sequences of ϵ -transitions:

$$\mathsf{first}[r] = \{ i \text{ in } r \mid (\bullet r, \epsilon, \bullet \underbrace{\quad i \quad x}) \in \delta^*, x \neq \epsilon \}$$



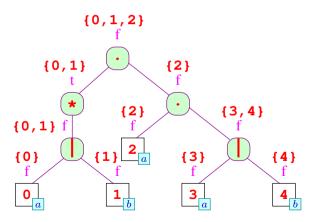
The may-set of first reached read states: The set of read states, that may be reached from $\bullet r$ (i.e. while descending into r) via sequences of ϵ -transitions:

$$\mathsf{first}[r] = \{ i \text{ in } r \mid (\bullet r, \epsilon, \bullet i \mid x) \in \delta^*, x \neq \epsilon \}$$



The may-set of first reached read states: The set of read states, that may be reached from $\bullet r$ (i.e. while descending into r) via sequences of ϵ -transitions:

$$\mathsf{first}[r] = \{ i \text{ in } r \mid (\bullet r, \epsilon, \bullet \underbrace{\quad i \quad x}) \in \delta^*, x \neq \epsilon \}$$



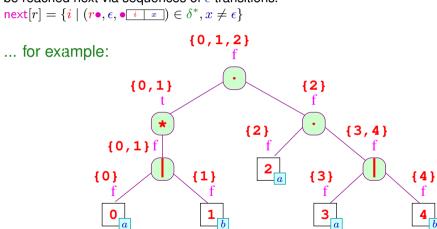
Implementation:

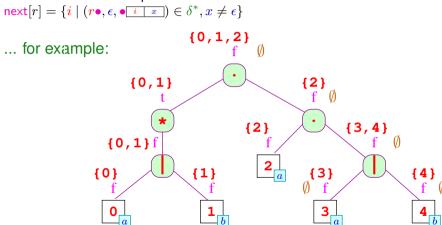
DFS post-order traversal

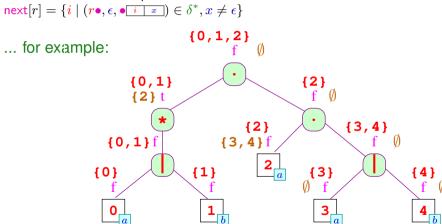
```
\text{for leaves} \quad \pmb{r} \; \equiv \; \underbrace{\phantom{a} \quad \text{we find}} \quad \text{first}[\pmb{r}] \; = \; \{ \pmb{i} \mid x \neq \epsilon \}.
```

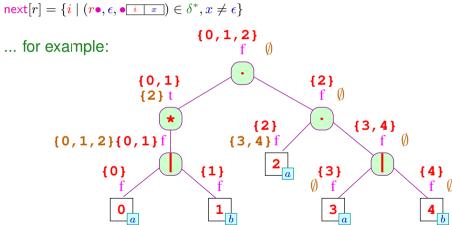
Otherwise:

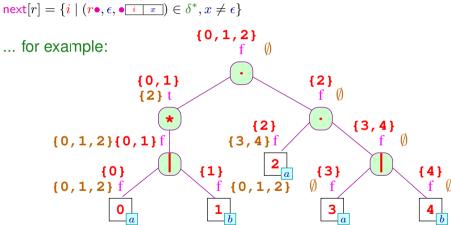
```
\begin{array}{lll} \operatorname{first}[r_1 \mid r_2] & = & \operatorname{first}[r_1] \cup \operatorname{first}[r_2] \\ \operatorname{first}[r_1 \cdot r_2] & = & \left\{ \begin{array}{ll} \operatorname{first}[r_1] \cup \operatorname{first}[r_2] & & \operatorname{if} & \operatorname{empty}[r_1] = t \\ \operatorname{first}[r_1] & & \operatorname{if} & \operatorname{empty}[r_1] = f \end{array} \right. \\ \operatorname{first}[r_1^*] & = & \operatorname{first}[r_1] \\ \operatorname{first}[r_1^*] & = & \operatorname{first}[r_1] \end{array}
```











Implementation:

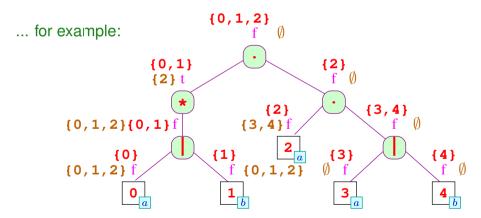
DFS pre-order traversal

For the root, we find: $next[e] = \emptyset$ Apart from that we distinguish, based on the context:

r			Equalities		
$r_1 \mid r_2$	$egin{array}{c} next[r_1] \ next[r_2] \end{array}$	=	next[r]		
$r_1 \cdot r_2$		=	$ \left\{ \begin{array}{l} first[r_2] \cup next[r] \\ first[r_2] \end{array} \right. $	if if	$\operatorname{empty}[r_2] = t$ $\operatorname{empty}[r_2] = f$
	$next[r_2]$	=	next[r]		
r_1^*	$next[r_1]$	=	$first[r_1] \cup next[r]$		
r_1 ?	$next[r_1]$	=	next[r]		

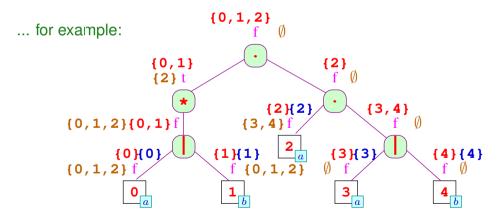
The may-set of last reached read states: The set of read states, which may be reached last during the traversal of r connected to the root via ϵ -transitions only:

$$\mathsf{last}[r] = \{ i \text{ in } r \mid (\underbrace{i}_{x} \bullet, \epsilon, r \bullet) \in \delta^*, x \neq \epsilon \}$$



The may-set of last reached read states: The set of read states, which may be reached last during the traversal of r connected to the root via ϵ -transitions only:

$$\mathsf{last}[r] = \{ i \text{ in } r \mid (\underbrace{i}_{x} \bullet, \epsilon, r \bullet) \in \delta^*, x \neq \epsilon \}$$



The may-set of last reached read states: The set of read states, which may be reached last during the traversal of r connected to the root via ϵ -transitions only:

last[
$$r$$
] = { i in r | (i | x | x

Implementation:

DFS post-order traversal

```
for leaves r \equiv \boxed{i} we find \mathsf{last}[r] = \{i \mid x \neq \epsilon\}.
```

Otherwise:

```
\begin{array}{lll} \operatorname{last}[r_1 \mid r_2] & = & \operatorname{last}[r_1] \cup \operatorname{last}[r_2] \\ \operatorname{last}[r_1 \cdot r_2] & = & \begin{cases} \operatorname{last}[r_1] \cup \operatorname{last}[r_2] & \text{if } \operatorname{empty}[r_2] = t \\ \operatorname{last}[r_2] & \text{if } \operatorname{empty}[r_2] = f \end{cases} \\ \operatorname{last}[r_1^*] & = & \operatorname{last}[r_1] \\ \operatorname{last}[r_1^*] & = & \operatorname{last}[r_1] \end{array}
```

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version):

Create an automaton based on the syntax tree's new attributes:

```
States: \{ ullet e \} \cup \{ i ullet \mid i \text{ a leaf not } \epsilon \}

Start state: ullet e

Final states: [ast[e]] if [ampty[e]] = f

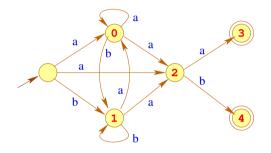
\{ ullet e \} \cup [ast[e]] otherwise

Transitions: [ullet e, a, i ullet ) if [ampti] e first[ampti] e and [ampti] e labled with [ampti] e.
```

We call the resulting automaton A_e .

Berry-Sethi Approach

... for example:



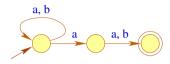
Remarks:

- This construction is known as Berry-Sethi- or Glushkov-construction.
- It is used for XML to define Content Models
- The result may not be, what we had in mind...

Lexical Analysis

Chapter 4: Turning NFAs deterministic

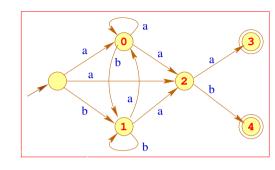
The expected outcome:

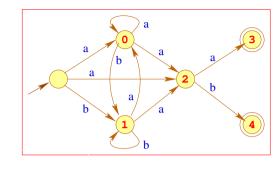


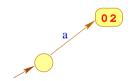
Remarks:

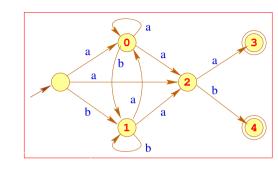
- ideal automaton would be even more compact
 (→ Antimirov automata, Follow Automata)
- but Berry-Sethi is rather directly constructed
- Anyway, we need a deterministic version

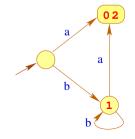
⇒ Powerset-Construction

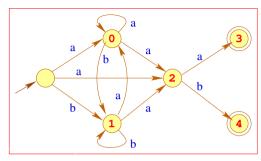


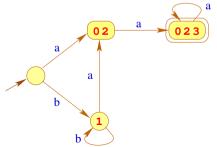


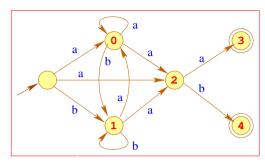


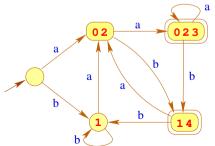












Theorem:

For every non-deterministic automaton $A=(Q,\Sigma,\delta,I,F)$ we can compute a deterministic automaton $\mathcal{P}(A)$ with

$$\mathcal{L}(A) = \mathcal{L}(\mathcal{P}(A))$$

Theorem:

For every non-deterministic automaton $A=(Q,\Sigma,\delta,I,F)$ we can compute a deterministic automaton $\mathcal{P}(A)$ with

$$\mathcal{L}(A) = \mathcal{L}(\mathcal{P}(A))$$

Construction:

States: Powersets of Q;

Start state: *I*;

Final states: $\{Q' \subseteq Q \mid Q' \cap F \neq \emptyset\};$

Transitions: $\delta_{\mathcal{P}}(Q', a) = \{q \in Q \mid \exists p \in Q' : (p, a, q) \in \delta\}.$

Observation:

There are exponentially many powersets of Q

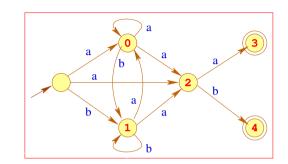
- Idea: Consider only contributing powersets. Starting with the set $Q_P = \{I\}$ we only add further states by need ...
- i.e., whenever we can reach them from a state in $Q_{\mathcal{P}}$
- However, the resulting automaton can become enormously huge
 - ... which is (sort of) not happening in practice

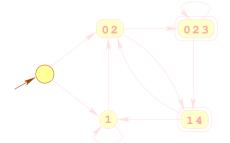
Observation:

There are exponentially many powersets of Q

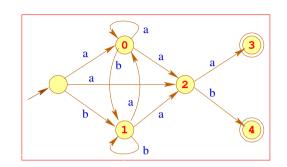
- Idea: Consider only contributing powersets. Starting with the set $Q_P = \{I\}$ we only add further states by need ...
- i.e., whenever we can reach them from a state in $Q_{\mathcal{P}}$
- However, the resulting automaton can become enormously huge
 ... which is (sort of) not happening in practice
- Therefore, in tools like grep a regular expression's DFA is never created!
- Instead, only the sets, directly necessary for interpreting the input are generated while processing the input

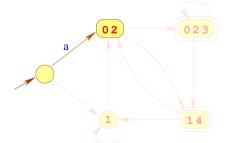
... for example:



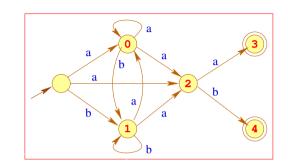


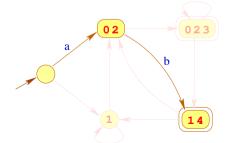
... for example:



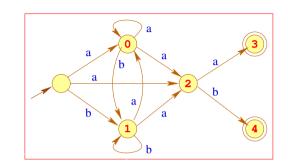


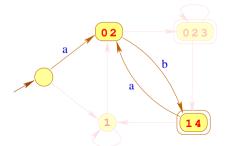
... for example:



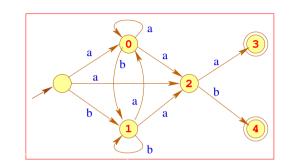


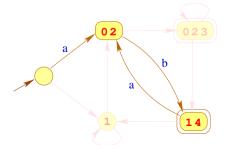
... for example:





... for example:





Remarks:

- For an input sequence of length n, maximally $\mathcal{O}(n)$ sets are generated
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.

Remarks:

- For an input sequence of length n, maximally $\mathcal{O}(n)$ sets are generated
- Once a set/edge of the DFA is generated, they are stored within a hash-table.
- Before generating a new transition, we check this table for already existing edges with the desired label.

Summary:

Theorem:

For each regular expression e we can compute a deterministic automaton $A=\mathcal{P}(A_e)$ with

$$\mathcal{L}(A) = [\![e]\!]$$

Lexical Analysis

Chapter 5:

Scanner design

Scanner design

```
Input (simplified): a set of rules: \begin{array}{ccc} e_1 & \{ \ {\tt action}_1 \ \} \\ e_2 & \{ \ {\tt action}_2 \ \} \\ & \cdots \\ e_k & \{ \ {\tt action}_k \ \} \end{array}
```

Scanner design

```
Input (simplified):
                        a set of rules:
                                               { action<sub>1</sub> }
                                               { action<sub>2</sub> }
                                    e_k { action<sub>k</sub> }
Output:
                    a program,
      reading a maximal prefix w from the input, that satisfies e_1 \mid \ldots \mid e_k;
      determining the minimal i, such that w \in [e_i];
      executing action_i for w.
```

Idea:

- Create the NFA $\mathcal{P}(A_e) = (Q, \Sigma, \delta, q_0, F)$ for the expression $e = (e_1 \mid \ldots \mid e_k)$;
- Define the sets:

$$\begin{array}{lll} F_1 &=& \{q \in F \mid q \cap \mathsf{last}[e_1] \neq \emptyset\} \\ F_2 &=& \{q \in (F \backslash F_1) \mid q \cap \mathsf{last}[e_2] \neq \emptyset\} \\ & \dots \\ F_k &=& \{q \in (F \backslash (F_1 \cup \dots \cup F_{k-1})) \mid q \cap \mathsf{last}[e_k] \neq \emptyset\} \end{array}$$

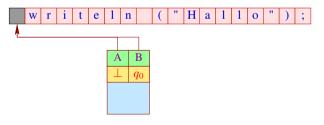
• For input w we find: $\delta^*(q_0, w) \in F_i$ iff the scanner must execute $action_i$ for w

Idea (cont'd):

- The scanner manages two pointers $\langle A, B \rangle$ and the related states $\langle q_A, q_B \rangle$...
- Pointer A points to the last position in the input, after which a state $q_A \in F$ was reached;
- Pointer B tracks the current position.

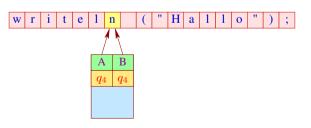
Idea (cont'd):

- The scanner manages two pointers $\langle A, B \rangle$ and the related states $\langle q_A, q_B \rangle$...
- Pointer A points to the last position in the input, after which a state $q_A \in F$ was reached;
- Pointer B tracks the current position.



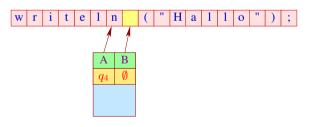
Idea (cont'd):

• The current state being $q_B = \emptyset$, we consume input up to position A and reset:



Idea (cont'd):

• The current state being $q_B = \emptyset$, we consume input up to position A and reset:

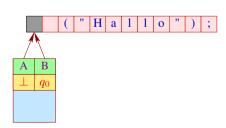


Idea (cont'd):

• The current state being $q_B = \emptyset$, we consume input up to position A and reset:

$$B := A; \qquad A := \bot;$$

$$q_B := q_0; \qquad q_A := \bot$$



Extension: States

- Now and then, it is handy to differentiate between particular scanner states.
- In different states, we want to recognize different token classes with different precedences.
- Depending on the consumed input, the scanner state can be changed

Example: Comments

Within a comment, identifiers, constants, comments, ... are ignored

Input (generalized): a set of rules:

- The statement yybegin (state_i); resets the current state to state_i.
- The start state is called (e.g.flex JFlex) YYINITIAL.

... for example:

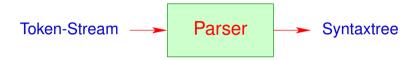
Remarks:

- "." matches all characters different from "\n".
- For every state we generate the scanner respectively.
- Method yybegin (STATE); switches between different scanners.
- Comments might be directly implemented as (admittedly overly complex) token-class.
- Scanner-states are especially handy for implementing preprocessors, expanding special fragments in regular programs.

Topic:

Syntactic Analysis

Syntactic Analysis



• Syntactic analysis tries to integrate Tokens into larger program units.

Syntactic Analysis



- Syntactic analysis tries to integrate Tokens into larger program units.
- Such units may possibly be:
 - → Expressions;
 - → Statements;
 - → Conditional branches;
 - → loops; ...

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

3/66

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

$$E\rightarrow E\{op\}E$$
 Generator

Specification of the hierarchical structure: contextfree grammars

Generated implementation: Pushdown automata + X

Syntactic Analysis

Chapter 1:

Basics of Contextfree Grammars

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Definition: Context-Free Grammar

A context-free grammar (CFG) is a 4-tuple G = (N, T, P, S) with:

- N the set of nonterminals,
- T the set of terminals,
- P the set of productions or rules, and
- $S \in N$ the start symbol

John Backus

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

... for example:

$$\begin{array}{ccc} S & \rightarrow & a \, S \, b \\ S & \rightarrow & \epsilon \end{array}$$

Specified language: $\{a^nb^n\mid n\geq 0\}$

Conventions

The rules of context-free grammars take the following form:

$$A \to \alpha$$
 with $A \in N$, $\alpha \in (N \cup T)^*$

... for example:

$$\begin{array}{ccc} S & \rightarrow & a \, S \, b \\ S & \rightarrow & \epsilon \end{array}$$

Specified language: $\{a^nb^n \mid n \geq 0\}$

Conventions:

In examples, we specify nonterminals and terminals in general implicitely:

- nonterminals are: $A, B, C, ..., \langle \exp \rangle, \langle \operatorname{stmt} \rangle, ...;$
- terminals are: a, b, c, ..., int, name, ...;

... a practical example:

... a practical example:

```
\begin{array}{lllll} S & \rightarrow & \langle \mathsf{stmt} \rangle \\ \langle \mathsf{stmt} \rangle & \rightarrow & \langle \mathsf{if} \rangle & | & \langle \mathsf{while} \rangle & | & \langle \mathsf{rexp} \rangle; \\ \langle \mathsf{if} \rangle & \rightarrow & \mathsf{if} & (& \langle \mathsf{rexp} \rangle) & \langle \mathsf{stmt} \rangle & \mathsf{else} & \langle \mathsf{stmt} \rangle \\ \langle \mathsf{while} \rangle & \rightarrow & \mathsf{while} & (& \langle \mathsf{rexp} \rangle) & \langle \mathsf{stmt} \rangle \\ \langle \mathsf{rexp} \rangle & \rightarrow & \mathsf{int} & | & \langle \mathsf{lexp} \rangle & | & \langle \mathsf{lexp} \rangle & = \langle \mathsf{rexp} \rangle & | & \dots \\ \langle \mathsf{lexp} \rangle & \rightarrow & \mathsf{name} & | & \dots \end{array}
```

More conventions:

- For every nonterminal, we collect the right hand sides of rules and list them together.
- The j-th rule for A can be identified via the pair (A, j) (with $j \ge 0$).

Pair of grammars:

E	\rightarrow	E+E	E*E	$\mid (E)$	name	int
E	\rightarrow	E+T				
T	\rightarrow	T*F	F			
F	\rightarrow	(E)	name	int		

Both grammars describe the same language

Pair of grammars:

Both grammars describe the same language

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

E

... for example:

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

$$\underline{E} \rightarrow \underline{E} + T$$

... for example:

... for example:
$$\begin{array}{ccc} \underline{E} & \to & \underline{E} + T \\ & \to & \underline{T} + T \end{array}$$

... for example:
$$\begin{array}{ccc} \underline{E} & \to & \underline{E} + T \\ & \to & \underline{T} + T \\ & \to & T * \underline{F} + T \end{array}$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

... for example:

$$\begin{array}{cccc} \underline{E} & \rightarrow & \underline{E} + T \\ & \rightarrow & \underline{T} + T \\ & \rightarrow & T * \underline{F} + T \\ & \rightarrow & \underline{T} * \mathsf{int} + T \\ & \rightarrow & \underline{F} * \mathsf{int} + T \\ & \rightarrow & \mathsf{name} * \mathsf{int} + \underline{T} \\ & \rightarrow & \mathsf{name} * \mathsf{int} + \underline{F} \end{array}$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

... for example:

$$\begin{array}{cccc} \underline{E} & \rightarrow & \underline{E} + T \\ & \rightarrow & \underline{T} + T \\ & \rightarrow & T * \underline{F} + T \\ & \rightarrow & \underline{T} * \mathsf{int} + T \\ & \rightarrow & \underline{F} * \mathsf{int} + T \\ & \rightarrow & \mathsf{name} * \mathsf{int} + \underline{T} \\ & \rightarrow & \mathsf{name} * \mathsf{int} + \underline{F} \\ & \rightarrow & \mathsf{name} * \mathsf{int} + \mathsf{int} \end{array}$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

Definition

The rewriting relation \rightarrow is a relation on words over $N \cup T$, with

$$\alpha \to \alpha'$$
 iff $\alpha = \alpha_1 A \alpha_2 \land \alpha' = \alpha_1 \beta \alpha_2$ for an $A \to \beta \in P$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \to \ldots \to \alpha_m$ is called derivation.

Definition

The rewriting relation \rightarrow is a relation on words over $N \cup T$, with

$$\alpha \to \alpha'$$
 iff $\alpha = \alpha_1 A \alpha_2 \land \alpha' = \alpha_1 \beta \alpha_2$ for an $A \to \beta \in P$

The reflexive and transitive closure of \rightarrow is denoted as: \rightarrow^*

Remarks:

- The relation → depends on the grammar
- In each step of a derivation, we may choose:
 - * a spot, determining where we will rewrite.
 - * a rule, determining how we will rewrite.
- The language, specified by *G* is:

$$\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$$

Remarks:

- The relation → depends on the grammar
- In each step of a derivation, we may choose:
 - * a spot, determining where we will rewrite.
 - * a rule, determining how we will rewrite.
- The language, specified by *G* is:

$$\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$$

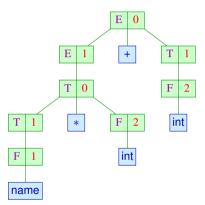
Attention:

The order, in which disjunct fragments are rewritten is not relevant.

Derivation Tree

Derivations of a symbol are represented as derivation trees:

... for example:



A derivation tree for $A \in \mathbb{N}$:

inner nodes: rule applications

root: rule application for A

leaves: terminals or ϵ

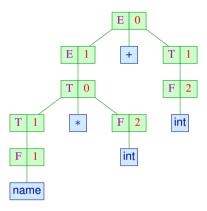
The successors of (B, i) correspond to right hand sides of the rule

Attention:

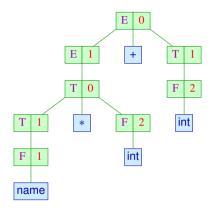
In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or rather rightmost) occurence of a nonterminal.

- These are called leftmost (or rather rightmost) derivations and are denoted with the index L (or R respectively).
- Leftmost (or rightmost) derivations correspond to a left-to-right (or right-to-left)
 preorder-DFS-traversal of the derivation tree.
- Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of the derivation tree

... for example:



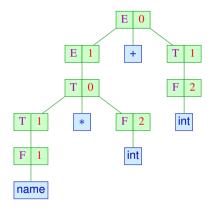
... for example:



Leftmost derivation:

$$(E, 0) (E, 1) (T, 0) (T, 1) (F, 1) (F, 2) (T, 1) (F, 2)$$

... for example:

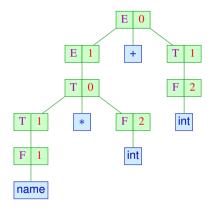


Leftmost derivation: Rightmost derivation:

$$(E,0)(E,1)(T,0)(T,1)(F,1)(F,2)(T,1)(F,2)$$

 $(E,0)(T,1)(F,2)(E,1)(T,0)(F,2)(T,1)(F,1)$

... for example:

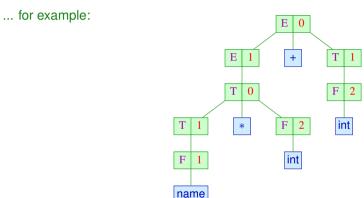


Leftmost derivation: Rightmost derivation: Reverse rightmost derivation:

$$(E,0)$$
 $(E,1)$ $(T,0)$ $(T,1)$ $(F,1)$ $(F,2)$ $(T,1)$ $(F,2)$ $(E,0)$ $(T,1)$ $(F,2)$ $(E,1)$ $(T,0)$ $(F,2)$ $(T,1)$ $(F,1)$ $(F,1)$ $(F,1)$ $(F,2)$ $(T,0)$ $(E,1)$ $(F,2)$ $(T,1)$ $(E,0)$

Unique Grammars

The concatenation of leaves of a derivation tree t are often called yield(t).



gives rise to the concatenation:

name * int + int.

Unique Grammars

Definition:

Grammar G is called unique, if for every $w \in T^*$ there is maximally one derivation tree t of S with yield(t) = w.

... in our example:

The first one is ambiguous, the second one is unique

Conclusion:

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of interest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.

Conclusion:

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of interest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.
- Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
- Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax tree.

Finger Exercise: Redundant Nonterminals and Rules

Definition:

```
A \in N is productive, if A \to^* w for a w \in T^* A \in N is reachable, if S \to^* \alpha \, A \, \beta for suitable \alpha, \beta \in (T \cup N)^*
```

Example:

Finger Exercise: Redundant Nonterminals and Rules

Definition:

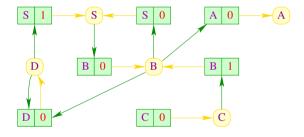
```
A \in N is productive, if A \to^* w for a w \in T^* A \in N is reachable, if S \to^* \alpha \, A \, \beta for suitable \alpha, \beta \in (T \cup N)^*
```

Example:

Productive nonterminals: S, A, B, C**Reachable nonterminals:** S, B, C, D

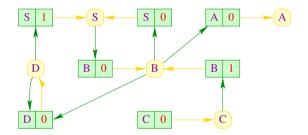
Idea for Productivity: And-Or-Graph for a Grammar

... here:



Idea for Productivity: And-Or-Graph for a Grammar

... here:



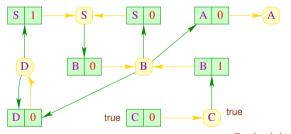
And-nodes: Rules

Or-nodes: Nonterminals

Edges: ((B, i), B) for all rules (B, i)

Idea for Productivity: And-Or-Graph for a Grammar

... here:



Productivity

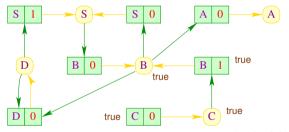
And-nodes: Rules

Or-nodes: Nonterminals

Edges: ((B, i), B) for all rules (B, i)

Idea for Productivity: And-Or-Graph for a Grammar

... here:



Productivity

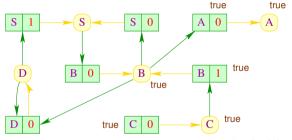
And-nodes: Rules

Or-nodes: Nonterminals

Edges: ((B, i), B) for all rules (B, i)

Idea for Productivity: And-Or-Graph for a Grammar

... here:



Productivity

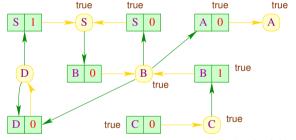
And-nodes: Rules

Or-nodes: Nonterminals

Edges: ((B, i), B) for all rules (B, i)

Idea for Productivity: And-Or-Graph for a Grammar

... here:



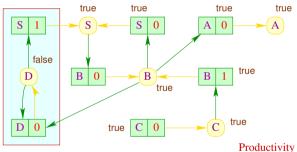
Productivity

And-nodes: Rules

Or-nodes: Nonterminals

Edges: ((B, i), B) for all rules (B, i)

Idea for Productivity: And-Or-Graph for a Grammar



And-nodes: Rules

Or-nodes:

Nonterminals

Edges: ((B, i), B) for all rules

Productive Nonterminals - Algorithm:

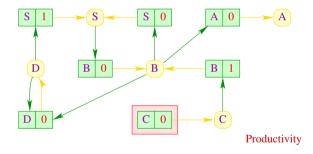
```
 2^{N} \quad \text{result} = \emptyset; \qquad // \quad \text{Result-set} \\ \text{int} \quad \text{count}[P]; \qquad // \quad \text{Rule counter} \\ 2^{P} \quad \text{rhs}[N]; \qquad // \quad \text{Occurances in right hand sides} \\ \text{forall} \quad (A \in N) \quad \text{rhs}[A] = \emptyset; \qquad // \quad \text{Initialization} \\ \text{forall} \quad ((A, \textbf{\textit{i}}) \in P) \quad \{ \qquad // \quad \\ \quad \text{count}[(A, \textbf{\textit{i}})] = 0; \qquad // \quad \\ \quad \text{init}(A, \textbf{\textit{i}}); \qquad // \quad \text{Initialization of rhs} \\ \} \qquad // \qquad //
```

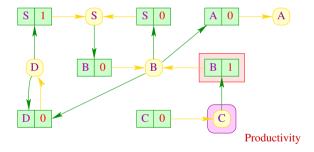
Helper function init counts the nonterminal-occurances in right hand sides and protocols them in data structure rhs

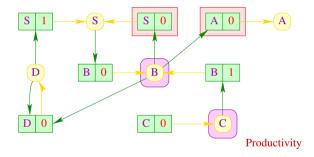
Productive Nonterminals - Algorithm (cont.):

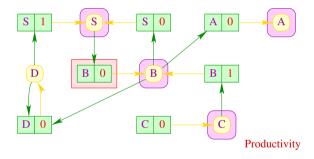
```
2^{\mathbf{P}} \quad \mathbf{W} = \{ \mathbf{r} \mid \mathsf{count}[\mathbf{r}] = 0 \}:
                                                                                      Workset
while (W \neq \emptyset) {
         (A, i) = \mathsf{extract}(W):
         if (A \notin \text{result}) {
                  result = result \cup \{A\};
                  forall (r \in \mathsf{rhs}[A]) {
                           \mathsf{count}[r]--;
                           if (\operatorname{count}[r] == 0) W = W \cup \{r\}; //
                                                                                   end of
                                                                                                   forall
                                                                                   end of
                                                                                      end of
                                                                                                  while
```

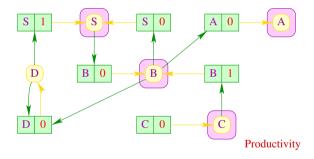
Set W contains the rules, whose right hand sides only contain productive nonterminals











Runtime:

- Initialization of data structures is linear.
- Each rules is added once to W at most.
- Each A is added once to result at most.
 - Runtime is linear in the size of the grammar

Correctness:

- If A is added to result in the j-th iteration of the **while**-loop there is a derivation tree for A of height maximally j-1.
- ullet For every derivation tree the root is added once to W

Discussion:

- ullet To simplify the test $(A \in result)$, we represent the set result as an array.
- ullet W as well as the sets $\operatorname{rhs}[A]$ are represented as Lists

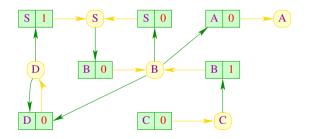
Discussion:

- To simplify the test $(A \in result)$, we represent the set result as an array.
- ullet W as well as the sets rhs[A] are represented as Lists
- The algorithm also works for finding smallest solutions for Boolean inequality systems
- $\mathcal{L}(G) \neq \emptyset$ (\rightarrow *Emptyness Problem*) can be reduced to determining productive nonterminals

Reachable Nonterminals

Idea for Reachability: Dependency-Graph

... here:



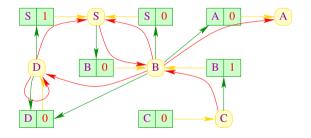
Nodes: Nonterminals

Edges: (A,B) if $B \rightarrow \alpha_1 A \alpha_2 \in P$

Reachable Nonterminals

Idea for Reachability: Dependency-Graph

... here:



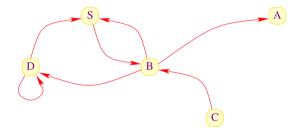
Nodes: Nonterminals

Edges: (A,B) if $B \rightarrow \alpha_1 A \alpha_2 \in P$

Reachable Nonterminals

Idea for Reachability: Dependency-Graph

... here:

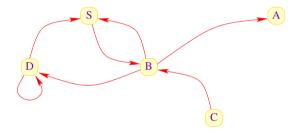


Nodes: Nonterminals

Edges: (A,B) if $B \rightarrow \alpha_1 A \alpha_2 \in P$

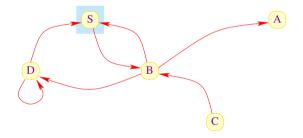
Idea for Reachability: Dependency-Graph

... here:



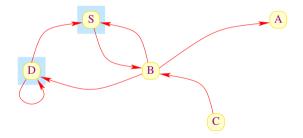
Idea for Reachability: Dependency-Graph

... here:



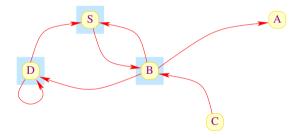
Idea for Reachability: Dependency-Graph

... here:



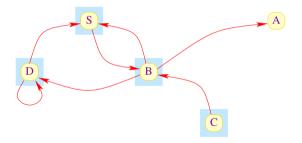
Idea for Reachability: Dependency-Graph

... here:



Idea for Reachability: Dependency-Graph

... here:



Reduced Grammars

Conclusion:

- Reachability in directed graphs can be computed via DFS in *linear time*.
- This means the set of all reachable and productive nonterminals can be computed in *linear time*.

Reduced Grammars

Conclusion:

- Reachability in directed graphs can be computed via DFS in *linear time*.
- This means the set of all reachable and productive nonterminals can be computed in *linear time*.

A Grammar G is called reduced, if all of G 's nonterminals are productive and reachable as well...

Reduced Grammars

Conclusion:

- Reachability in directed graphs can be computed via DFS in linear time.
- This means the set of all reachable and productive nonterminals can be computed in linear time.

A Grammar $\,G\,$ is called reduced, if all of $\,G\,$'s nonterminals are productive and reachable as well...

Theorem:

Each contextfree Grammar G = (N, T, P, S) with $\mathcal{L}(G) \neq \emptyset$ can be converted in *linear time* into a reduced Grammar G' with

$$\mathcal{L}(G) = \mathcal{L}(G')$$

Reduced Grammars - Construction:

1. Step:

Compute the subset $N_1 \subseteq N$ of all produktive nonterminals of G. Since $\mathcal{L}(G) \neq \emptyset$ in particular $S \in N_1$.

2. Step:

Construct: $P_1 = \{A \to \alpha \in P \mid A \in N_1 \land \alpha \in (N_1 \cup T)^*\}$

Reduced Grammars - Construction:

1. Step:

Compute the subset $N_1 \subseteq N$ of all produktive nonterminals of G. Since $\mathcal{L}(G) \neq \emptyset$ in particular $S \in N_1$.

2. Step:

Construct: $P_1 = \{A \rightarrow \alpha \in P \mid A \in N_1 \land \alpha \in (N_1 \cup T)^*\}$

3. Step:

Compute the subset $N_2 \subseteq N_1$ of all productive and reachable nonterminals of G. Since $\mathcal{L}(G) \neq \emptyset$ in particular $S \in N_2$.

4. Step:

Construct: $P_2 = \{A \rightarrow \alpha \in P \mid A \in N_2 \land \alpha \in (N_2 \cup T)^*\}$

Reduced Grammars - Construction:

1. Step:

Compute the subset $N_1 \subseteq N$ of all produktive nonterminals of G. Since $\mathcal{L}(G) \neq \emptyset$ in particular $S \in N_1$.

2. Step:

Construct: $P_1 = \{A \rightarrow \alpha \in P \mid A \in N_1 \land \alpha \in (N_1 \cup T)^*\}$

3. Step:

Compute the subset $N_2 \subseteq N_1$ of all productive and reachable nonterminals of G. Since $\mathcal{L}(G) \neq \emptyset$ in particular $S \in N_2$.

4. Step:

Construct: $P_2 = \{A \to \alpha \in P \mid A \in N_2 \land \alpha \in (N_2 \cup T)^*\}$

Result: $G' = (N_2, T, P_2, S)$

$$S \rightarrow aBB$$

$$B \rightarrow Sd \mid C$$

$$C \rightarrow a$$

Syntactic Analysis

Chapter 2:

Basics of Pushdown Automata

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

Example:

 $\textbf{States:} \qquad 0,1,2$

Start state:

0	a	11
1	a	11
11	b	2
12	b	2

Example:

States: 0, 1, 2

Start state: 0 Final states: 0.2

0	a	11
1	a	11
11	b	2
12	b	2

Conventions:

- We do not differentiate between pushdown symbols and states
- The rightmost / upper pushdown symbol represents the state
- Every transition consumes / modifies the upper part of the pushdown

Definition: Pushdown Automaton

A pushdown automaton (PDA) is a tuple

 $M=(Q,T,\delta,q_0,F)$ with:

- Q a finite set of states;
- T an input alphabet;
- $q_0 \in Q$ the start state;
- ullet $F\subseteq Q$ the set of final states and
- $\delta \subseteq Q^+ \times (T \cup \{\epsilon\}) \times Q^*$ a finite set of transitions

Friedrich Bauer

laus Samelson

Definition: Pushdown Automaton

A pushdown automaton (PDA) is a tuple

$$M=(Q,T,\delta,q_0,F)$$
 with:

- Q a finite set of states;
- T an input alphabet;
- $q_0 \in Q$ the start state;
- $F \subseteq Q$ the set of final states and
- $\delta \subset Q^+ \times (T \cup \{\epsilon\}) \times Q^*$ a finite set of transitions

ch Bauer Klaus Samelson

We define computations of pushdown automata with the help of transitions; a particular computation state (the current configuration) is a pair:

$$(\gamma, w) \in Q^* \times T^*$$

consisting of the pushdown content and the remaining input.

States: 0, 1, 2

Start state:

0	a	11
1	a	11
11	b	2
12	b	2

States: 0, 1, 2

Start state:

Final states: 0,2

0	a	11
1	a	11
11	b	2
12	b	2

(0, aaabbb)

States: 0, 1, 2

Start state: 0

0	a	11
1	a	11
11	b	2
12	b	2

$$(0, a a a b b b) \vdash (11, a a b b b)$$

 $\textbf{States:} \qquad 0,1,2$

Start state: 0

0	a	11
1	a	11
11	b	2
12	b	2

$$\begin{array}{cccc} (0\,, & a\,a\,a\,b\,b\,b) & \vdash & (1\,1\,, & a\,a\,b\,b\,b) \\ & \vdash & (1\,1\,1\,, & a\,b\,b\,b) \end{array}$$

 $\textbf{States:} \qquad 0,1,2$

Start state: 0

0	a	11
1	a	11
11	b	2
12	b	2

$$\begin{array}{cccc} (0, & a\,a\,a\,b\,b\,b) & \vdash & (1\,1\,, & a\,a\,b\,b\,b) \\ & & \vdash & (1\,1\,1\,, & a\,b\,b\,b) \\ & & \vdash & (1\,1\,1\,1\,, & b\,b\,b) \end{array}$$

 $\textbf{States:} \qquad 0,1,2$

Start state: 0

0	a	11
1	a	11
11	b	2
12	b	2

States: 0, 1, 2

Start state: 0

0	a	11
1	a	11
11	b	2
12	b	2

States: 0, 1, 2

Start state: 0

0	a	11
1	a	11
11	b	2
12	b	2

A computation step is characterized by the relation $\ dash \subseteq (Q^* imes T^*)^2$ with

$$(\alpha \gamma, x w) \vdash (\alpha \gamma', w) \text{ for } (\gamma, x, \gamma') \in \delta$$

A computation step is characterized by the relation $\vdash \subseteq (Q^* \times T^*)^2$ with

$$(\alpha \gamma, x w) \vdash (\alpha \gamma', w) \text{ for } (\gamma, x, \gamma') \in \delta$$

Remarks:

- The relation \vdash depends on the pushdown automaton M
- The reflexive and transitive closure of ⊢ is denoted by ⊢*
- \bullet Then, the language accepted by M is

$$\mathcal{L}(M) = \{ w \in T^* \mid \exists f \in F : (q_0, w) \vdash^* (f, \epsilon) \}$$

A computation step is characterized by the relation $\vdash \subseteq (Q^* \times T^*)^2$ with

$$(\alpha \gamma, x w) \vdash (\alpha \gamma', w) \text{ for } (\gamma, x, \gamma') \in \delta$$

Remarks:

- The relation \vdash depends on the pushdown automaton M
- The reflexive and transitive closure of ⊢ is denoted by ⊢*
- \bullet Then, the language accepted by M is

$$\mathcal{L}(M) = \{ w \in T^* \mid \exists f \in F : (q_0, w) \vdash^* (f, \epsilon) \}$$

We accept with a final state together with empty input.

Definition: Deterministic Pushdown Automaton

The pushdown automaton $\,M\,$ is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions (γ_1,x,γ_2) , $(\gamma_1',x',\gamma_2') \in \delta$ we can assume:

Is γ_1 a suffix of γ_1' , then $x \neq x' \land x \neq \epsilon \neq x'$ is valid.

Definition: Deterministic Pushdown Automaton

The pushdown automaton $\,M\,$ is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions (γ_1, x, γ_2) , $(\gamma'_1, x', \gamma'_2) \in \delta$ we can assume:

Is γ_1 a suffix of γ_1' , then $x \neq x' \land x \neq \epsilon \neq x'$ is valid.

... for example:

0	a	11
1	a	11
11	b	2
12	b	2

... this obviously holds

Pushdown Automata

M. Schützenberger

A. Öttinger

Theorem:

For each context free grammar G = (N, T, P, S) a pushdown automaton M with $\mathcal{L}(G) = \mathcal{L}(M)$ can be built.

The theorem is so important for us, that we take a look at two constructions for automata, motivated by both of the special derivations:

- \bullet M_G^L to build Leftmost derivations
- ullet M_G^R to build reverse Rightmost derivations

Syntactic Analysis

Chapter 3: Top-down Parsing

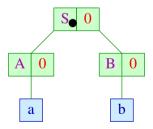
Construction: Item Pushdown Automaton M_G^L

- Reconstruct a Leftmost derivation.
- Expand nonterminals using a rule.
- Verify successively, that the chosen rule matches the input.
- The states are now Items (= rules with a bullet):

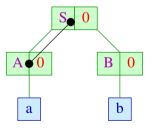
$$[A \to \alpha \bullet \beta]$$
, $A \to \alpha \beta \in P$

The bullet marks the spot, how far the rule is already processed

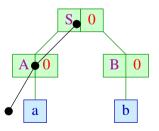
$$S \rightarrow AB^{0} \qquad A \rightarrow a^{0} \qquad B \rightarrow b^{0}$$



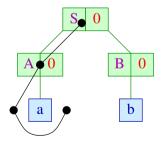
$$S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$$



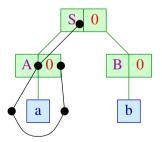
$$S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$$



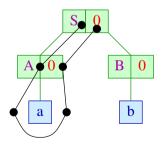
$$S \rightarrow AB^{0} \qquad A \rightarrow a^{0} \qquad B \rightarrow b^{0}$$



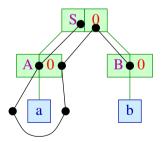
$$S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$$



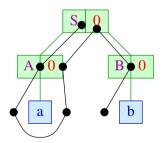
$$S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$$



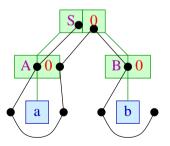
$$S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$$



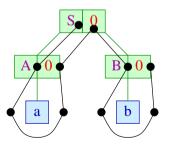
$$S \rightarrow AB^{0} \qquad A \rightarrow a^{0} \qquad B \rightarrow b^{0}$$



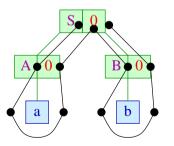
$$S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$$



$$S \rightarrow AB^{0} \qquad A \rightarrow a^{0} \qquad B \rightarrow b^{0}$$



$$S \rightarrow AB^{0} \qquad A \rightarrow a^{0} \qquad B \rightarrow b^{0}$$



We add another rule $S' \to S$ for initialising the construction:

ϵ	$[S' \to \bullet \ S \ \$] [S \to \bullet \ A B]$
ϵ	$[S \to \bullet \ A \ B] [A \to \bullet \ a]$
\boldsymbol{a}	$[A \rightarrow a \bullet]$
ϵ	$[S \rightarrow A \bullet B]$
ϵ	$[S \to A \bullet B] [B \to \bullet b]$
b	$[B \to b \bullet]$
	$[S \to A B \bullet]$
ϵ	$[S' \rightarrow S \bullet \$]$
	$egin{array}{c} \epsilon & & \\ a & \\ \epsilon & \\ \epsilon & \\ b & \\ \epsilon & \\ \end{array}$

The item pushdown automaton M_G^L has three kinds of transitions:

```
Expansions: ([A \rightarrow \alpha \bullet B \beta], \epsilon, [A \rightarrow \alpha \bullet B \beta] [B \rightarrow \bullet \gamma]) for A \rightarrow \alpha B \beta, B \rightarrow \gamma \in P
```

Shifts: $([A \rightarrow \alpha \bullet a \beta], a, [A \rightarrow \alpha a \bullet \beta])$ for $A \rightarrow \alpha a \beta \in P$

Reduces: $([A \to \alpha \bullet B \ \beta] \ [B \to \gamma \bullet], \epsilon, [A \to \alpha B \bullet \beta])$ for

 $A \to \alpha B \beta, B \to \gamma \in P$

Items of the form: $[A \to \alpha \bullet]$ are also called complete The item pushdown automaton shifts the bullet around the derivation tree ...

Discussion:

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- For proving correctness of the construction, we show that for every Item $[A \to \alpha \bullet B \beta]$ the following holds:

$$([A \to \alpha \bullet B \beta], w) \vdash^* ([A \to \alpha B \bullet \beta], \epsilon)$$
 iff $B \to^* w$

 LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ...

Example: $S' \rightarrow S$ \$ $S \rightarrow \epsilon \mid aSb$

The transitions of the according Item Pushdown Automaton:

0	$[S' \to \bullet S \$]$	ϵ	$[S' \to \bullet S \$] [S \to \bullet]$
1	$[S' \to \bullet S \$]$	ϵ	$[S' \to \bullet S \$] [S \to \bullet a S b]$
2	$[S \to \bullet \ a \ S \ b]$	a	$[S \to a \bullet S b]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet a S b]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \to a \ S \bullet b]$
6	$[S \rightarrow a \bullet S b] [S \rightarrow a S b \bullet]$	ϵ	$[S \to a \ S \bullet b]$
7	$[S \to a \ S \bullet b]$	b	$[S \to a \ S \ b \bullet]$
8	$[S' \to \bullet S \$] [S \to \bullet]$	ϵ	$[S' \rightarrow S \bullet \$]$
9	$[S' \to \bullet S \$] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet \$]$

Example: $S' \rightarrow S$ \$ $S \rightarrow \epsilon \mid aSb$

The transitions of the according Item Pushdown Automaton:

0	$[S' \to \bullet S \$]$	ϵ	$[S' \to \bullet S \$] [S \to \bullet]$
1	$[S' \to \bullet S \$]$	ϵ	$[S' \rightarrow \bullet S \$] [S \rightarrow \bullet a S b]$
2	[S o ullet a S b]	a	$[S \to a \bullet S b]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet a S b]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \to a \ S \bullet b]$
6	$[S \rightarrow a \bullet S b] [S \rightarrow a S b \bullet]$	ϵ	$[S \to a \ S \bullet b]$
7	$[S \rightarrow a \ S \bullet b]$	b	$[S \to a \ S \ b \bullet]$
8	$[S' \to \bullet S \$] [S \to \bullet]$	ϵ	$[S' \to S \bullet \$]$
9	$[S' \to \bullet S \$] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet \$]$

Conflicts arise between the transitions (0,1) and (3,4), resp..

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue computing in parallel.

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue computing in parallel.

Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue computing in parallel.

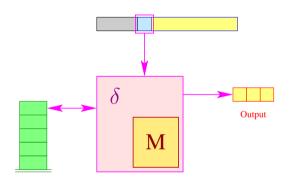
Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input symbols.

Structure of the LL(1)-Parser:



- The parser accesses a frame of length 1 of the input;
- it corresponds to an item pushdown automaton, essentially;
- ullet table M[q,w] contains the rule of choice.

Idea:

- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- ullet A grammar is called LL(1) if a unique choice is always possible

Idea:

- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- ullet A grammar is called LL(1) if a unique choice is always possible

Definition:

A reduced grammar is called LL(1), if for each two distinct rules $A \to \alpha$, $A \to \alpha' \in P$ and each derivation $S \to_L^* u \ A \ \beta$ with $u \in T^*$ the following is valid:

Philip Lewis

Richard Stearns

$$\mathsf{First}_1(\alpha\,\beta)\,\cap\,\,\mathsf{First}_1(\alpha'\,\beta)=\emptyset$$

Example 1:

Example 1:

Example 2:

... is not LL(k) for any k > 0.

is LL(1), since $First_1(E) = \{id\}$

Definition: First₁-Sets

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) \ = \ \{\epsilon \mid \epsilon \in L\} \cup \{u \in T \mid \exists v \in T^* \ : \ uv \in L\}$$

Example: $S \rightarrow \epsilon \mid aSb$

$First_1(\llbracket S \rrbracket)$
ϵ
ab
aabb
aaabbb

Definition: First₁-Sets

For a set $L \subseteq T^*$ we define:

$$\mathsf{First}_1(L) \ = \ \{\epsilon \mid \epsilon \in L\} \cup \{u \in T \mid \exists v \in T^* \ : \ uv \in L\}$$

Example: $S \rightarrow \epsilon \mid aSb$

$First_1(\llbracket S \rrbracket)$
ϵ
ab
aabb
aaabbb

≡ the yield's prefix of length 1

Arithmetics:

 $First_1()$ is distributive with union and concatenation:

```
\begin{array}{lll} \mathsf{First}_1(\emptyset) & = & \emptyset \\ \mathsf{First}_1(L_1 \, \cup \, L_2) & = & \mathsf{First}_1(L_1) \, \cup \, \mathsf{First}_1(L_2) \\ \mathsf{First}_1(L_1 \, \cdot \, L_2) & = & \mathsf{First}_1(\mathsf{First}_1(L_1) \, \cdot \, \mathsf{First}_1(L_2)) \\ & := & \mathsf{First}_1(L_1) \, \odot_1 \, \, \mathsf{First}_1(L_2) \end{array}
```

 \odot_1 being 1 – concatenation

Arithmetics:

First₁(_) is distributive with union and concatenation:

```
\begin{array}{lll} \mathsf{First}_1(\emptyset) & = & \emptyset \\ \mathsf{First}_1(L_1 \, \cup \, L_2) & = & \mathsf{First}_1(L_1) \, \cup \, \mathsf{First}_1(L_2) \\ \mathsf{First}_1(L_1 \, \cdot \, L_2) & = & \mathsf{First}_1(\mathsf{First}_1(L_1) \, \cdot \, \mathsf{First}_1(L_2)) \\ & := & \mathsf{First}_1(L_1) \, \odot_1 \, \, \mathsf{First}_1(L_2) \end{array}
```

 \odot_1 being 1 – concatenation

Definition: 1-concatenation

Let $L_1, L_2 \subseteq T \cup \{\epsilon\}$ with $L_1 \neq \emptyset \neq L_2$. Then:

$$L_1 \odot_1 L_2 = \left\{ egin{array}{ll} L_1 & ext{if} & \epsilon
otin L_1 \ (L_1 ackslash \{\epsilon\}) \cup L_2 & ext{otherwise} \end{array}
ight.$$

If all rules of G are productive, then all sets $First_1(A)$ are non-empty.

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) \ = \ \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) \ = \ \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: $\mathsf{First}_1(A) = F_{\epsilon}(A) \cup \{\epsilon \mid A \rightarrow^* \epsilon\}$

- Let $\operatorname{empty}(X) = \operatorname{true}$ iff $X \to^* \epsilon$.
- ullet $F_{\epsilon}(X_1 \dots X_m) = F_{\epsilon}(X_1) \cup \dots \cup F_{\epsilon}(X_j)$ if $\neg \mathsf{empty}(X_j) \wedge \bigwedge_{i=1}^{j-1} \mathsf{empty}(X_i)$

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) \ = \ \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: $First_1(A) = F_{\epsilon}(A) \cup \{\epsilon \mid A \rightarrow^* \epsilon\}$

- Let $\operatorname{empty}(X) = \operatorname{true}$ iff $X \to^* \epsilon$.
- $F_{\epsilon}(X_1 \dots X_m) = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$ if $\neg \text{empty}(X_j) \land \bigwedge_{i=1}^{j-1} \text{empty}(X_i)$

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) \ = \ \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: $\mathsf{First}_1(A) = F_{\epsilon}(A) \cup \{\epsilon \mid A \rightarrow^* \epsilon\}$

- Let $\operatorname{empty}(X) = \operatorname{true}$ iff $X \to^* \epsilon$.
- ullet $F_{\epsilon}(X_1\dots X_m) = igcup_{i=1}^j F_{\epsilon}(X_i) \ \ ext{if} \ \ \neg\mathsf{empty}(X_j) \ \land \ igwedge_{i=1}^{j-1} \mathsf{empty}(X_i)$

We characterize the ϵ -free First₁-sets with an inequality system:

$$\begin{array}{lll} F_{\epsilon}(a) & = & \{a\} & \text{if} & a \in T \\ F_{\epsilon}(A) & \supseteq & F_{\epsilon}(X_{j}) & \text{if} & A \to X_{1} \dots X_{m} \in P, & \text{empty}(X_{1}) \wedge \dots \wedge \text{empty}(X_{j-1}) \end{array}$$

for example...

Lookahead Sets

for example...

with empty(E) = empty(T) = empty(F) = false

... we obtain:

Observation:

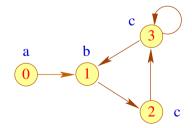
• The form of each inequality of these systems is:

```
x \supseteq y resp. x \supseteq d
```

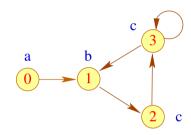
for variables x, y und $d \in \mathbb{D}$.

- Such systems are called pure unification problems
- Such problems can be solved in linear space/time.

```
for example: \mathbb{D} = 2^{\{a,b,c\}}
```



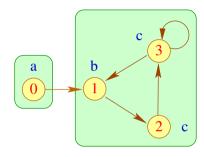
Frank DeRemer & Tom Pennello



Proceeding:

• Create the Variable Dependency Graph for the inequality system.

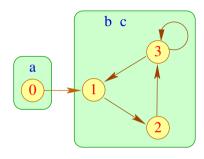
Frank DeRemer & Tom Pennello



Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- \bullet Within a Strongly Connected Component (\to Tarjan) all variables have the same value

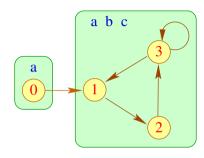
Frank DeRemer & Tom Pennello



Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- ullet Within a Strongly Connected Component (ullet Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC

Frank DeRemer & Tom Pennello

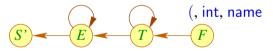


Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- Within a Strongly Connected Component (→ Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC
- In case of ingoing edges, their values are also to be considered for the upper bound

... for our example grammar:

First₁:

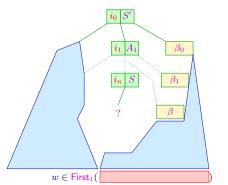


context is relevant too: $S' \rightarrow S \$$ $S \rightarrow \epsilon^0 \mid aSb^1$

$$S' \to S$$
\$

$$S \to \epsilon^{0}$$

$First_1(input)$	\$	a	b
S	?	?	?

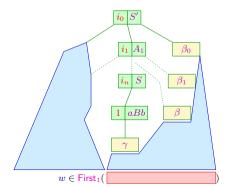


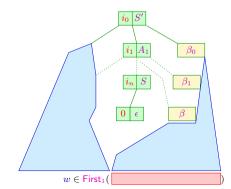
context is relevant too: $S' \rightarrow S \$$ $S \rightarrow \epsilon^0 \mid aSb^1$

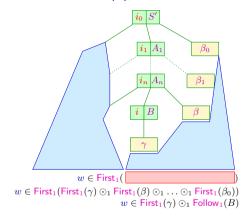
$$S' \to S$$
\$

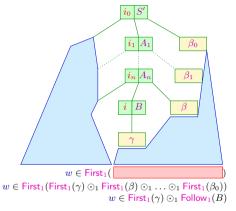
$$S \to \epsilon^0 \quad | \quad aSb$$

$First_1(input)$	\$	a	b
S	?	?	?









Inequality system for $Follow_1(B) = First_1(\beta) \odot_1 \ldots \odot_1 First_1(\beta_0)$

```
\begin{array}{lll} \operatorname{Follow}_1(S) &\supseteq &\{\$\} \\ \operatorname{Follow}_1(B) &\supseteq &F_{\epsilon}(X_j) & \text{if} & A \to \alpha \, B \, X_1 \dots X_m \, \in P, \, \operatorname{empty}(X_1) \, \wedge \dots \wedge \, \operatorname{empty}(X_{j-1}) \\ \operatorname{Follow}_1(B) &\supseteq &\operatorname{Follow}_1(A) & \text{if} & A \to \alpha \, B \, X_1 \dots X_m \, \in P, \, \operatorname{empty}(X_1) \, \wedge \dots \wedge \, \operatorname{empty}(X_m) \end{array}
```

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \to \gamma^i$ if $w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(B)$

... for example: $S' \to S$ \$ $S \to \epsilon^0 \mid aSb^1$

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \to \gamma^i$ if $w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(B)$

... for example:
$$S' \to S \ \$ \qquad S \to \epsilon^{\ 0} \quad | \quad a\,S\,b^{\ 1}$$

$$\mathsf{First}_1(S) = \{\epsilon, a\}$$

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \to \gamma^i$ if $w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(B)$

... for example:
$$S' \to S \$ \qquad S \to \epsilon^{\, \bf 0} \quad | \quad a \, S \, b^{\, \bf 1}$$

$$\mathsf{First}_1(S) = \{\epsilon, a\} \quad \mathsf{Follow}_1(S) = \{b, \$\}$$

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

```
We set M[B, w] = i with B \to \gamma^i if w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(B)
```

```
S' \to S \qquad S \to \epsilon^{\phantom{0}0} \quad | \quad a \, S \, b^{\phantom{0}1} First<sub>1</sub>(S) = {\epsilon}, a} Follow<sub>1</sub>(S) = {b, $\$} S\text{-rule 0}: \qquad \text{First}_1(\epsilon) \quad \odot_1 \quad \text{Follow}_1(S) = \{b, \$\} S-rule 1: First<sub>1</sub>(aSb) \odot_1 \quad \text{Follow}_1(S) = \{a\}
```

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \to \gamma^i$ if $w \in \mathsf{First}_1(\gamma) \odot_1 \mathsf{Follow}_1(B)$

$$S' \to S \qquad S \to \epsilon^{0} \quad | \quad a \, S \, b^{1}$$

$$\mathsf{First}_{1}(S) = \{\epsilon, a\} \quad \mathsf{Follow}_{1}(S) = \{b, \$\}$$

$$S\text{-rule } 0: \qquad \mathsf{First}_{1}(\epsilon) \quad \odot_{1} \quad \mathsf{Follow}_{1}(S) = \{b, \$\}$$

$$S\text{-rule } 1: \quad \mathsf{First}_{1}(aSb) \quad \odot_{1} \quad \mathsf{Follow}_{1}(S) = \{a\}$$

$$\boxed{ \qquad \qquad \parallel \$ \quad a \quad b \qquad \qquad }$$

$$\boxed{ \qquad \qquad \parallel \$ \quad a \quad b \qquad \qquad }$$

$$\boxed{ \qquad \qquad \parallel \$ \quad a \quad b \qquad \qquad }$$

For example: $S' \rightarrow S$ \$ $S \rightarrow \epsilon^0 \mid a S b^1$

The transitions of the according Item Pushdown Automaton:

0	$[S' \to \bullet S \$]$	ϵ	$[S' \to \bullet S \$] [S \to \bullet]$
1	$[S' \rightarrow \bullet S \$]$	ϵ	$[S' \to \bullet S \$] [S \to \bullet a S b]$
2	$[S \rightarrow \bullet \ a \ S \ b]$	a	$[S \to a \bullet S b]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \rightarrow a \bullet S b] [S \rightarrow \bullet a S b]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \to a \ S \bullet b]$
6	$[S \rightarrow a \bullet S b] [S \rightarrow a S b \bullet]$	ϵ	$[S \rightarrow a \ S \bullet b]$
7	$[S \rightarrow a \ S \bullet b]$	b	$[S \to a \ S \ b \bullet]$
8	$[S' \to \bullet S \$] [S \to \bullet]$	ϵ	$[S' \to S \bullet \$]$
9	$[S' \to \bullet S \$] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet \$]$

Lookahead table:

Attention:

Many grammars are not LL(k)!

A reason for that is:

Definition

Grammar G is called left-recursive, if

$$A \rightarrow^+ A \beta$$
 for an $A \in N, \beta \in (T \cup N)^*$

Attention:

Many grammars are not LL(k)!

A reason for that is:

Definition

Grammar *G* is called left-recursive, if

$$A \rightarrow^+ A \beta$$
 for an $A \in N$, $\beta \in (T \cup N)^*$

Example:

... is left-recursive

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

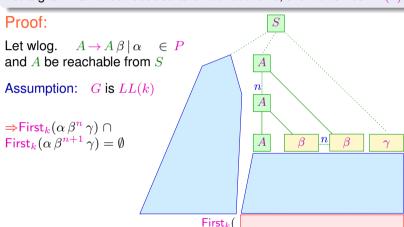
Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

$$\Rightarrow \mathsf{First}_k(\alpha\,\beta^n\,\gamma) \cap \\ \mathsf{First}_k(\alpha\,\beta^{n+1}\,\gamma) = \emptyset$$

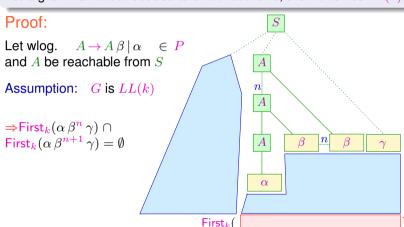
Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.



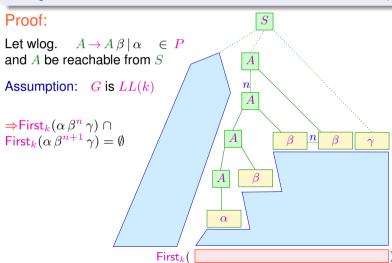
Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.



Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.



Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

$$\Rightarrow \mathsf{First}_k(\alpha \, \beta^n \, \gamma) \, \cap \\ \mathsf{First}_k(\alpha \, \beta^{n+1} \, \gamma) = \emptyset$$

Case 1: $\beta \rightarrow^* \epsilon$ — Contradiction !!!

Case 2: $\beta \to^* w \neq \epsilon \Longrightarrow \operatorname{First}_k(\alpha w^k \gamma) \cap \operatorname{First}_k(\alpha w^{k+1} \gamma) \neq \emptyset$

Right-Regular Context-Free Parsing

Recurring scheme in programming languages: Lists of sth...

$$S \rightarrow b \mid S a b$$

Alternative idea: Regular Expressions

$$S \rightarrow (b a)^* b$$

Right-Regular Context-Free Parsing

Recurring scheme in programming languages: Lists of sth...

$$S \rightarrow b$$
 | $S a b$

Alternative idea: Regular Expressions

$$S \to (b a)^* b$$

Definition: Right-Regular Context-Free Grammar

A right-regular context-free grammar (RR-CFG) is a

4-tuple G = (N, T, P, S) with:

- N the set of nonterminals,
- T the set of terminals,
- P the set of rules with regular expressions of symbols as rhs,
- \bullet $S \in N$ the start symbol

Right-Regular Context-Free Parsing

Recurring scheme in programming languages: Lists of sth...

 $S \rightarrow b$ | S a b

Alternative idea: Regular Expressions

 $S \to (b a)^* b$

Definition: Right-Regular Context-Free Grammar

A right-regular context-free grammar (RR-CFG) is a

4-tuple G = (N, T, P, S) with:

- \bullet *N* the set of nonterminals,
- T the set of terminals,
- P the set of rules with regular expressions of symbols as rhs,
- $S \in N$ the start symbol

Example: Arithmetic Expressions

$$\begin{array}{ccc} S & \rightarrow & E \\ E & \rightarrow & T \, (\, + T \,)^* \\ T & \rightarrow & F \, (\, * F \,)^* \\ F & \rightarrow & (E \,) \, | \, \mathsf{name} \, | \, \mathsf{int} \end{array}$$

 \ldots and generate the according LL(k)-Parser $M_{\langle G
angle}^L$

 \ldots and generate the according LL(k)-Parser $M_{\langle G \rangle}^L$

 \ldots and generate the according LL(k)-Parser $M_{\langle G \rangle}^L$

$$\begin{array}{cccc} S & \rightarrow & E \\ E & \rightarrow & \langle T \, (+T)^* \rangle \\ T & \rightarrow & F \, (*F)^* \\ F & \rightarrow & (E) \mid \mathsf{name} \mid \mathsf{int} \\ \langle T \, (+T)^* \rangle & \rightarrow & T \, \langle (+T)^* \rangle \end{array}$$

 \ldots and generate the according LL(k)-Parser $M_{\langle G \rangle}^L$

$$\begin{array}{cccc} S & \rightarrow & E \\ E & \rightarrow & \langle T\,(\,+T)^*\rangle \\ T & \rightarrow & F\,(\,*F\,)^* \\ F & \rightarrow & (E\,)\mid \mathsf{name}\mid \mathsf{int} \\ \langle T\,(\,+T)^*\rangle & \rightarrow & T\,\langle(\,+T)^*\rangle \\ \langle (\,+T)^*\rangle & \rightarrow & \epsilon\mid\langle\,+T\rangle\langle(\,+T)^*\rangle \end{array}$$

 \ldots and generate the according LL(k)-Parser $M_{\langle G \rangle}^L$

$$\begin{array}{cccc} S & \rightarrow & E \\ E & \rightarrow & \langle T \, (+T)^* \rangle \\ T & \rightarrow & F \, (*F)^* \\ F & \rightarrow & (E) \mid \mathsf{name} \mid \mathsf{int} \\ \langle T \, (+T)^* \rangle & \rightarrow & T \, \langle (+T)^* \rangle \\ \langle (+T)^* \rangle & \rightarrow & \epsilon \mid \langle +T \rangle \langle (+T)^* \rangle \\ \langle +T \rangle & \rightarrow & +T \end{array}$$

 \ldots and generate the according LL(k)-Parser $M_{\langle G \rangle}^L$

$$\begin{array}{cccc} S & \rightarrow & E \\ E & \rightarrow & \langle T \, (+T)^* \rangle \\ T & \rightarrow & \langle F \, (*F)^* \rangle \\ F & \rightarrow & (E) \mid \mathsf{name} \mid \mathsf{int} \\ \langle T \, (+T)^* \rangle & \rightarrow & T \, \langle (+T)^* \rangle \\ \langle (+T)^* \rangle & \rightarrow & \epsilon \mid \langle +T \rangle \langle (+T)^* \rangle \\ \langle +T \rangle & \rightarrow & +T \end{array}$$

 \ldots and generate the according LL(k)-Parser $M_{\langle G
angle}^L$

$$E \qquad \rightarrow \qquad E$$

$$E \qquad \rightarrow \qquad \langle T (+T)^* \rangle$$

$$T \qquad \rightarrow \qquad \langle F (*F)^* \rangle$$

$$F \qquad \rightarrow \qquad (E) \mid \mathsf{name} \mid \mathsf{int}$$

$$\langle T (+T)^* \rangle \qquad \rightarrow \qquad T \langle (+T)^* \rangle$$

$$\langle (+T)^* \rangle \qquad \rightarrow \qquad \epsilon \mid \langle +T \rangle \langle (+T)^* \rangle$$

$$\langle +T \rangle \qquad \rightarrow \qquad +T$$

$$\langle F (*F)^* \rangle \qquad \rightarrow \qquad F \langle (*F)^* \rangle$$

$$\langle (*F)^* \rangle \qquad \rightarrow \qquad \epsilon \mid \langle *F \rangle \langle (*F)^* \rangle$$

$$\langle *F \rangle \qquad \rightarrow \qquad *F$$

Definition:

An RR-CFG G is called RLL(1), if the corresponding CFG $\langle G \rangle$ is an LL(1) grammar.

Reinhold Heckmann

Discussion

- directly yields the table driven parser $M_{\langle G \rangle}^{L}$ for RLL(1) grammars
- however: mapping regular expressions to recursive productions unnessessarily strains the stack
 - → instead directly construct automaton in the style of Berry-Sethi

Idea 2: Recursive Descent RLL Parsers:

Recursive descent RLL(1)-parsers are an alternative to table-driven parsers; apart from the usual function scan(), we generate a program frame with the lookahead function expect() and the main parsing method parse():

```
int next:
void expect(Set E){
     if (\{\epsilon, \mathtt{next}\} \cap \mathtt{E} = \emptyset)
          cerr << "Expected" << E << "found" << next:</pre>
          exit(0);
     return;
void parse(){
     next = scan();
     expect(First_1(S)):
     S();
     expect({EOF}):
```

Idea 2: Recursive Descent RLL Parsers:

For each $A \to \alpha \in P$, we introduce:

```
\begin{array}{c} \mathbf{void} \; \mathbf{A}() \{ \\ generate(\alpha) \\ \} \end{array}
```

with the meta-program generate being defined by structural decomposition of α :

```
\begin{array}{lll} generate(r_1 \ldots r_k) & = & generate(r_1) \\ & & \exp \operatorname{ext}(\operatorname{First}_1(r_2)) \; ; \\ & & generate(r_2) \\ & \vdots \\ & & \exp \operatorname{ext}(\operatorname{First}_1(r_k)) \; ; \\ & generate(\epsilon) & = \; ; \\ & generate(a) & = \; \operatorname{next} = \operatorname{scan}(); \\ & generate(A) & = \; \operatorname{A}(); \end{array}
```

Idea 2: Recursive Descent RLL Parsers:

```
generate(r^*) = while (next \in F_{\epsilon}(r)) {
                                      generate(r)
generate(r_1 \mid \ldots \mid r_k) = switch(next) {
                                        labels(First_1(r_1)) \ generate(r_1) \ break;
                                        labels(First_1(r_k)) \ generate(r_k) \ break ;
labels(\{\alpha_1, \dots, \alpha_m\}) = label(\alpha_1): \dots label(\alpha_m):

label(\alpha) = case \alpha
label(\epsilon)
                                     default
```

Topdown-Parsing

Discussion

- ullet A practical implementation of an RLL(1)-parser via recursive descent is a straight-forward idea
- However, only a subset of the deterministic contextfree languages can be parsed this way.
- As soon as First₁(_) sets are not disjoint any more,

Topdown-Parsing

Discussion

- ullet A practical implementation of an RLL(1)-parser via recursive descent is a straight-forward idea
- However, only a subset of the deterministic contextfree languages can be parsed this way.
- As soon as First₁(_) sets are not disjoint any more,
 - Solution 1: For many accessibly written grammars, the alternation between right hand sides happens
 too early. Keeping the common prefixes of right hand sides joined and introducing a new production
 for the actual diverging sentence forms often helps.
 - Solution 2: Introduce ranked grammars, and decide conflicting lookahead always in favour of the higher ranked alternative
 - ightarrow relation to LL parsing not so clear any more
 - \rightarrow not so clear for $_^*$ operator how to decide
 - Solution 3: Going from LL(1) to LL(k)The size of the occurring sets is rapidly increasing with larger kUnfortunately, even LL(k) parsers are not sufficient to accept all deterministic contextfree languages. (regular lookahead $\rightarrow LL(*)$)
- In practical systems, this often motivates the implementation of k = 1 only ...

Topic:

Syntactic Analysis - Part II

Syntactic Analysis - Part II

Chapter 1: Bottom-up Analysis

Donald Knuth

Idea:

We *delay* the decision whether to reduce until we know, whether the input matches the right-hand-side of a rule!

Construction: Shift-Reduce parser M_G^R

- The input is shifted successively to the pushdown.
- Is there a complete right-hand side (a handle) atop the pushdown, it is replaced (reduced) by the corresponding left-hand side

Example:

$$\begin{array}{ccc} S & \rightarrow & A B \\ A & \rightarrow & a \\ B & \rightarrow & b \end{array}$$

The pushdown automaton:

States: q_0, f, a, b, A, B, S ; Start state: q_0 End state: f

q_0	a	$q_0 a$
a	ϵ	A
A	b	Ab
b	ϵ	B
AB	ϵ	S
$q_0 S$	ϵ	f

Construction:

In general, we create an automaton $M_G^R = (Q, T, \delta, q_0, F)$ with:

- $Q = T \cup N \cup \{q_0, f\}$ $(q_0, f \text{ fresh});$
- $F = \{f\};$
- Transitions:

```
\begin{array}{lll} \delta &=& \{(q,x,q\,x) \mid q \in Q, x \in T\} \ \cup & \text{$/$} & \text{Shift-transitions} \\ && \{(\alpha,\epsilon,A) \mid A \to \alpha \in P\} \ \cup & \text{$/$} & \text{Reduce-transitions} \\ && \{(q_0\,S,\epsilon,f)\} & \text{$/$} & \text{finish} \end{array}
```

Construction:

In general, we create an automaton $M_G^R = (Q, T, \delta, q_0, F)$ with:

- $Q = T \cup N \cup \{q_0, f\}$ (q₀, f fresh);
- $F = \{f\};$
- Transitions:

```
\begin{array}{lll} \delta &=& \{(q,x,q\,x) \mid q \in Q, x \in T\} \ \cup & \text{Shift-transitions} \\ && \{(\alpha,\epsilon,A) \mid A \to \alpha \in P\} \ \cup & \text{Meduce-transitions} \\ && \{(q_0\,S,\epsilon,f)\} & \text{finish} \end{array}
```

Example-computation:

Observation:

- The sequence of reductions corresponds to a reverse rightmost-derivation for the input
- To prove correctnes, we have to prove:

$$(\epsilon, w) \vdash^* (A, \epsilon)$$
 iff $A \to^* w$

- The shift-reduce pushdown automaton M_G^R is in general also non-deterministic
- For a deterministic parsing-algorithm, we have to identify computation-states for reduction

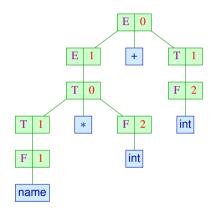
Idea: Observe a successful run of M_G^R !

Input:

 $\mathsf{counter} * 2 + 40$

Pushdown:

 (q_0)



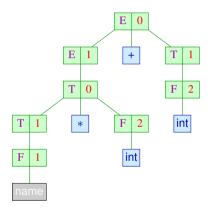
Idea: Observe a successful run of M_G^R !

Input:

$$*2 + 40$$

Pushdown:

 $(q_0 \text{ name})$



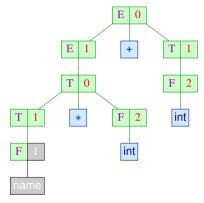
Idea: Observe a successful run of M_G^R !

Input:

$$*2 + 40$$

Pushdown:

 $(q_0 F)$



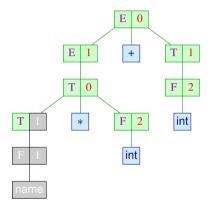
Idea: Observe a successful run of M_G^R !

Input:

$$*2 + 40$$

Pushdown:

 $(q_0 T)$



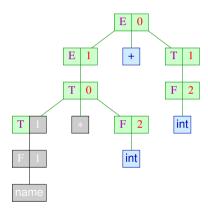
Idea: Observe a successful run of M_G^R !

Input:

$$2 + 40$$

Pushdown:

 $(q_0 T *)$



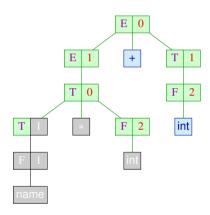
Idea: Observe a successful run of M_G^R !

Input:

+40

Pushdown:

 $(q_0 T * int)$



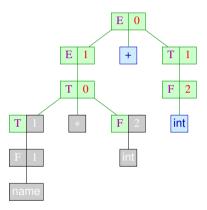
Idea: Observe a successful run of M_G^R !

Input:

+40

Pushdown:

 $(q_0 T * F)$



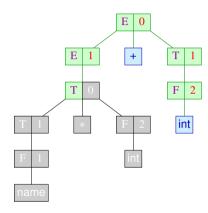
Idea: Observe a successful run of M_G^R !

Input:

+40

Pushdown:

 $(q_0 T)$



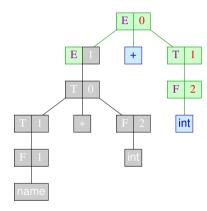
Idea: Observe a successful run of M_G^R !

Input:

+40

Pushdown:

 $(q_0 E)$



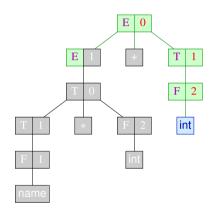
Idea: Observe a successful run of M_G^R !

Input:

40

Pushdown:

 $(q_0 E +)$

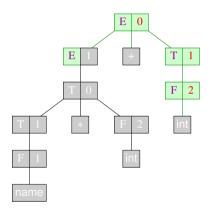


Idea: Observe a successful run of M_G^R !

Input:

Pushdown:

 $(q_0 E + int)$

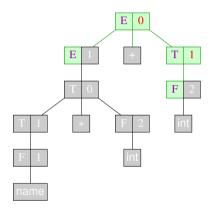


Idea: Observe a successful run of M_G^R !

Input:

Pushdown:

$$(q_0 E + F)$$

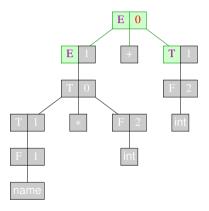


Idea: Observe a successful run of M_G^R !

Input:

Pushdown:

$$(q_0 E + T)$$

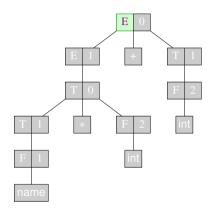


Idea: Observe a successful run of M_G^R !

Input:

Pushdown:

 $(q_0 E)$

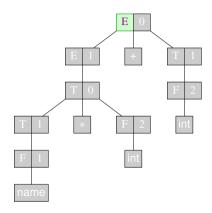


Idea: Observe a successful run of M_G^R !

Input:

Pushdown:

(f)



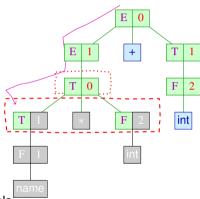
Idea: Observe a successful run of M_G^R !

Input:

$$+40$$

Pushdown:

$$(q_0 T * F)$$



Result:

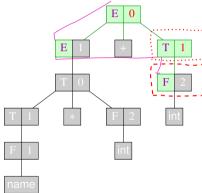
the pushdown contains sequences of symbols,
 which are already processed prefixes of righthandsides of productions leading to the topmost few states. → documentation of the processing history

Idea: Observe a successful run of M_G^R !

Input:

Pushdown:

$$(q_0 E + F)$$



Result:

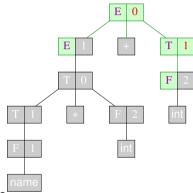
the pushdown contains sequences of symbols,
 which are already processed prefixes of righthandsides of productions leading to the topmost few states. → documentation of the processing history

Idea: Observe a successful run of M_G^R !

Input:

Pushdown:

$$(q_0 E + F)$$



Result:

- the pushdown contains sequences of symbols,
 which are already processed prefixes of righthandsides of productions leading to the topmost few states. → documentation of the processing history
- → a righthandside on top of the pushdown is only a handle in the correct historical context

Viable Prefixes and Admissable Items

Formalism: use *Items* as representations of *prefixes of righthandsides*

Generic Agreement

In a sequence of configurations of ${\cal M}_G^R$

$$(q_0 \alpha \gamma, v) \vdash (q_0 \alpha B, v) \vdash^* (q_0 S, \epsilon)$$

we call $\alpha \gamma$ a viable prefix for the complete item $[B \to \gamma \bullet]$.

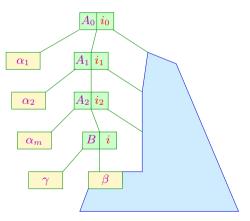
Reformulating the Shift-Reduce-Parsers main problem:

Find the items, for which the content of $M_G^{\mathbf{R}}$'s stack is the viable prefix....

→ Admissable Items

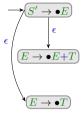
Admissible Items

The item $[B \to \gamma \bullet \beta]$ is called admissible for $\alpha \gamma$ iff $S \to_R^* \alpha \, B \, v$:

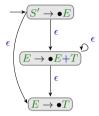


... with
$$\alpha = \alpha_1 \ldots \alpha_m$$

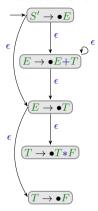
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



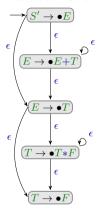
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



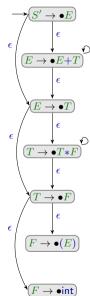
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



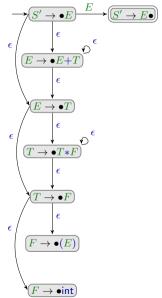
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



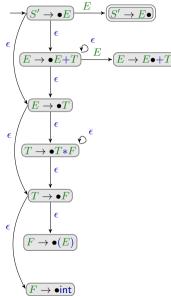
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



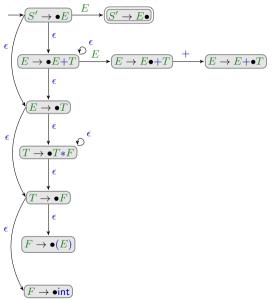
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



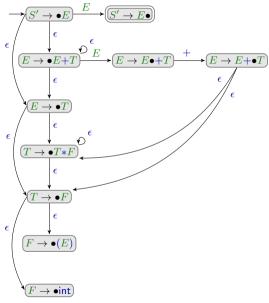
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



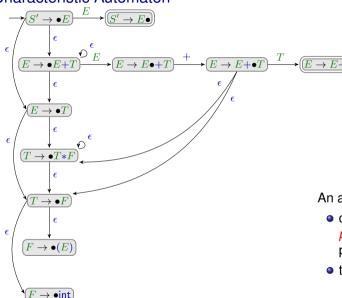
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



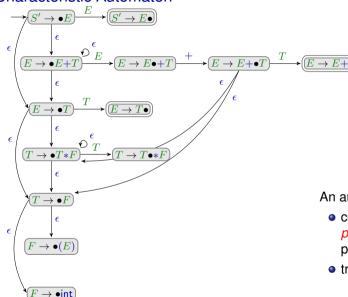
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



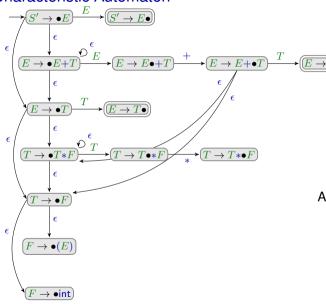
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



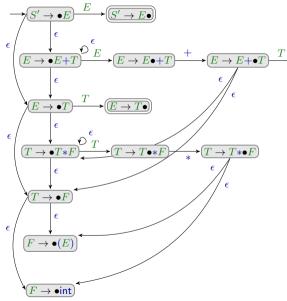
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



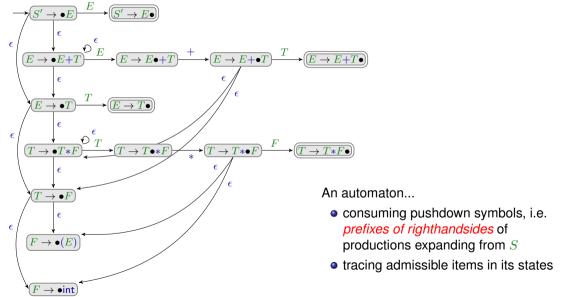
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states

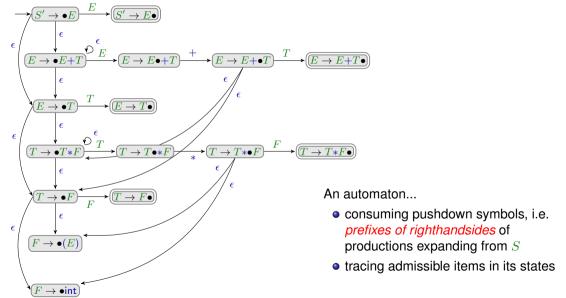


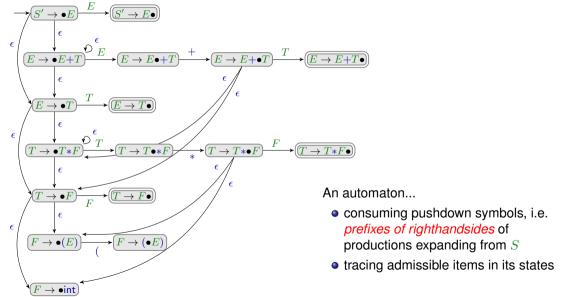
- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states

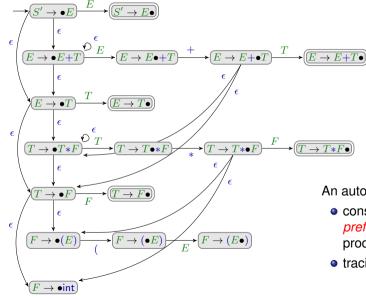


- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states

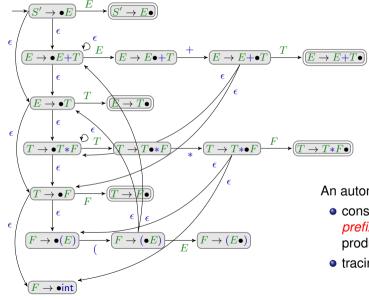




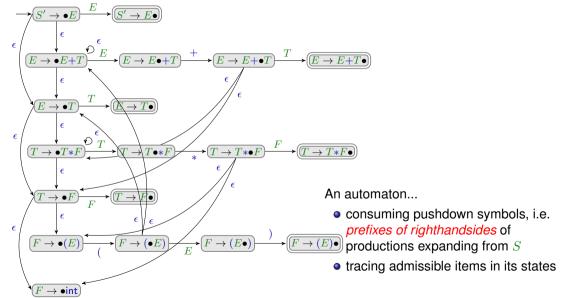


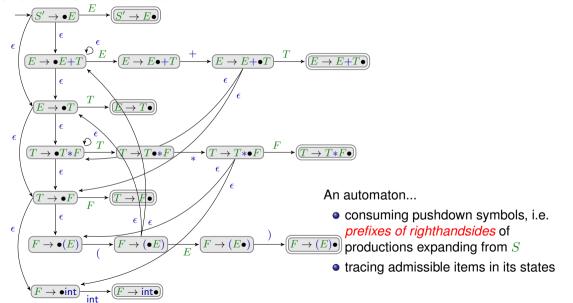


- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states



- consuming pushdown symbols, i.e. prefixes of righthandsides of productions expanding from S
- tracing admissible items in its states





Observation:

One can now consume theshift-reduce parser's pushdown with the characteristic automaton: If the input $(N \cup T)^*$ for the characteristic automaton corresponds to a viable prefix, its state contains the admissible items.

```
\begin{array}{l} \text{States: Items} \\ \text{Start state: } [S' \to \bullet \, S] \\ \text{Final states: } \{[B \to \gamma \bullet] \mid B \to \gamma \, \in \, P\} \\ \text{Transitions:} \end{array}
```

(1) $([A \to \alpha \bullet X \beta], X, [A \to \alpha X \bullet \beta]), X \in (N \cup T), A \to \alpha X \beta \in P;$ (2) $([A \to \alpha \bullet B \beta], \epsilon, [B \to \bullet \gamma]), A \to \alpha B \beta, B \to \gamma \in P;$

The automaton c(G) is called characteristic automaton for G.

Canonical LR(0)-Automaton

The canonical LR(0)-automaton LR(G) is created from c(G) by:

- **(a)** performing arbitrarily many ϵ -transitions after every consuming transition
- performing the powerset construction

... for example:

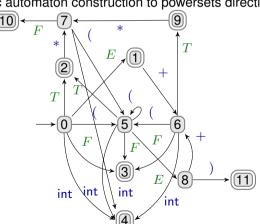


Canonical LR(0)-Automaton

The canonical LR(0)-automaton LR(G) is created from c(G) by:

- **①** performing arbitrarily many ϵ -transitions after every consuming transition
- performing the powerset construction
- Idea: or rather apply characteristic automaton construction to powersets directly?

... for example:

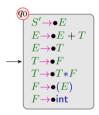


$$S' \rightarrow E$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid \text{int}$$

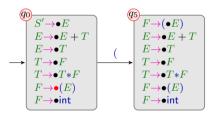


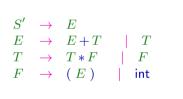
$$S' \rightarrow E$$

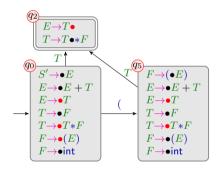
$$E \rightarrow E + T \mid T$$

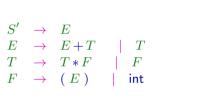
$$T \rightarrow T * F \mid F$$

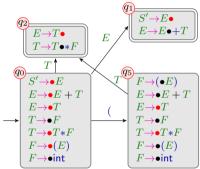
$$F \rightarrow (E) \mid \text{int}$$

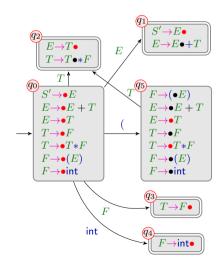


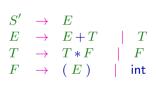


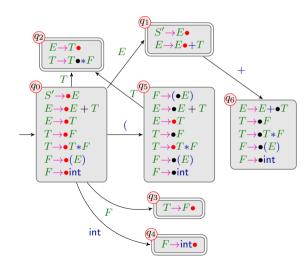


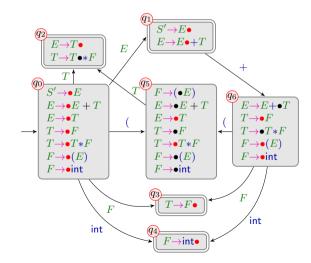


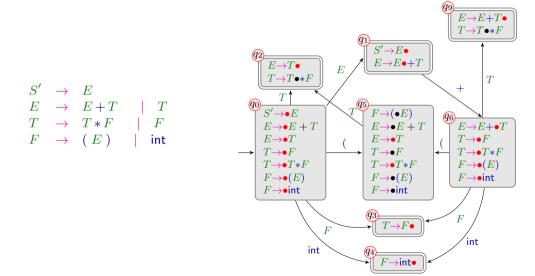


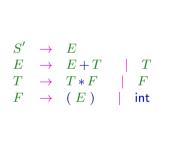


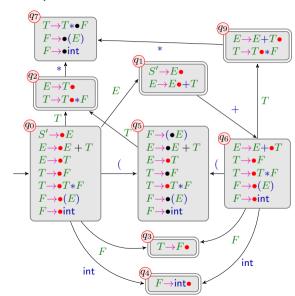


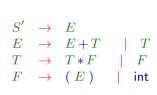


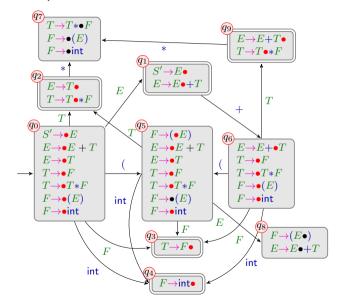




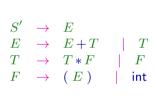


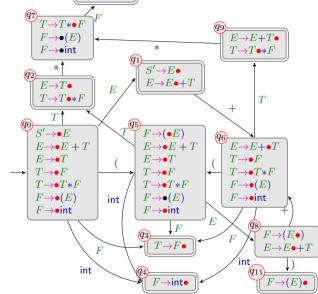




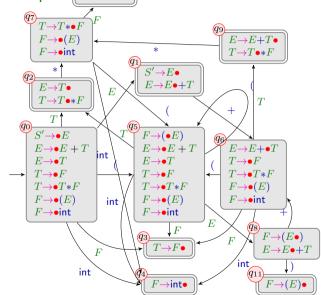


Canonical LR(0)-Automaton – Example: $T \to T * F \bullet$





Canonical LR(0)-Automaton – Example: $T \to T*F \bullet$



Canonical LR(0)-Automaton

Observation:

The canonical LR(0)-automaton can be created directly from the grammar. For this we need a helper function δ_{ϵ}^* (ϵ -closure)

$$\delta_{\epsilon}^{*}(q) = q \cup \{ [B \to \bullet \gamma] \mid B \to \gamma \in P, \\ [A \to \alpha \bullet B' \beta'] \in q, \\ B' \to^{*} B \beta \}$$

We define:

States: Sets of items;

Start state: $\delta_{\epsilon}^* \{ [S' \to \bullet S] \}$

Final states: $\{q \mid [A \rightarrow \alpha \bullet] \in q\}$

Transitions: $\delta(q, X) = \delta_{\epsilon}^* \{ [A \to \alpha \, X \bullet \beta] \mid [A \to \alpha \bullet X \beta] \in q \}$

LR(0)-Parser

Idea for a parser:

- The parser manages a viable prefix $\alpha = X_1 \dots X_m$ on the pushdown and uses LR(G) to identify reduction spots.
- \bullet It can reduce with $A \to \gamma$, if $[A \to \gamma \bullet]$ is admissible for α

Optimization:

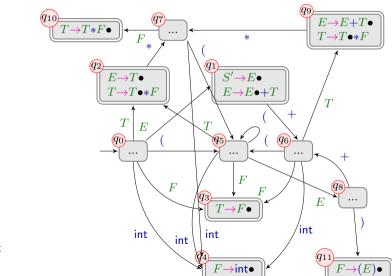
We push the states instead of the X_i in order not to process the pushdown's content with the automaton anew all the time.

Reduction with $A \to \gamma$ leads to popping the uppermost $|\gamma|$ states and continue with the state on top of the stack and input A.

Attention:

This parser is only deterministic, if each final state of the canonical LR(0)-automaton is conflict free.

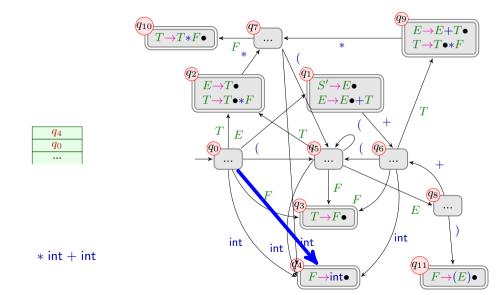
LR(0)-Parser – Example:

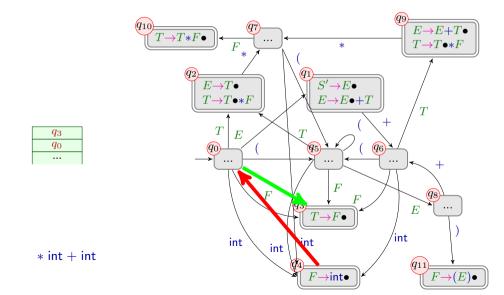


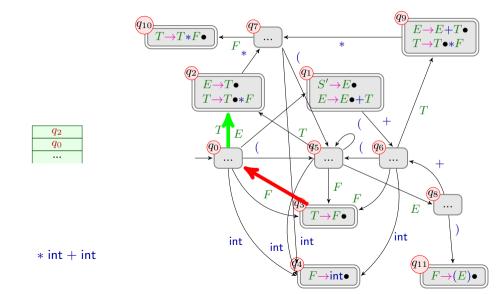
 $\mathsf{int} * \mathsf{int} + \mathsf{int}$

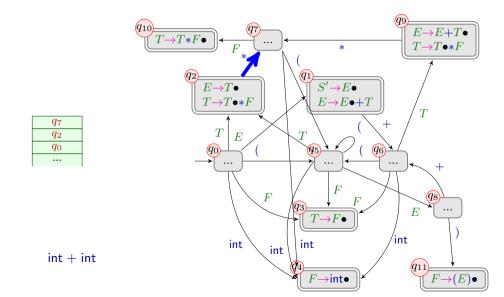
 q_0

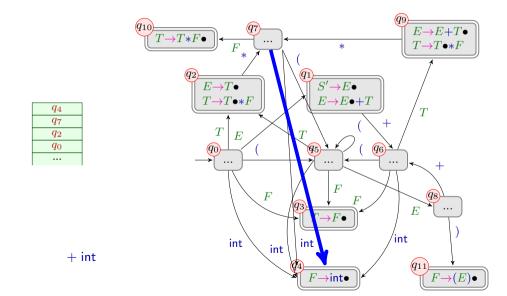
...

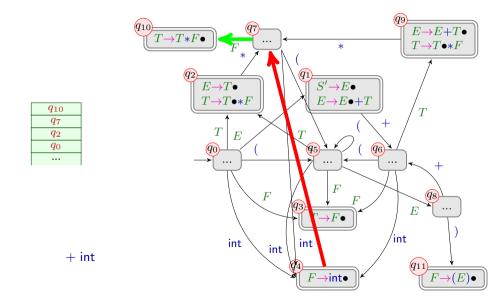


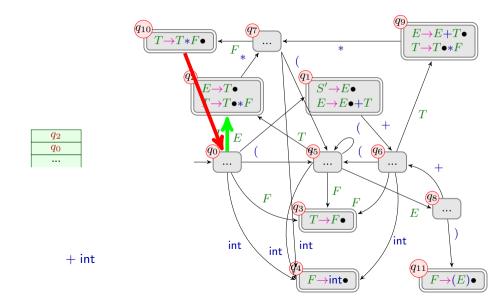


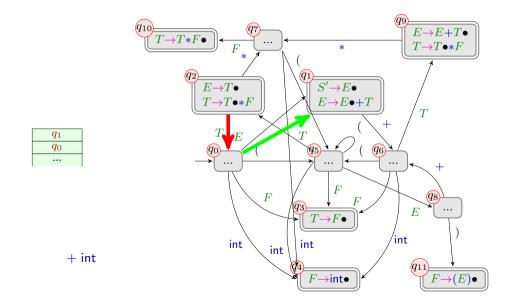


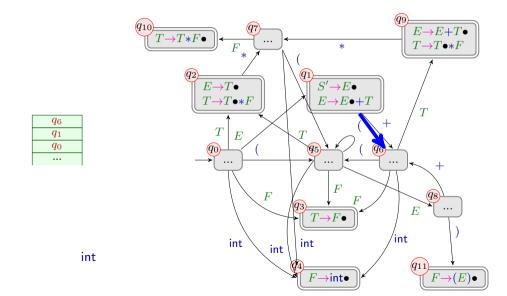








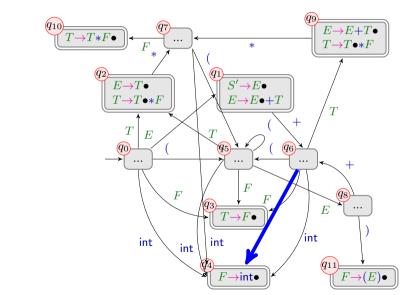




 $\frac{q_4}{q_6}$

 q_1

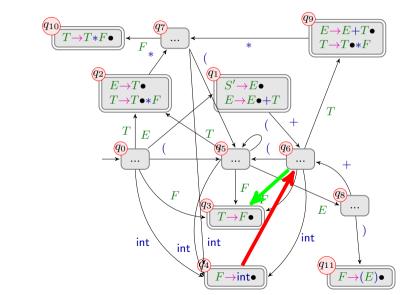
 q_0



 $\frac{q_3}{q_6}$

 q_1

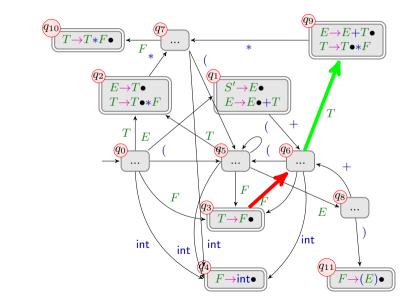
 q_0

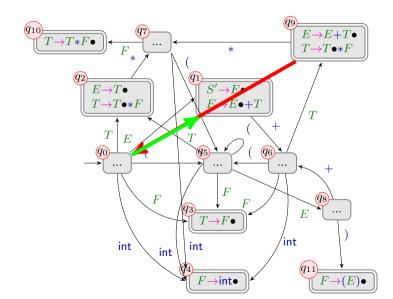


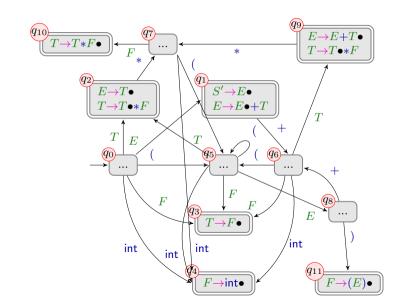
 $\frac{q_9}{q_6}$

 q_1

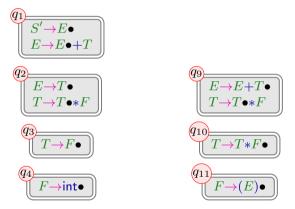
 q_0







... we observe:



The final states q_1, q_2, q_9 contain more than one admissible item

The construction of the LR(0)-parser:

States: $Q \cup \{f\}$ (f fresh)

```
Start state: q_0

Final state: f

Transitions:

Shift: (p,a,pq) if q = \delta(p,a) \neq \emptyset

Reduce: (p\,q_1\dots q_m,\epsilon,p\,q) if [A\to X_1\dots X_m\, \bullet]\in q_m, \quad q=\delta(p,A)

Finish: (q_0\,p,\epsilon,f) if [S'\to S\bullet]\in p

with the canonical automaton LR(G)=(Q,T,\delta,q_0,F).
```

Correctness:

we show:

The accepting computations of an LR(0)-parser are one-to-one related to those of a shift-reduce parser M_G^R .

we conclude:

- The accepted language is exactly $\mathcal{L}(G)$
- ullet The sequence of reductions of an accepting computation for a word $w \in T$ yields a reverse rightmost derivation of G for w

Attention:

Unfortunately, the LR(0)-parser is in general non-deterministic.

We identify two reasons for a state $q \in Q$:

Reduce-Reduce-Conflict:

with $A \neq A' \lor \gamma \neq \gamma'$

Those states are called LR(0)-unsuited.

Shift-Reduce-Conflict:

with $a \in T$

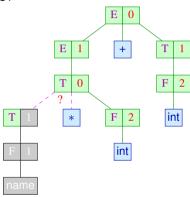
What differenciates the particular Reductions and Shifts?

Input:

$$*2 + 40$$

Pushdown:

 $(q_0 T)$



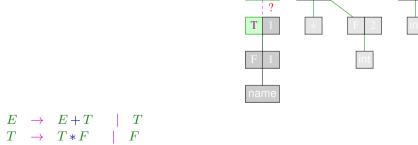
What differenciates the particular Reductions and Shifts?

Input:

$$*2 + 40$$

Pushdown:

 $(q_0 T)$



int

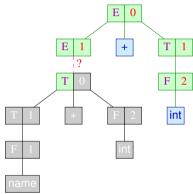
What differenciates the particular Reductions and Shifts?

Input:

+40

Pushdown:

 $(q_0 T)$



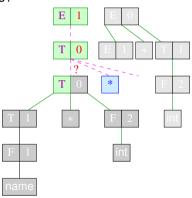
What differenciates the particular Reductions and Shifts?

Input:

+40

Pushdown:

 $(q_0 T)$



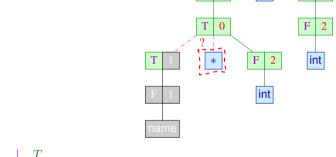
Idea: In reverse rightmost derivations, right context determines derivations!

Input:

$$*2 + 40$$

Pushdown:

 (q_0T)



Е

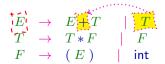
+

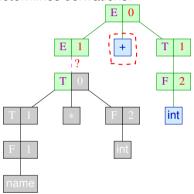
Idea: In reverse rightmost derivations, right context determines derivations!

Input:

Pushdown:

 (q_0T)





Idea: Consider k-lookahead in conflict situations.

Definition:

The reduced contextfree grammar G is called LR(k)-grammar, if $\alpha \beta w|_{|\alpha\beta|+k} = \alpha' \beta' w'|_{|\alpha\beta|+k}$ with:

Idea: Consider k-lookahead in conflict situations.

Definition:

The reduced contextfree grammar G is called LR(k)-grammar, if

$$\alpha \beta w \big|_{|\alpha \beta| + k} = \alpha' \beta' w' \big|_{|\alpha \beta| + k}$$
 with:

$$\begin{cases}
S & \to_R^* & \alpha A w & \to & \alpha \beta w \\
S & \to_R^* & \alpha' A' w' & \to & \alpha' \beta' w'
\end{cases}$$
 follows: $\alpha = \alpha' \land \beta = \beta' \land A = A'$

Strategy for testing Grammars for LR(k)-property

- Focus iteratively on all rightmost derivations $S \to_R^* \alpha X w \to \alpha \beta w$
- 2 Iterate over $k \ge 0$
 - For each $\gamma = \alpha \beta w|_{|\alpha\beta|+k}$ (handle with k-lookahead) check if there exists a differently right-derivable $\alpha'\beta'w'$ for which $\gamma = \alpha'\beta'w'|_{|\alpha\beta|+k}$
 - ② if there is none, we have found no objection against k being enough lookahead to disambiguate $\alpha\beta w$ from other rightmost derivations

(1)
$$S \rightarrow A \mid B$$
 $A \rightarrow a A b \mid 0$ $B \rightarrow a B b b \mid 1$

```
(1) S \rightarrow A \mid B \qquad A \rightarrow a \, A \, b \mid 0 \qquad B \rightarrow a \, B \, b \, b \mid 1
... is not LL(k) for any k:
Let S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w. Then \alpha \, \beta is of one of these forms:
```

```
(1) S \to A \mid B \quad A \to a \, A \, b \mid 0 \quad B \to a \, B \, b \, b \mid 1
... is not LL(k) for any k:
Let S \to_R^* \alpha \, X \, w \to \alpha \, \beta \, w. Then \alpha \, \underline{\beta} is of one of these forms: \underline{A} \, , \, \underline{B} \, , \, a^n \, \underline{a} \, \underline{A} \, \underline{b} \, , \, a^n \, \underline{a} \, \underline{B} \, \underline{b} \, \underline{b} \, , \, a^n \, \underline{0} \, , \, a^n \, \underline{1} \quad (n \ge 0)
```

(1)
$$S \to A \mid B \quad A \to a \, A \, b \mid 0 \quad B \to a \, B \, b \, b \mid 1$$

... is not $LL(k)$ for any k — but $LR(0)$:
Let $S \to_R^* \alpha \, X \, w \to \alpha \, \beta \, w$. Then $\alpha \, \underline{\beta}$ is of one of these forms:
$$\underline{A} \, , \, \underline{B} \, , \, a^n \, \underline{a \, A \, b} \, , \, a^n \, \underline{a \, B \, b \, b} \, , \, a^n \, \underline{0} \, , \, a^n \, \underline{1} \quad (n \ge 0)$$

(1)
$$S \to A \mid B \quad A \to a \, A \, b \mid 0 \quad B \to a \, B \, b \, b \mid 1$$

... is not $LL(k)$ for any k — but $LR(0)$:
Let $S \to_R^* \alpha \, X \, w \to \alpha \, \beta \, w$. Then $\alpha \, \underline{\beta}$ is of one of these forms:
$$\underline{A} \, , \, \underline{B} \, , \, a^n \, \underline{a} \, \underline{A} \, \underline{b} \, , \, a^n \, \underline{a} \, \underline{B} \, \underline{b} \, \underline{b} \, , \, a^n \, \underline{0} \, , \, a^n \, \underline{1} \quad (n \geq 0)$$

(2)
$$S \rightarrow a A c$$
 $A \rightarrow A b b \mid b$

(1)
$$S \to A \mid B \quad A \to a \, A \, b \mid 0 \quad B \to a \, B \, b \, b \mid 1$$

... is not $LL(k)$ for any k — but $LR(0)$:
Let $S \to_R^* \alpha \, X \, w \to \alpha \, \beta \, w$. Then $\alpha \, \underline{\beta}$ is of one of these forms:
$$\underline{A} \, , \, \underline{B} \, , \, a^n \, \underline{a} \, \underline{A} \, \underline{b} \, , \, a^n \, \underline{a} \, \underline{B} \, \underline{b} \, \underline{b} \, , \, a^n \, \underline{0} \, , \, a^n \, \underline{1} \quad (n \ge 0)$$

(2)
$$S \rightarrow a \, A \, c$$
 $A \rightarrow A \, b \, b \mid b$... is also not $LL(k)$ for any k :
Let $S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w$. Then $\alpha \, \beta$ is of one of these forms:

(1)
$$S \to A \mid B \quad A \to a \, A \, b \mid 0 \quad B \to a \, B \, b \, b \mid 1$$

... is not $LL(k)$ for any k — but $LR(0)$:
Let $S \to_R^* \alpha \, X \, w \to \alpha \, \beta \, w$. Then $\alpha \, \underline{\beta}$ is of one of these forms:
$$\underline{A} \, , \, \underline{B} \, , \, a^n \, \underline{a} \, \underline{A} \, \underline{b} \, , \, a^n \, \underline{a} \, \underline{B} \, \underline{b} \, \underline{b} \, , \, a^n \, \underline{0} \, , \, a^n \, \underline{1} \quad (n \ge 0)$$

(2)
$$S \rightarrow a\,A\,c$$
 $A \rightarrow A\,b\,b \mid b$... is also not $LL(k)$ for any k :
Let $S \rightarrow_R^* \alpha\,X\,w \rightarrow \alpha\,\beta\,w$. Then $\alpha\,\underline{\beta}$ is of one of these forms: $a\,\underline{b}\,,\,a\,\underline{A\,b\,b}\,,\,\underline{a\,A\,c}$

(1)
$$S \to A \mid B \quad A \to a \, A \, b \mid 0 \quad B \to a \, B \, b \, b \mid 1$$

... is not $LL(k)$ for any k — but $LR(0)$:
Let $S \to_R^* \alpha \, X \, w \to \alpha \, \beta \, w$. Then $\alpha \, \underline{\beta}$ is of one of these forms:
$$\underline{A} \, , \, \underline{B} \, , \, a^n \, \underline{a} \, \underline{A} \, \underline{b} \, , \, a^n \, \underline{a} \, \underline{B} \, \underline{b} \, \underline{b} \, , \, a^n \, \underline{0} \, , \, a^n \, \underline{1} \quad (n \ge 0)$$

(2)
$$S \rightarrow a \, A \, c$$
 $A \rightarrow A \, b \, b \mid b$... is also not $LL(k)$ for any k — but again $LR(0)$:
 Let $S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w$. Then $\alpha \, \underline{\beta}$ is of one of these forms: $a \, \underline{b} \, , \, a \, \underline{A} \, b \, \underline{b} \, , \, \underline{a} \, \underline{A} \, \underline{c}$

(3)
$$S \rightarrow a A c$$
 $A \rightarrow b b A \mid b$

for example:

(3) $S \rightarrow a \, A \, c$ $A \rightarrow b \, b \, A \mid b$ Let $S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w$ with $\{y\} = \mathsf{First}_k(w)$ then $\alpha \, \underline{\beta} \, y$ is of one of these forms:

for example:

(3) $S \rightarrow a \, A \, c$ $A \rightarrow b \, b \, A \mid b$ Let $S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w$ with $\{y\} = \mathsf{First}_k(w)$ then $\alpha \, \underline{\beta} \, y$ is of one of these forms: $a \, b^{2n} \, \underline{b} \, c \, , \, a \, b^{2n} \, \underline{b} \, b \, A \, c \, , \, \underline{a} \, A \, \underline{c}$

for example:

```
(3) S \rightarrow a \, A \, c A \rightarrow b \, b \, A \mid b ... is not LR(0), but LR(1):

Let S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w with \{y\} = \mathsf{First}_k(w) then \alpha \, \underline{\beta} \, y is of one of these forms:
a \, b^{2n} \, \underline{b} \, c \, , \, a \, b^{2n} \, \underline{b} \, b \, A \, c \, , \, \underline{a} \, A \, \underline{c}
```

for example:

(3) $S \rightarrow a \, A \, c$ $A \rightarrow b \, b \, A \mid b$... is not LR(0), but LR(1):

Let $S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w$ with $\{y\} = \mathsf{First}_k(w)$ then $\alpha \, \underline{\beta} \, y$ is of one of these forms: $a \, b^{2n} \, \underline{b} \, c \, , \, a \, b^{2n} \, \underline{b} \, \underline{b} \, A \, c \, , \, \underline{a} \, \underline{A} \, \underline{c}$

(4)
$$S \rightarrow a A c$$
 $A \rightarrow b A b \mid b$

for example:

- (3) $S \rightarrow a \, A \, c$ $A \rightarrow b \, b \, A \mid b$... is not LR(0), but LR(1):

 Let $S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w$ with $\{y\} = \mathsf{First}_k(w)$ then $\alpha \, \underline{\beta} \, y$ is of one of these forms: $a \, b^{2n} \, b \, c \, \cdot \, a \, b^{2n} \, b \, b \, A \, c \, \cdot \, a \, A \, c$
- (4) $S \rightarrow a A c$ $A \rightarrow b A b \mid b$

Consider the rightmost derivations:

$$S \to_R^* a b^n A b^n c \to a b^n \underline{b} b^n c$$

for example:

- (3) $S \rightarrow a \, A \, c$ $A \rightarrow b \, b \, A \mid b$... is not LR(0), but LR(1):

 Let $S \rightarrow_R^* \alpha \, X \, w \rightarrow \alpha \, \beta \, w$ with $\{y\} = \mathsf{First}_k(w)$ then $\alpha \, \underline{\beta} \, y$ is of one of these forms: $a \, b^{2n} \, b \, c$, $a \, b^{2n} \, b \, b \, A \, c$, $a \, A \, c$
- (4) $S \to a \, A \, c$ $A \to b \, A \, b \mid b$... is not LR(k) for any $k \ge 0$: Consider the rightmost derivations:

$$S \to_R^* a b^n A b^n c \to a b^n \underline{b} b^n c$$

LR(1)-Parsing

Idea: Let's equip items with 1-lookahead

Definition LR(1)-Item

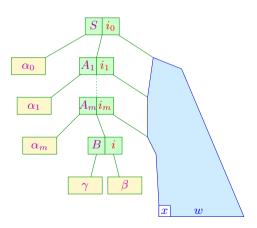
An LR(1)-item is a pair $[B \rightarrow \alpha \bullet \beta, x]$ with

$$x \in \mathsf{Follow}_1(B) = \bigcup \{\mathsf{First}_1(\nu) \mid S \to^* \mu \, B \, \nu\}$$

Admissible LR(1)-Items

The LR(1)-Item $[B \to \gamma \bullet \beta, x]$ is admissable for $\alpha \gamma$ if:

$$S \to_R^* \alpha B w$$
 with $\{x\} = \mathsf{First}_1(w)$



... with
$$\alpha_0 \dots \alpha_m = \alpha$$

The Characteristic LR(1)-Automaton

The set of admissible LR(1)-items for viable prefixes is again computed with the help of the finite automaton c(G,1).

```
The automaton c(G,1):

States: LR(1)-items
Start state: [S' \to \bullet S, \$]
Final states: \{[B \to \gamma \bullet, x] \mid B \to \gamma \in P, x \in \mathsf{Follow}_1(B)\}

(1) ([A \to \alpha \bullet X \beta, x], X, [A \to \alpha X \bullet \beta, x]), X \in (N \cup T)
Transitions: (2) ([A \to \alpha \bullet B \beta, x], \epsilon, [B \to \bullet \gamma, x']), A \to \alpha B \beta, B \to \gamma \in P, x' \in \mathsf{First}_1(\beta) \odot_1 \{x\}
```

The Characteristic LR(1)-Automaton

The set of admissible LR(1)-items for viable prefixes is again computed with the help of the finite automaton c(G,1).

```
The automaton c(G,1):

States: LR(1)-items
Start state: [S' \to \bullet S, \$]
Final states: \{[B \to \gamma \bullet, x] \mid B \to \gamma \in P, x \in \mathsf{Follow}_1(B)\}

(1) ([A \to \alpha \bullet X \beta, x], X, [A \to \alpha X \bullet \beta, x]), X \in (N \cup T)
Transitions: (2) ([A \to \alpha \bullet B \beta, x], \epsilon, [B \to \bullet \gamma, x']), A \to \alpha B \beta, B \to \gamma \in P, x' \in \mathsf{First}_1(\beta) \odot_1 \{x\}
```

This automaton works like c(G) — but additionally manages a 1-prefix from Follow₁ of the left-hand sides.

The canonical LR(1)-automaton LR(G,1) is created from c(G,1), by performing arbitrarily many ϵ -transitions and then making the resulting automaton deterministic ...

The canonical LR(1)-automaton LR(G,1) is created from c(G,1), by performing arbitrarily many ϵ -transitions and then making the resulting automaton deterministic ...

But again, it can be constructed directly from the grammar; analoguously to LR(0), we need the ϵ -closure δ_{ϵ}^* as a helper function:

$$\delta_{\epsilon}^*(\mathbf{q}) = \mathbf{q} \cup \{ [C \to \bullet \gamma, \, x] \mid [A \to \alpha \bullet B \, \beta', \, x'] \in \mathbf{q}, \quad B \to^* C \, \beta, \quad C \to \gamma \in \mathbf{P}, \quad x \in \mathsf{First}_1(\beta \, \beta') \odot_1 \{x'\} \}$$

The canonical LR(1)-automaton LR(G,1) is created from c(G,1), by performing arbitrarily many ϵ -transitions and then making the resulting automaton deterministic ...

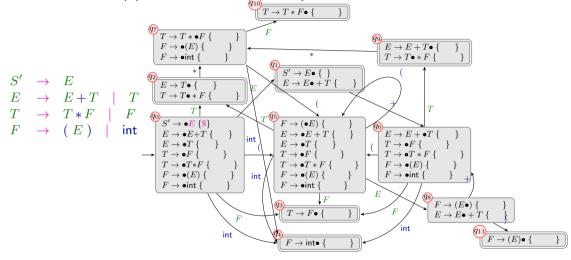
But again, it can be constructed directly from the grammar; analoguously to LR(0), we need the ϵ -closure δ_{ϵ}^* as a helper function:

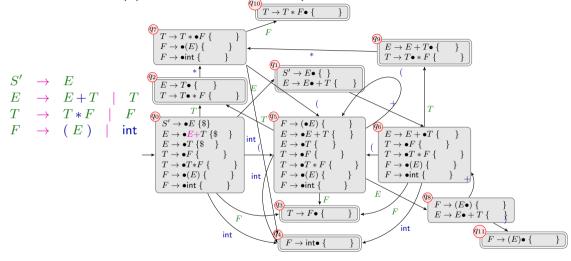
$$\delta_{\epsilon}^{*}(q) = q \cup \{ [C \to \bullet \gamma, x] \mid [A \to \alpha \bullet B \beta', x'] \in q, \quad B \to^{*} C \beta, \quad C \to \gamma \in P, \\ x \in \mathsf{First}_{1}(\beta \beta') \odot_{1} \{x'\} \}$$

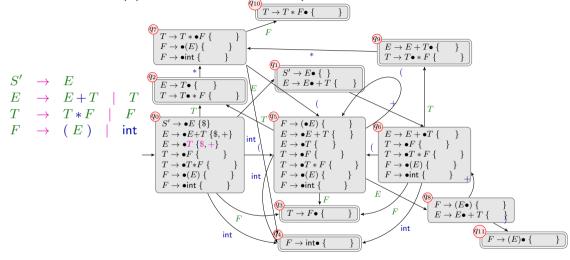
Then, we define:

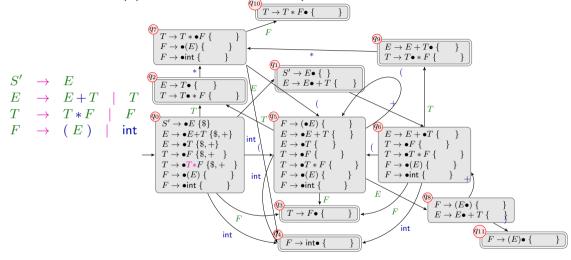
```
States: Sets of LR(1)-items;
Start state: \delta_{\epsilon}^* \{ [S' \to \bullet S, \$] \}
Final states: \{ q \mid [A \to \alpha \bullet, x] \in q \}
```

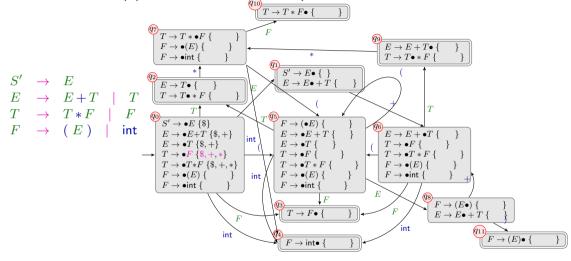
Transitions: $\delta(q,X) = \delta_{\epsilon}^* \left\{ [A \to \alpha \, X \bullet \, \beta, \, x] \mid [A \to \alpha \bullet X \, \beta, \, x] \in q \right\}$

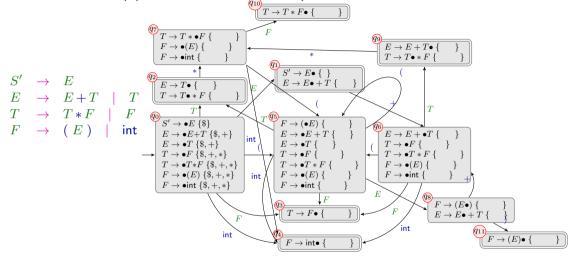


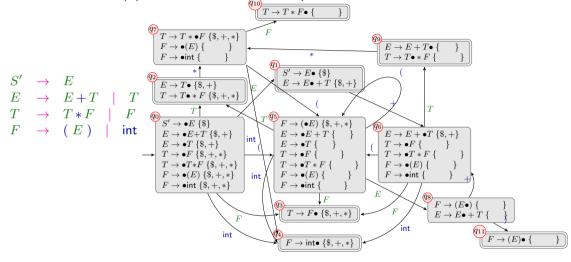


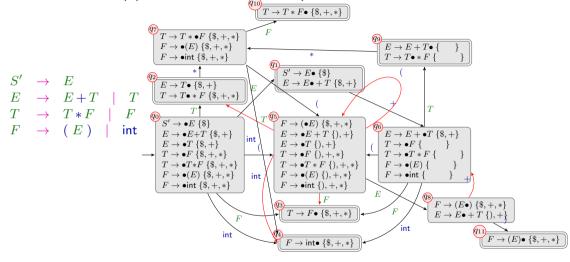


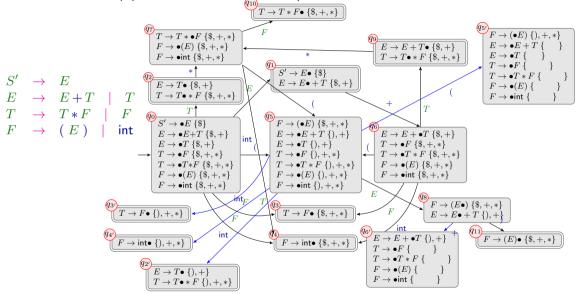


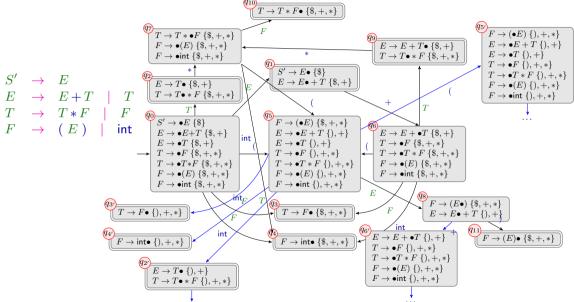












Discussion:

In the example, the number of states was almost doubled

... and it can become even worse

• The conflicts in states q_1, q_2, q_9 are now resolved ! e.g. we have:

with:

$$\{\$,+\} \, \cap \, (\mathsf{First}_1(*\,F) \odot_1 \, \{\$,+,*\}) \, = \, \{\$,+\} \, \cap \, \{*\} = \emptyset$$

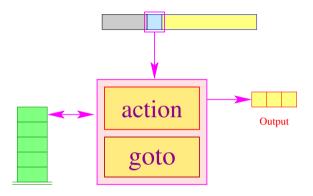
The Action Table:

During practical parsing, we want to represent states just via an integer id. However, when the canonical LR(1)-automaton reaches a final state, we want to know *how to reduce/shift*. Thus we introduce

The construction of the action table:

```
Type: \operatorname{action}: Q \times T \to LR(0)\text{-ltems} \cup \{\mathsf{s},\mathsf{error}\}
\mathsf{Reduce}: \operatorname{action}[q,w] = [A \to \beta \bullet] \qquad \text{if} \qquad [A \to \beta \bullet, w] \in q
\mathsf{Shift}: \operatorname{action}[q,w] = \mathsf{s} \qquad \qquad \mathsf{if} \qquad [A \to \beta \bullet b \, \gamma, a] \in q, \ w \in \mathsf{First}_1(b \, \gamma) \odot_1 \ \{a\}
\mathsf{Error}: \operatorname{action}[q,w] = \mathsf{error} \qquad \qquad \mathsf{else}
```

The LR(1)-Parser:



• The goto-table encodes the transitions:

$$goto[q, X] = \delta(q, X) \in Q$$

ullet The action-table describes for every state q and possible lookahead w the necessary action.

The LR(1)-Parser:

The construction of the LR(1)-parser:

```
States: Q \cup \{f\} (f fresh)
Start state: q_0
Final state: f
 Transitions:
 Shift:
                                  (p, a, pq) if a = w,
                                                        s = action[p, a],
                                                       q = goto[p, a]
                     (p q_1 \dots q_{|\beta|}, \epsilon, p q) if q_{|\beta|} \in F,
 Reduce:
                                                        [A \rightarrow \beta \bullet] = \operatorname{action}[q_{|\beta|}, w],
                                                        q = goto[p, A]
                                 (q_0, p, \epsilon, f) if [S' \to S \bullet, \$] \in p
 Finish:
     with
              LR(G,1) = (Q, T, \delta, q_0, F) and the lookahead w.
```

33/57

The LR(1)-Parser:

Possible actions are:

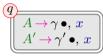
... for example:

action	\$	int	()	+	*
q_1	S', 0			,	S	
q_2	E, 1				E, 1	S
q_2'				E, 1	E, 1	S
q_3	T, 1				T, 1	T, 1
q_3'				T, 1	T, 1	T, 1
q_4	F, 1				F, 1	F, 1
q_4'				F, 1	F, 1	F, 1
q_9	E, 0				$E, {\color{red}0}$	S
q_9^\prime				$E, {\color{red}0}$	$E, {\color{red}0}$	S
q_{10}	T, 0				$T, {\color{red}0}$	$T, {\color{red}0}$
q_{10}'				$T, {\color{red}0}$	$T, {\color{red}0}$	$T, {\color{red}0}$
q_{11}	F, 0				$F, {\color{red}0}$	$F, {\color{red}0}$
q_{11}'				F, 0	F, 0	F, 0

In general:

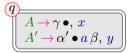
We identify two conflicts for a state $q \in Q$:

Reduce-Reduce-Conflict:



with $A \neq A' \lor \gamma \neq \gamma'$

Shift-Reduce-Conflict:



with $a \in T$ und $x \in \{a\}$.

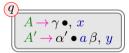
Such states are now called LR(1)-unsuited

In general:

We identify two conflicts for a state $q \in Q$:

Reduce-Reduce-Conflict:

Shift-Reduce-Conflict:



with $a \in T$ und $x \in \{a\} \odot_k \mathsf{First}_k(\beta) \odot_k \{y\}$.

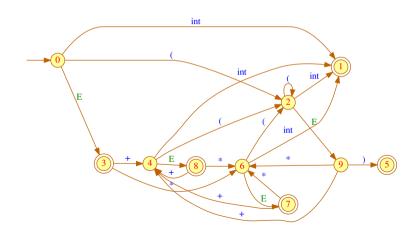
Such states are now called LR(k)-unsuited

Theorem:

A reduced contextfree grammar G is called LR(k) iff the canonical LR(k)-automaton LR(G,k) has no LR(k)-unsuited states.

Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the action table either by hand or with *token precedences*.

... for example:



Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the action table either by hand or with *token precedences*.

... for example:

$$S' \rightarrow E^{0}$$

$$E \rightarrow E + E^{0}$$

$$| E * E^{1}$$

$$| (E)^{2}$$

$$| \text{int}^{3}$$

Shift-/Reduce Conflict in state 8:

$$\begin{array}{ll} [E & \rightarrow & E \bullet + E \stackrel{0}{\circ} \\ [E & \rightarrow & E + E \bullet \stackrel{0}{\circ} \\ < \gamma \, E + E \, , + \, \omega > & \Rightarrow \textit{Associativity} \end{array}$$

action	\$	int	()	+	*
q_0	S', 0				S	S
q_1	E, 3			E, 3	E, 3	E, 3
q_2	S				S	S
q_3	S				S	S
q_4	S			S	S	S
q_5	E, 2			$E, {\color{red} 2}$	$E, {\color{red} 2}$	$E, {\color{red} 2}$
q_6	S			S	S	S
q_7	E, 1			E, 1	?	?
q_8	E, 0			$E, {\color{red}0}$?	?
q_9	S			S	S	S

Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the action table either by hand or with *token precedences*.

... for example:

$$S' \rightarrow E^{0}$$

$$E \rightarrow E + E^{0}$$

$$\mid E * E^{1}$$

$$\mid (E)^{2}$$

$$\mid \text{int}^{3}$$

Shift-/Reduce Conflict in state 8:

$$\begin{bmatrix} E & \rightarrow & E \bullet + E \overset{\mathbf{0}}{\circ} \\ [E & \rightarrow & E + E \bullet \overset{\mathbf{0}}{\circ} \end{bmatrix}$$

$$< \gamma E + E, +\omega > \Rightarrow \text{Associativity}$$

+ left associative

action	\$	int	()	+	*
q_0	S', 0				S	S
q_1	E, 3			E, 3	E, 3	E, 3
q_2	S				S	S
q_3	S				S	S
q_4	S			S	S	S
q_5	E, 2			$E, {\color{red} 2}$	$E, {\color{red} 2}$	$E, {\color{red} 2}$
q_6	S			S	S	S
q_7	E, 1			E, 1	?	?
q_8	E, 0			$E, {\color{red}0}$	$E, {\color{red}0}$?
q_9	S			S	S	S

Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the action table either by hand or with *token precedences*.

... for example:

$$S' \rightarrow E^{0}$$

$$E \rightarrow E + E^{0}$$

$$\mid E * E^{1}$$

$$\mid (E)^{2}$$

$$\mid \text{int}^{3}$$

Shift-/Reduce Conflict in state 7:

$$\begin{bmatrix} E & \rightarrow & E \bullet * E^{1} \\ E & \rightarrow & E * E \bullet^{1} \end{bmatrix}$$

$$\{ \gamma E * E, * \omega > \Rightarrow \text{Associativity}$$

* right associative

action	\$	int	()	+	*
q_0	S', 0				S	S
q_1	E, 3			E, 3	E, 3	E, 3
q_2	S				S	S
q_3	S				S	S
q_4	S			S	S	S
q_5	E, 2			$E, {\color{red} 2}$	$E, {\color{red} 2}$	$E, {\color{red} 2}$
q_6	S			S	S	S
q_7	E, 1			E, 1	?	S
q_8	E, 0			$E, {\color{red}0}$	$E, {\color{red}0}$?
q_9	S			S	S	S

Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the action table either by hand or with *token precedences*.

... for example:

$$S' \rightarrow E^{0}$$

$$E \rightarrow E + E^{0}$$

$$| E * E^{1}$$

$$| (E)^{2}$$

$$| \text{int}^{3}$$

Shift-/Reduce Conflict in states 8, 7:

$$\begin{bmatrix} E & \rightarrow & E \bullet * E^{1} \\ E & \rightarrow & E + E \bullet^{0} \\ < \gamma E * E , + \omega > \\ E & \rightarrow & E \bullet + E^{0} \\ E & \rightarrow & E * E \bullet^{1} \\ < \gamma E + E , * \omega > \end{bmatrix}$$

action	\$	int	()	+	*
q_0	S', 0				S	S
q_1	E, 3			E, 3	E, 3	E, 3
q_2	S				S	S
q_3	S				S	S
q_4	S			S	S	S
q_5	E, 2			$E, {\color{red} 2}$	$E, {\color{red} 2}$	$E, {\color{red} 2}$
q_6	S			S	S	S
q_7	E, 1			E, 1	?	S
q_8	E, 0			$E, {\color{red}0}$	$E, {\color{red}0}$?
q_9	S			S	S	S

Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the action table either by hand or with *token precedences*.

... for example:

$$S' \rightarrow E^{0}$$

$$E \rightarrow E + E^{0}$$

$$\mid E * E^{1}$$

$$\mid (E)^{2}$$

$$\mid \text{int}^{3}$$

Shift-/Reduce Conflict in states 8, 7:

$$\begin{bmatrix} E & \rightarrow & E \bullet * E \overset{1}{} \\ [E & \rightarrow & E + E \bullet \overset{0}{} \\ < \gamma E * E , + \omega > \\ [E & \rightarrow & E \bullet + E \overset{0}{} \\ [E & \rightarrow & E * E \bullet \overset{1}{} \\ < \gamma E + E , * \omega > \end{bmatrix}$$

- * higher precedence
- + lower precedence

action	\$	int	()	+	*
q_0	S', 0				S	S
q_1	E, 3			E, 3	E, 3	E, 3
q_2	S				S	S
q_3	S				S	S
q_{4}	S			S	S	S
q_5	E, 2			$E, {\color{red} 2}$	$E, {\color{red} 2}$	$E, {\color{red} 2}$
q_6	S			S	S	S
q_7	E, 1			E, 1	E, 1	S
q_8	E, 0			$E, {\color{red}0}$	$E, {\color{red}0}$	S
q_9	S			S	S	S

What if precedences are not enough?

Example (very simplified lambda expressions):

```
\begin{array}{ccc} E & \rightarrow & (E)^0 \, | \, \mathsf{ident}^1 \, | \, L^2 \\ L & \rightarrow & \langle \mathsf{args} \rangle \Rightarrow E^0 \\ \langle \mathsf{args} \rangle & \rightarrow & (\langle \mathsf{idlist} \rangle)^0 \, | \, \mathsf{ident}^1 \\ \langle \mathsf{idlist} \rangle & \rightarrow & \langle \mathsf{idlist} \rangle \, \, \mathsf{ident}^0 \, | \, \mathsf{ident}^1 \end{array}
```

Example (very simplified lambda expressions):

```
\begin{array}{ccc} E & \rightarrow & (E\,)^{\,0}\,|\,\mathrm{ident}^1\,|\,L^2 \\ L & \rightarrow & \langle\mathrm{args}\rangle \Rightarrow E^0 \\ \langle\mathrm{args}\rangle & \rightarrow & (\,\langle\mathrm{idlist}\rangle\,)^0\,|\,\mathrm{ident}^1 \\ \langle\mathrm{idlist}\rangle & \rightarrow & \langle\mathrm{idlist}\rangle\,\,\mathrm{ident}^0\,|\,\mathrm{ident}^1 \\ E \,\,\mathrm{rightmost-derives} \,\,\mathrm{these} \,\,\mathrm{forms} \,\,\mathrm{among} \,\,\mathrm{others} \colon
```

```
(\underline{\mathsf{ident}}), (\underline{\mathsf{ident}}) \Rightarrow \mathsf{ident}, \ldots \Rightarrow \mathsf{at} \, \mathsf{least} \, LR(2)
```

Example (very simplified lambda expressions):

```
\begin{array}{ccc} E & \rightarrow & (E)^{\,0} \, | \, \mathsf{ident}^1 \, | \, L^2 \\ L & \rightarrow & \langle \mathsf{args} \rangle \Rightarrow E^0 \\ \langle \mathsf{args} \rangle & \rightarrow & (\langle \mathsf{idlist} \rangle \,)^0 \, | \, \mathsf{ident}^1 \\ \langle \mathsf{idlist} \rangle & \rightarrow & \langle \mathsf{idlist} \rangle \, \, \mathsf{ident}^0 \, | \, \mathsf{ident}^1 \end{array}
```

 ${\it E}$ rightmost-derives these forms among others:

```
(\underline{\mathsf{ident}}), (\underline{\mathsf{ident}}) \Rightarrow \mathsf{ident}, \ldots \Rightarrow \mathsf{at} \, \mathsf{least} \, LR(2)
```

Naive Idea:

poor man's LR(2) by combining the tokens) and \Rightarrow during lexical analysis into a single token) \Rightarrow .

Example (very simplified lambda expressions):

```
\begin{array}{ccc} E & \rightarrow & (E)^{\,0}\,|\, \mathsf{ident}^1\,|\, L^2 \\ L & \rightarrow & \langle \mathsf{args}\rangle \Rightarrow E^0 \\ \langle \mathsf{args}\rangle & \rightarrow & (\langle \mathsf{idlist}\rangle\,)^0\,|\, \mathsf{ident}^1 \\ \langle \mathsf{idlist}\rangle & \rightarrow & \langle \mathsf{idlist}\rangle\,|\, \mathsf{ident}^0\,|\, \mathsf{ident}^1 \end{array}
```

 ${\it E}$ rightmost-derives these forms among others:

```
(\underline{\mathsf{ident}}), (\underline{\mathsf{ident}}) \Rightarrow \mathsf{ident}, \ldots \Rightarrow \mathsf{at} \, \mathsf{least} \, LR(2)
```

Naive Idea:

poor man's LR(2) by combining the tokens) and \Rightarrow during lexical analysis into a single token) \Rightarrow .

⚠ in this case obvious solution, but in general not so simple

In practice, LR(k)-parser generators working with the lookahead sets of sizes larger then k=1 are not common, since computing lookahead sets with k>1 blows up exponentially. However,

- there exist several practical LR(k) grammars of k > 1, e.g. Java 1.6+ (LR(2))
- often, more lookahead is only exhausted locally
- should we really give up, whenever we are confronted with a Shift-/Reduce-Conflict?

In practice, LR(k)-parser generators working with the lookahead sets of sizes larger then k=1 are not common, since computing lookahead sets with k>1 blows up exponentially. However,

- there exist several practical LR(k) grammars of k > 1, e.g. Java 1.6+ (LR(2))
- often, more lookahead is only exhausted locally
- should we really give up, whenever we are confronted with a Shift-/Reduce-Conflict?

Theorem: LR(k)-to-LR(1)

Victor Schneider

Dennis Mickunas

Any LR(k) grammar can be directly transformed into an equivalent LR(1) grammar.

... Example:

$$\begin{array}{ccc} S & \rightarrow & A \, b \, b^0 \, | \, B \, b \, c^1 \\ A & \rightarrow & a \, A^0 \, | \, a^1 \\ B & \rightarrow & a \, B^0 \, | \, a^1 \end{array}$$

... Example:

$$S \rightarrow A b b^{0} | B b c^{1}$$

$$A \rightarrow a A^{0} | a^{1}$$

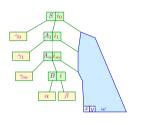
$$B \rightarrow a B^{0} | a^{1}$$

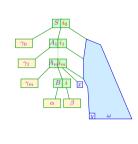
 ${\cal S}$ rightmost-derives one of these forms:

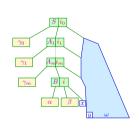
$$a^{n}\underline{a}bb$$
, $a^{n}\underline{a}bc$, $a^{n}\underline{a}\underline{A}bb$, $a^{n}\underline{a}\underline{B}bc$, $\underline{A}bb$, $\underline{B}bc$ \Rightarrow $LR(2)$

in LR(1), you will have Reduce-/Reduce-Conflicts between the productions A, 1 and B, 1 under lookahead b

Basic Idea:



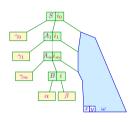


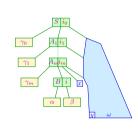


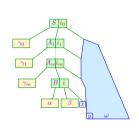
in the example:

$$\begin{array}{ccc} S & \to & A \, b \, b^0 \, | \, B \, b \, c^1 \\ A & \to & a \, A^0 \, | \, a^1 \\ B & \to & a \, B^0 \, | \, a^1 \end{array} =$$

Basic Idea:







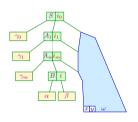
in the example:

$$S \longrightarrow \langle A b \rangle b^{0} | \langle B b \rangle c^{1}$$

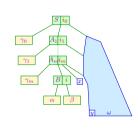
$$\begin{array}{ccc} S & \to & A \, b \, b^0 \, | \, B \, b \, c^1 \\ A & \to & a \, A^0 \, | \, a^1 \\ B & \to & a \, B^0 \, | \, a^1 \end{array}$$

$$\Rightarrow$$

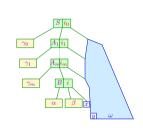
Basic Idea:



. Right-context-extraction



Right-context-propagation



in the example:

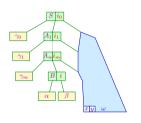
$$S \rightarrow Abb^{0} | Bbc^{1}$$

$$A \rightarrow aA^{0} | a^{1}$$

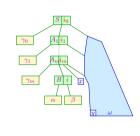
$$B \rightarrow aB^{0} | a^{1}$$

$$S \rightarrow \langle A b \rangle b^{0} | \langle B b \rangle c^{1} \langle A b \rangle \rightarrow a \langle A b \rangle^{0} | a b^{1}$$

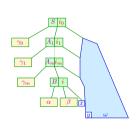
Basic Idea:



. Right-context-extraction



Right-context-propagation



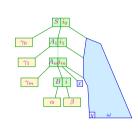
in the example:

$$\begin{array}{ccc} S & \rightarrow & A \, b \, b^{\mathbf{0}} \, | \, B \, b \, c^{\mathbf{1}} \\ A & \rightarrow & a \, A^{\mathbf{0}} \, | \, a^{\mathbf{1}} \\ B & \rightarrow & a \, B^{\mathbf{0}} \, | \, a^{\mathbf{1}} \end{array}$$

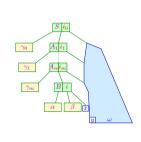
$$S \rightarrow \langle Ab \rangle b^{0} | \langle Bb \rangle c^{1} \langle Ab \rangle \rightarrow a \langle Ab \rangle^{0} | ab^{1} \langle Bb \rangle \rightarrow a \langle Bb \rangle^{0} | ab^{1}$$

Basic Idea:





. Right-context-propagation



in the example:

$$S \rightarrow Abb^{0} | Bbc^{1}$$

$$A \rightarrow aA^{0} | a^{1}$$

$$B \rightarrow aB^{0} | a^{1}$$

$$\Rightarrow$$

$$S \rightarrow \langle Ab \rangle b^{0} | \langle Bb \rangle c^{1}$$

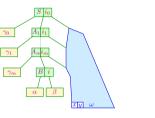
$$\langle Ab \rangle \rightarrow a \langle Ab \rangle^{0} | ab^{1}$$

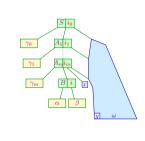
$$\langle Bb \rangle \rightarrow a \langle Bb \rangle^{0} | ab^{1}$$

$$A \rightarrow aA^{0} | a^{1}$$

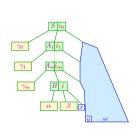
$$B \rightarrow aB^{0} | a^{1}$$

Basic Idea:





Right-context-propagation



in the example:

Right-context is already extracted, so we only perform *Right-context-propagation*:

$$\begin{array}{ccc} S & \to & A \, b \, b^0 \, | \, B \, b \, c^1 \\ A & \to & a \, A^0 \, | \, a^1 \\ B & \to & a \, B^0 \, | \, a^1 \end{array}$$

$$\begin{array}{ccc} S & \rightarrow & \langle A b \rangle \, b^{0} \, | \, \langle B b \rangle \, c^{1} \\ \langle A b \rangle & \rightarrow & a \, \langle A b \rangle^{0} \, | \, a \, b^{1} \\ \langle B b \rangle & \rightarrow & a \, \langle B b \rangle^{0} \, | \, a \, b^{1} \end{array}$$

unreachable

$$\begin{array}{ccc} S & \rightarrow & A' \, b^{\mathbf{0}} \, | \, B' \, c^{\mathbf{1}} \\ A' & \rightarrow & a \, A'^{\mathbf{0}} \, | \, a \, b^{\mathbf{1}} \\ B' & \rightarrow & a \, B'^{\mathbf{0}} \, | \, a \, b^{\mathbf{1}} \end{array}$$

Example cont'd:

$$S \rightarrow A'b^{0} | B'c^{1}$$

$$A' \rightarrow aA'^{0} | ab^{1}$$

$$B' \rightarrow aB'^{0} | ab^{1}$$

S rightmost-derives one of these forms:

$$a^n\underline{a}\,\underline{b}b\;, a^n\underline{a}\,\underline{b}c\;, a^n\underline{a}\,\underline{A'}b\;, a^n\underline{a}\,\underline{B'}c, \underline{A'}b\;, \underline{B'}c\quad \Rightarrow\quad LR(1)$$

Example 2:

```
\begin{array}{ccc}
S & \rightarrow & b S S^{0} \\
& | & a^{1} \\
& | & a a c^{2}
\end{array}
```

Example 2:

$$\begin{array}{ccc}
S & \rightarrow & b S S^{0} \\
& a^{1} \\
& a a c^{2}
\end{array}$$

 ${\it S}$ rightmost-derives these forms among others:

$$\underline{bSS}$$
, \underline{bSa} , \underline{bSaac} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{aac}

in LR(1), you will have (at least) Shift-/Reduce-Conflicts between the items $[S \to a \bullet, a]$ and $[S \to a \bullet ac]$

$$\begin{array}{ccc}
S & \rightarrow & b S S^{0} \\
& | & a^{1} \\
& | & a a c^{2}
\end{array}$$

Example 2:

$$\begin{array}{ccc}
S & \rightarrow & b S S^{0} \\
& a^{1} \\
& a a c^{2}
\end{array}$$

S rightmost-derives these forms among others:

$$\underline{bSS}$$
, \underline{bSa} , \underline{bSa} , \underline{asc} , \underline{baac} , \underline{baaca} , \underline{baaca} , $\underline{baacaac}$, $\underline{baacaac}$, ... \Rightarrow min. $LR(2)$

in LR(1), you will have (at least) Shift-/Reduce-Conflicts between the items $[S \rightarrow a \bullet, a]$ and $[S \rightarrow a \bullet ac]$

Example 2:

$$\begin{array}{ccc}
S & \rightarrow & b S S^{0} \\
& | & a^{1} \\
& | & a a c^{2}
\end{array}$$

S rightmost-derives these forms among others:

$$\underline{bSS}$$
, \underline{bSa} , \underline{bSa} , \underline{asc} , \underline{baac} , \underline{baaca} , \underline{baaca} , $\underline{baacaac}$, $\underline{baacaac}$, ... \Rightarrow min. $LR(2)$

in LR(1), you will have (at least) Shift-/Reduce-Conflicts between the items $[S \rightarrow a \bullet, a]$ and $[S \rightarrow a \bullet ac]$

$$\begin{array}{ccc}
S & \rightarrow & b S S^{0} \\
& | & a^{1} \\
& | & a a c^{2}
\end{array}$$

$$S \rightarrow bS a \langle a/S \rangle^{0} | bS b \langle b/S \rangle^{0'} \\ | a^{1} | a a c^{2} \\ \langle a/S \rangle \rightarrow \epsilon^{0} | a c^{1}$$

Example 2:

$$\begin{array}{ccc}
S & \rightarrow & bSS^{0} \\
& | & a^{1} \\
& | & aac^{2}
\end{array}$$

S rightmost-derives these forms among others:

$$\underline{bSS}$$
, \underline{bSa} , \underline{aSac} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{aac} , \underline{aac} , \underline{aac} , \underline{aac}

in LR(1), you will have (at least) Shift-/Reduce-Conflicts between the items $[S \rightarrow a \bullet, a]$ and $[S \rightarrow a \bullet ac]$

$$\begin{array}{ccc}
S & \rightarrow & b S S^{0} \\
& | & a^{1} \\
& | & a a c^{2}
\end{array}$$

$$S \rightarrow bS a \langle a/S \rangle^{0} | bS b \langle b/S \rangle^{0'}$$

$$| a^{1} | a a c^{2}$$

$$\langle a/S \rangle \rightarrow \epsilon^{0} | a c^{1}$$

$$\langle b/S \rangle \rightarrow SS^{0}$$

Example 2:

$$\begin{array}{ccc}
S & \rightarrow & bSS^{0} \\
& | & a^{1} \\
& | & aac^{2}
\end{array}$$

S rightmost-derives these forms among others:

$$\underline{bSS}$$
, \underline{bSa} , \underline{bSa} , \underline{asc} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{baac} , \underline{asc} ,

in LR(1), you will have (at least) Shift-/Reduce-Conflicts between the items $[S \rightarrow a \bullet, a]$ and $[S \rightarrow a \bullet ac]$

$$\begin{array}{ccc}
S & \rightarrow & b S S^{0} \\
& a^{1} \\
& a a c^{2}
\end{array}
\Rightarrow$$

$$S \rightarrow bSa\langle a/S\rangle^{0} | bSb\langle b/S\rangle^{0'} | a^{1} | aac^{2} \langle a/S\rangle \rightarrow \epsilon^{0} | ac^{1} \langle b/S\rangle \rightarrow Sa\langle a/S\rangle^{0} | Sb\langle b/S\rangle^{0'}$$

Example 2 cont'd:

[S
ightarrow a]'s right context is now terminal $a \Rightarrow \mathsf{perform}\ \textit{Right-context-propagation}$

Example 2 cont'd:

 $[S {
ightarrow} a]$'s right context is now terminal $a \Rightarrow {\sf perform} \ {\it Right-context-propagation}$

$$S \rightarrow bSa\langle a/S\rangle^{0}$$

$$| bSb\langle b/S\rangle^{0'}$$

$$| a^{1}|aac^{2}$$

$$\langle a/S\rangle \rightarrow \epsilon^{0}|ac^{1}$$

$$\langle b/S\rangle \rightarrow Sa\langle a/S\rangle^{0}|Sb\langle b/S\rangle^{0'}$$

Example 2 cont'd:

$$S \rightarrow bSa\langle a/S\rangle^{0} \\ | bSb\langle b/S\rangle^{0'} \\ | a^{1}|aac^{2} \\ \langle a/S\rangle \rightarrow \epsilon^{0}|ac^{1} \\ \langle b/S\rangle \rightarrow Sa\langle a/S\rangle^{0}|Sb\langle b/S\rangle^{0'}$$

$$S \rightarrow b \langle Sa \rangle \langle a/S \rangle^{0}$$

$$| bSb \langle b/S \rangle^{0'}$$

$$| a^{1} | aac^{2}$$

$$\langle a/S \rangle \rightarrow \epsilon^{0} | ac^{1}$$

$$\Rightarrow \langle b/S \rangle \rightarrow \langle Sa \rangle \langle a/S \rangle^{0} | Sb \langle b/S \rangle^{0'}$$

$$\langle Sa \rangle \rightarrow b \langle Sa \rangle \langle \langle a/S \rangle a \rangle^{0}$$

$$| bSb \langle \langle b/S \rangle a \rangle^{0'}$$

$$| aa^{1} | aaca^{2}$$

$$\langle \langle a/S \rangle a \rangle \rightarrow a^{0} | aca^{1}$$

$$\langle \langle b/S \rangle a \rangle \rightarrow \langle Sa \rangle \langle \langle a/S \rangle a \rangle^{0} | Sb \langle \langle b/S \rangle a \rangle^{0'}$$

Example 2 finished:

With fresh nonterminals we get the final grammar

$$\begin{array}{ccc}
S & \rightarrow & b S S^{0} \\
& a^{1} \\
& a a c^{2}
\end{array}
\Rightarrow$$

Syntactic Analysis - Part II

Chapter 2: LR(k)-Parser Design

$$\begin{array}{cccc} S' & \rightarrow & E \\ E & \rightarrow & E + T \\ & \mid & T \\ T & \rightarrow & T * F \\ & \mid & F \\ F & \rightarrow & (E) \\ & \mid & \mathsf{int} \end{array}$$

Parser Actions

For each rule, specify user code to be executed in case of reduction actions.

```
::= E \quad \mathsf{plus} \ T \qquad \{:
:= T \text{ times } F
 ::= Ibrac E
                 rbrac {:
        intconst
```

Parser Actions

For each rule, specify user code to be executed in case of reduction actions.

add code sections delimited with:} to each variant

```
S' ::= E : e  {: RESULT = e; :}
T ::= T:t \text{ times } F:f \quad \{: \text{ RESULT} = \texttt{t} * \texttt{f}; \quad :\} \mid F:f \quad \{: \text{ RESULT} = \texttt{f}; \quad :\}
    ::= | brac E: e | rbrac {: RESULT = e; :} 
| intconst: c | {: RESULT = c; :}
```

Parser Actions

For each rule, specify user code to be executed in case of reduction actions.

- add code sections delimited with {: :} to each variant
- produce results by assigning values to RESULT
- add labels to symbols to refer to former results

```
S' ::= E : e  {: RESULT = e; :}
T ::= T:t \text{ times } F:f  {: RESULT = t * f; :}
| F:f {: RESULT = f; :}
F ::= | brac E : e | rbrac  {: RESULT = e; :} | intconst: c {: RESULT = c; :}
```

Parser Actions

For each rule, specify user code to be executed in case of reduction actions.

- add code sections delimited with {: :} to each variant
- oproduce results by assigning values to RESULT
- add labels to symbols to refer to former results

Implementation Idea: add data stack that

- pushes RESULT after each user action
- translates labeled symbols to offset from top of stack based on the position in the rhs

A Practial Example: Type Definitions in ANSI C

A type definition is a *synonym* for a type expression. In C they are introduced using the **typedef** keyword. Type definitions are useful

as abbreviation:

```
typedef struct { int x; int y; } point_t;
```

to construct recursive types:

```
Possible declaration in C: more readable:
```

```
typedef struct list list_t;
struct list {
   int info;
   struct list* next;
}
struct list* head;
typedef struct list list_t;
struct list {
   int info;
   list_t* next;
}
list_t* head;
```

A Practial Example: Type Definitions in ANSI C

The C grammar distinguishes typename and identifier. Consider the following declarations:

```
typedef struct { int x,y } point_t;
point_t origin;
```

A Practial Example: Type Definitions in ANSI C

The C grammar distinguishes typename and identifier. Consider the following declarations:

```
typedef struct { int x,y } point_t;
point_t origin;
```

Idea: in a *parser action* maintain a shared list between parser and scanner to communicate identifiers to report as typenames

A Practial Example: Type Definitions in ANSI C

The C grammar distinguishes typename and identifier. Consider the following declarations:

```
typedef struct { int x,y } point_t;
point_t origin;
```

Idea: in a *parser action* maintain a shared list between parser and scanner to communicate identifiers to report as typenames
Relevant C grammar:

Problem:

During reduction of the declaration, the scanner eagerly provides a new lookahead token, thus has already interpreted point_t in line 2 as identifier

Solution is difficult:

try to fix the lookahead token class within the scanner-parser-channel

- lacktriangle try to fix the lookahead token class within the scanner-parser-channel lacktriangle a mess
- 2 add a rule to the grammar, to make it context-free:

```
typename \rightarrow identifier
```

- lacktriangle try to fix the lookahead token class within the scanner-parser-channel lacktriangle a mess
- 2 add a rule to the grammar, to make it context-free:

```
typename \quad \rightarrow \quad \text{identifier} Example input: (mytype1) (mytype2);
```

- lacktriangle try to fix the lookahead token class within the scanner-parser-channel lacktriangle a mess
- 2 add a rule to the grammar, to make it context-free:

```
typename \rightarrow identifier \text{ ambiguous} Example input: (mytype1) (mytype2); castexpr \rightarrow (typename) \ castexpr \\ postfixexpr \rightarrow postfixexpr \ (expression)
```

Solution is difficult:

- lacktriangle try to fix the lookahead token class within the scanner-parser-channel lacktriangle a mess
- 2 add a rule to the grammar, to make it context-free:

```
typename \rightarrow identifier \text{ ambiguous} Example input: (mytype1) (mytype2); castexpr \rightarrow (typename) castexpr \\ postfixexpr \rightarrow postfixexpr (expression)
```

register identifier as typename before lookahead is harmful

```
declaration \rightarrow (declarationspecifier)^+ declarator \{: act(); :\};
```

Syntactic Analysis - Part II

Chapter 3:

Summary

Special LR(k)-Subclasses

Discussion:

- Our examples mostly were LR(1) or could be transformed to LR(1)
- In general, the canonical LR(k)-automaton has much more states then LR(G) = LR(G,0)
- Therefore in practice, subclasses of LR(k)-grammars are often considered, which only use LR(G) ...

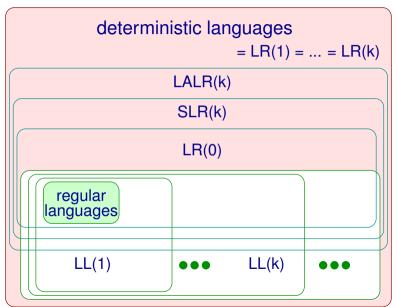
Special LR(k)-Subclasses

Discussion:

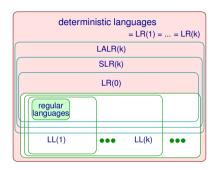
- Our examples mostly were LR(1) or could be transformed to LR(1)
- In general, the canonical LR(k)-automaton has much more states then LR(G) = LR(G,0)
- Therefore in practice, subclasses of LR(k)-grammars are often considered, which only use LR(G) ...
- For resolving conflicts, the items are assigned special lookahead-sets:
 - independently on the state itself
 - dependent on the state itself

 \implies Simple LR(k)LALR(k)

Parsing Methods



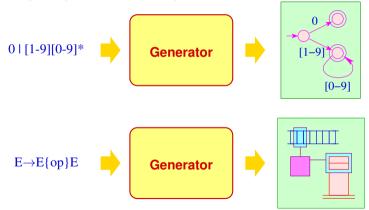
Parsing Methods



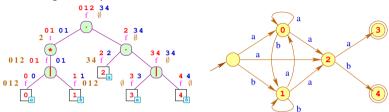
Discussion:

- All contextfree languages, that can be parsed with a deterministic pushdown automaton, can be characterized with an LR(1)-grammar.
- LR(0)-grammars describe all prefixfree deterministic contextfree languages
- The language-classes of LL(k)-grammars form a hierarchy within the deterministic contextfree languages.

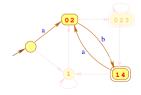
Concept of specification and implementation:

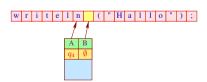


From Regular Expressions to Finite Automata

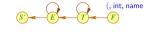


From Finite Automata to Scanners

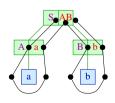


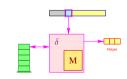


Computation of lookahead sets:

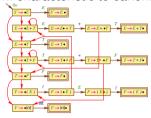


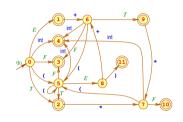
From Item-Pushdown Automata to LL(1)-Parsers:





From characteristic to canonical Automata:





From Shift-Reduce-Parsers to LR(1)-Parsers:

Topic:

Semantic Analysis

Scanner and parser accept programs with correct syntax.

• not all programs that are syntacticallly correct make *sense*

- not all programs that are syntactically correct make sense
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means

- not all programs that are syntactically correct make sense
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables

- not all programs that are syntactically correct make sense
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables
- semantic analyses are also useful to
 - find possibilities to "optimize" the program
 - warn about possibly incorrect programs

- not all programs that are syntactically correct make sense
- the compiler may be able to *recognize* some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables
- semantic analyses are also useful to
 - find possibilities to "optimize" the program
 - warn about possibly incorrect programs
- → a semantic analysis annotates the syntax tree with attributes

Chapter 1:

Attribute Grammars

Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the type of that node (which is usually a non-terminal)
- we call this a *local* computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the type of that node (which is usually a non-terminal)
- we call this a *local* computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

Definition attribute grammar

An attribute grammar is a CFG extended by

- a set of attributes for each non-terminal and terminal
- local attribute equations

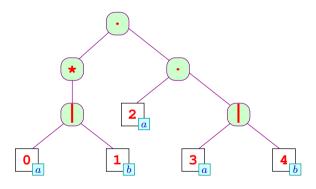
Attribute Grammars

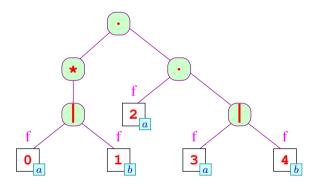
- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the type of that node (which is usually a non-terminal)
- we call this a *local* computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

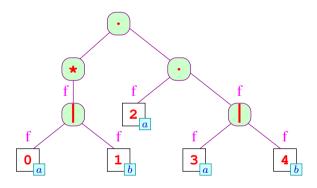
Definition attribute grammar

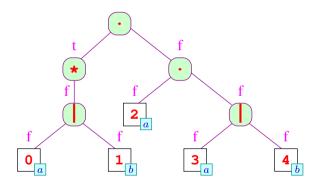
An attribute grammar is a CFG extended by

- a set of attributes for each non-terminal and terminal
- local attribute equations
- in order to be able to evaluate the attribute equations, all attributes mentioned in that equation have to be evaluated already
 - → the nodes of the syntax tree need to be visited in a certain sequence

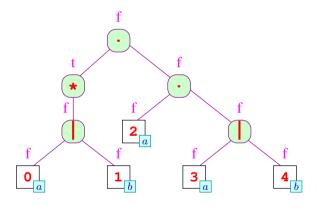








Consider the syntax tree of the regular expression (a|b)*a(a|b):



 \sim equations for $\operatorname{empty}[r]$ are computed from bottom to top (aka bottom-up)

Implementation Strategy

- attach an attribute empty to every node of the syntax tree
- compute the attributes in a depth-first post-order traversal:
 - at a leaf, we can compute the value of empty without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the empty attribute is a *synthesized* attribute

Implementation Strategy

- attach an attribute empty to every node of the syntax tree
- compute the attributes in a depth-first post-order traversal:
 - at a leaf, we can compute the value of empty without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the empty attribute is a synthesized attribute

in general:

Definition

An attribute at N is called

- inherited if its value is defined in terms of attributes of N's parent, siblings and/or N
 itself (root ← leaves)
- ullet synthesized if its value is defined in terms of attributes of N's children and/or N itself (leaves o root)

Example: Attribute Equations for empty

In order to compute an attribute *locally*, specify attribute equations for each node

Example: Attribute Equations for empty

In order to compute an attribute *locally*, specify attribute equations for each node depending on the *type* of the node:

In the Example from earlier, we did that intuitively:

```
for leaves: r\equiv \begin{tabular}{ll} \hline $(r)$ leaves: $r\equiv \begin{tabular}{ll} \hline $(r)$ l
```

Specification of General Attribute Systems

General Attribute Systems

In general, for establishing attribute systems we need a flexible way to *refer to parents and children*:

→ We use consecutive indices to refer to neighbouring attributes

```
{\sf attribute_k[0]}: the attribute of the current root node {\sf attribute_k[i]}: the attribute of the i-th child (i>0)
```

Specification of General Attribute Systems

General Attribute Systems

In general, for establishing attribute systems we need a flexible way to *refer to parents and children*:

→ We use consecutive indices to refer to neighbouring attributes

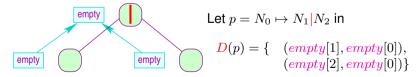
```
\mathsf{attribute_k}[0]: the attribute of the current root node \mathsf{attribute_k}[i]: the attribute of the i-th child (i>0)
```

... the example, now in general formalization:

- the *local* attribute equations need to be evaluated using a *global* algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
- a sequence in which the nodes of the tree are visited
- a sequence within each node in which the equations are evaluated
- this evaluation strategy has to be compatible with the dependencies between attributes

- the local attribute equations need to be evaluated using a global algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
- a sequence in which the nodes of the tree are visited
- a sequence within each node in which the equations are evaluated
- this evaluation strategy has to be compatible with the dependencies between attributes

We visualize the attribute dependencies D(p) of a production p in a *Local Dependency Graph*:



→ arrows point in the direction of information flow

- in order to infer an evaluation strategy, it is not enough to consider the *local* attribute dependencies at each node
- the evaluation strategy must also depend on the *global* dependencies, that is, on the information flow between nodes

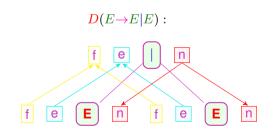
- in order to infer an evaluation strategy, it is not enough to consider the *local* attribute dependencies at each node
- the evaluation strategy must also depend on the *global* dependencies, that is, on the information flow between nodes
- ⚠ the global dependencies change with each particular syntax tree
 - in the example, the parent node is always depending on children only
 → a depth-first post-order traversal is possible
 - in general, variable dependencies can be much *more complex*

Simultaneous Computation of Multiple Attributes

Computing empty, first, next from regular expressions:

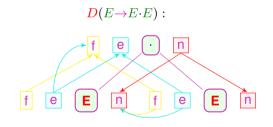
$$S \rightarrow E : \quad \operatorname{empty}[0] := \operatorname{empty}[1] \\ \operatorname{first}[0] := \operatorname{first}[1] \\ \operatorname{next}[1] := \emptyset \quad : \quad \operatorname{empty}[0] := (x \equiv \epsilon) \\ \operatorname{first}[0] := \{x \mid x \neq \epsilon\} \quad : \quad D(E \rightarrow x) : \\ \begin{cases} D(E \rightarrow x) : \\ \hline f & \textbf{e} & \textbf{E} \\ \hline \end{pmatrix} \\ D(S \rightarrow E) : & \textbf{f} & \textbf{e} & \textbf{E} \\ \hline \end{pmatrix} \\ D(S \rightarrow E) = \{ \quad (empty[1], empty[0]), \\ (first[1], first[0]) \} \\ \end{cases}$$

Regular Expressions: Rules for Alternative



$$\begin{split} \textbf{\textit{D}}(E \rightarrow & E|E) = \{ & (empty[1], empty[0]), \\ & (empty[2], empty[0]), \\ & (first[1], first[0]), \\ & (first[2], first[0]), \\ & (next[0], next[2]), \\ & (next[0], next[1]) \} \end{split}$$

Regular Expressions: Rules for Concatenation



```
\begin{array}{l} \textbf{\textit{D}}(E \rightarrow\! E \cdot\! E) = \{ & (empty[1], empty[0]), \\ & (empty[2], empty[0]), \\ & (empty[2], next[1]), \\ & (empty[1], first[0]), \\ & (first[1], first[0]), \\ & (first[2], first[0]), \\ & (first[2], next[1]), \\ & (next[0], next[2]), \\ & (next[0], next[1]) \} \end{array}
```

Regular Expressions: Rules for Kleene-Star and Option

```
E \rightarrow E * 
                  empty[0] := t
                                                                             empty[0] := t
                  first[0] := first[1]
                                                                                 first[0] := first[1]
                   next[1] := first[1] \cup next[0]
                                                                                 next[1] := next[0]
          D(E \rightarrow E*):
                                                                      D(E \rightarrow E?):
  D(E \rightarrow E*) = \{ (first[1], first[0]), \}
                                                              D(E \rightarrow E?) = \{ (first[1], first[0]), (next[0], next[1]) \}
                       (first[1], next[2]),
                                                                                   (next[0], next[1])
                        (next[0], next[1])
```

Challenges for General Attribute Systems

Static evaluation

Is there a static evaluation strategy, which is generally applicable?

- an evaluation strategy can only exist, if for <u>any</u> derivation tree the dependencies between attributes are <u>acyclic</u>
- it is *DEXPTIME*-complete to check for cyclic dependencies [Jazayeri, Odgen, Rounds, 1975]

Challenges for General Attribute Systems

Static evaluation

Is there a static evaluation strategy, which is generally applicable?

- an evaluation strategy can only exist, if for any derivation tree the dependencies between attributes are acyclic
- it is *DEXPTIME*-complete to check for cyclic dependencies [Jazayeri, Odgen, Rounds, 1975]

Ideas

- Let the *User* specify the strategy
- ② Determine the strategy dynamically
- Automate <u>subclasses</u> only

Idea: For all nonterminals X compute a set $\mathcal{R}(X)$ of relations between its attributes, as an *overapproximation of the global dependencies* between root attributes of every production for X.

Describe $\mathcal{R}(X)$ s as sets of relations, similar to D(p) by

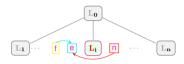
- setting up each production $X \mapsto X_1 \dots X_k$'s effect on the relations of $\mathcal{R}(X)$
- compute effect on all so far accumulated evaluations of each rhs X_i 's $\mathcal{R}(X_i)$
- iterate until stable

The 2-ary operator L[i] re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

The 2-ary operator L[i] re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$



The 2-ary operator L[i] re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (a, b) \mid (a[0], b[0]) \in S \}$$

The 2-ary operator L[i] re-decorates relations from L

$$L[i] = \{ (a[i], b[i]) \mid (a, b) \in L \}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (a, b) \mid (a[0], b[0]) \in S \}$$

The 2-ary operator L[i] re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (\mathbf{a}, \mathbf{b}) \mid (\mathbf{a}[0], \mathbf{b}[0]) \in S \}$$

 $[.]^{\sharp}$... root-projects the transitive closure of relations from the L_i s and D

$$[p]^{\sharp}(L_1,\ldots,L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k])^+)$$

- f e L
- f e L n f e L

The 2-ary operator L[i] re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (\mathbf{a}, \mathbf{b}) \mid (\mathbf{a}[0], \mathbf{b}[0]) \in S \}$$

 $[\![.]\!]^{\sharp}$... root-projects the transitive closure of relations from the L_i s and D

$$[p]^{\sharp}(L_1,\ldots,L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k])^+)$$

The 2-ary operator L[i] re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (\mathbf{a}, \mathbf{b}) \mid (\mathbf{a}[0], \mathbf{b}[0]) \in S \}$$

 $[\![.]\!]^{\sharp}$... root-projects the transitive closure of relations from the L_i s and D

$$[p]^{\sharp}(L_1,\ldots,L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k])^+)$$

The 2-ary operator L[i] re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (\boldsymbol{a}, \boldsymbol{b}) \mid (\boldsymbol{a}[0], \boldsymbol{b}[0]) \in S \}$$

 $[.]^{\sharp}...$ root-projects the transitive closure of relations from the L_i s and D

$$[p]^{\sharp}(L_1,\ldots,L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k])^+)$$

R maps symbols to relations (global attributes dependencies)

$$\mathcal{R}(X) \supseteq (\bigcup \{ \llbracket p \rrbracket^{\sharp} (\mathcal{R}(X_1), \dots, \mathcal{R}(X_k)) \mid p : X \to X_1 \dots X_k \})^+ \mid p \in P$$

$$\mathcal{R}(X) \supseteq \emptyset \quad \mid X \in (N \cup T)$$

The 2-ary operator L[i] re-decorates relations from L

$$L[i] = \{(a[i], b[i]) \mid (a, b) \in L\}$$

 π_0 projects only onto relations between root elements only

$$\pi_0(S) = \{ (\boldsymbol{a}, \boldsymbol{b}) \mid (\boldsymbol{a}[0], \boldsymbol{b}[0]) \in S \}$$

 $[\![.]\!]^{\sharp}$... root-projects the transitive closure of relations from the L_i s and D

$$[p]^{\sharp}(L_1,\ldots,L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k])^+)$$

R maps symbols to relations (global attributes dependencies)

$$\mathcal{R}(X) \supseteq \left(\left| \int \{ [p]^{\sharp}(\mathcal{R}(X_1), \dots, \mathcal{R}(X_k)) \mid p : X \to X_1 \dots X_k \} \right)^+ \mid p \in P$$

$$\mathcal{R}(X) \supseteq \emptyset \quad | X \in (N \cup T)$$

Strongly Acyclic Grammars

The system of inequalities $\mathcal{R}(X)$

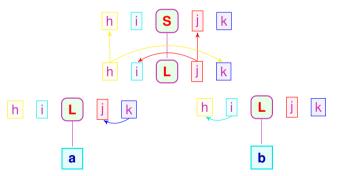
- characterizes the class of strongly acyclic Dependencies
- has a unique least solution $\mathbb{R}^*(X)$ (as [.] \sharp is monotonic)

Strongly Acyclic Grammars

If all $D(p) \cup \mathcal{R}^*(X_1)[1] \cup \ldots \cup \mathcal{R}^*(X_k)[k]$ are acyclic for all $p \in G$, G is strongly acyclic.

Idea: we compute the least solution $\mathcal{R}^*(X)$ of $\mathcal{R}(X)$ by a fixpoint computation, starting from $\mathcal{R}(X) = \emptyset$.

Given grammar $S \rightarrow L$, $L \rightarrow a \mid b$. Dependency graphs D_p :



Start with computing $\mathcal{R}(L) = [\![L \rightarrow a]\!]^{\sharp}() \sqcup [\![L \rightarrow b]\!]^{\sharp}()$:

terminal symbols do not contribute dependencies

Start with computing $\mathcal{R}(L) = [\![L \rightarrow a]\!]^{\sharp}() \sqcup [\![L \rightarrow b]\!]^{\sharp}()$:

- transitive closure of all relations in $(D(L \rightarrow a))^+$ and $(D(L \rightarrow b))^+$

Start with computing $\mathcal{R}(L) = [L \to a]^{\sharp}() \sqcup [L \to b]^{\sharp}()$:

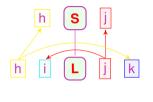
- terminal symbols do not contribute dependencies
- 2 transitive closure of all relations in $(D(L \rightarrow a))^+$ and $(D(L \rightarrow b))^+$
- \odot apply π_0

Start with computing $\mathcal{R}(L) = [\![L \rightarrow a]\!]^{\sharp}() \sqcup [\![L \rightarrow b]\!]^{\sharp}()$:

- h i
- L
- jk

- terminal symbols do not contribute dependencies
- ② transitive closure of all relations in $(D(L \rightarrow a))^+$ and $(D(L \rightarrow b))^+$
- leftilde apply π_0

Continue with $\mathcal{R}(S) = [S \rightarrow L]^{\sharp}(\mathcal{R}(L))$:



lacktriangledown re-decorate and embed $\mathcal{R}(L)[1]$

Continue with $\mathcal{R}(S) = [S \rightarrow L]^{\sharp}(\mathcal{R}(L))$:



- re-decorate and embed $\mathcal{R}(L)[1]$ check for cycles!
- ullet transitive closure of all relations $(D(S \rightarrow L) \cup \{(k[1], j[1])\} \cup \{(i[1], h[1])\})^+$

Continue with $\mathcal{R}(S) = [S \rightarrow L]^{\sharp}(\mathcal{R}(L))$:

h S j

- lacktriangledown re-decorate and embed $\mathcal{R}(L)[1]$
- transitive closure of all relations $(D(S \rightarrow L) \cup \{(k[1], j[1])\} \cup \{(i[1], h[1])\})^+$
- \odot apply π_0

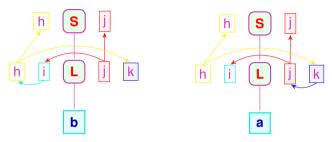
Continue with $\mathcal{R}(S) = [S \rightarrow L]^{\sharp}(\mathcal{R}(L))$:

s s

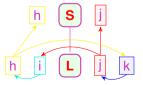
- re-decorate and embed $\mathcal{R}(L)[1]$
- \bullet transitive closure of all relations $(D(S \rightarrow L) \cup \{(k[1], j[1])\} \cup \{(i[1], h[1])\})^+$
- **3** apply π_0

Strong Acyclic and Acyclic

The grammar $S \rightarrow L$, $L \rightarrow a \mid b$ has only two derivation trees which are both *acyclic*:



It is *not strongly acyclic* since the over-approximated global dependence graph for the non-terminal L contributes to a cycle when computing $\mathcal{R}(S)$:



From Dependencies to Evaluation Strategies

Possible strategies:

• let the *user* define the evaluation order

From Dependencies to Evaluation Strategies

Possible strategies:

- let the *user* define the evaluation order
- automatic strategy based on the dependencies

From Dependencies to Evaluation Strategies

Possible strategies:

- let the *user* define the evaluation order
- automatic strategy based on the dependencies
- consider a fixed strategy and only allow an attribute system that can be evaluated using this strategy

Linear Order from Dependency Partial Order

Possible *automatic* strategies:

Linear Order from Dependency Partial Order

Possible *automatic* strategies:

- demand-driven evaluation
 - start with the evaluation of any required attribute
 - if the equation for this attribute relies on as-of-yet unevaluated attributes, evaluate these recursively

Linear Order from Dependency Partial Order

Possible *automatic* strategies:

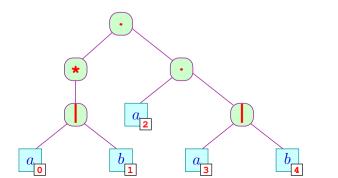
- demand-driven evaluation
 - start with the evaluation of any required attribute
 - if the equation for this attribute relies on as-of-yet unevaluated attributes, evaluate these recursively
- evaluation in passes for each pass, pre-compute a global strategy to visit the nodes together with a local strategy for evaluation within each node type
 - → minimize the number of visits to each node

Example: Demand-Driven Evaluation

Compute next at leaves a_2 , a_3 and b_4 in the expression $(a|b)^*a(a|b)$:

```
\begin{array}{cccc} &: & \mathsf{next}[1] &:= & \mathsf{next}[0] \\ & & \mathsf{next}[2] &:= & \mathsf{next}[0] \end{array}
```

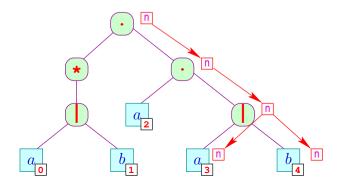
 $\begin{array}{cccc} & : & \mathsf{next}[1] & := & \mathsf{first}[2] \cup (\mathsf{empty}[2]\,?\,\mathsf{next}[0] \colon \emptyset) \\ & & \mathsf{next}[2] & := & \mathsf{next}[0] \end{array}$



Example: Demand-Driven Evaluation

Compute next at leaves a_2 , a_3 and b_4 in the expression $(a|b)^*a(a|b)$:

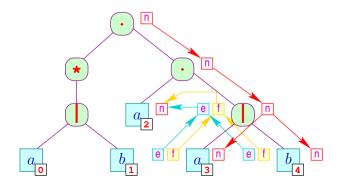
- $\begin{array}{cccc} & & & \mathsf{next}[1] & := & \mathsf{next}[0] \\ & & & & \mathsf{next}[2] & := & \mathsf{next}[0] \end{array}$
- $\begin{array}{ccc} & : & \mathsf{next}[1] & := & \mathsf{first}[2] \cup (\mathsf{empty}[2] \,?\, \mathsf{next}[0] \!:\! \emptyset) \\ & & \mathsf{next}[2] & := & \mathsf{next}[0] \end{array}$



Example: Demand-Driven Evaluation

Compute next at leaves a_2 , a_3 and b_4 in the expression $(a|b)^*a(a|b)$:

- $\begin{array}{c|cccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$
- $\begin{array}{ccc} & : & \mathsf{next}[1] & := & \mathsf{first}[2] \cup (\mathsf{empty}[2] \,?\, \mathsf{next}[0] \!:\! \emptyset) \\ & & \mathsf{next}[2] & := & \mathsf{next}[0] \end{array}$



Demand-Driven Evaluation

Observations

- each node must contain a pointer to its parent
- only required attributes are evaluated
- the evaluation sequence depends in general on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary
- \sim the algorithm is not local

Demand-Driven Evaluation

Observations

- each node must contain a pointer to its parent
- only required attributes are evaluated
- the evaluation sequence depends in general on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary
- → the algorithm is not local

in principle:

- evaluation strategy is dynamic: difficult to debug
- usually all attributes in all nodes are required
- → computation of all attributes is often cheaper

Demand-Driven Evaluation

Observations

- each node must contain a pointer to its parent
- only required attributes are evaluated
- the evaluation sequence depends in general on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary
- → the algorithm is not local

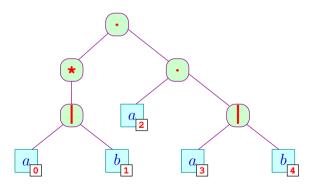
in principle:

- evaluation strategy is dynamic: difficult to debug
- usually all attributes in all nodes are required
- → computation of all attributes is often cheaper
- → perform evaluation in passes

Implementing State

Problem: In many cases some sort of state is required.

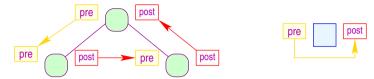
Example: numbering the leafs of a syntax tree



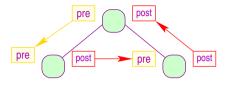
Example: Implementing Numbering of Leafs

Idea:

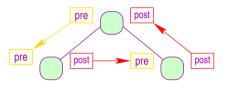
- use helper attributes pre and post
- in pre we pass the value for the first leaf down (inherited attribute)
- in post we pass the value of the last leaf up (synthesized attribute)



• the attribute system is apparently strongly acyclic



- the attribute system is apparently strongly acyclic
- each node computes
 - the inherited attributes before descending into a child node (corresponding to a pre-order traversal)
 - the synthesized attributes after returning from a child node (corresponding to post-order traversal)



- the attribute system is apparently strongly acyclic
- each node computes
 - the inherited attributes before descending into a child node (corresponding to a pre-order traversal)
 - the synthesized attributes after returning from a child node (corresponding to post-order traversal)

Definition L-Attributed Grammars

An attribute system is L-attributed, if for all productions $S \rightarrow S_1 \dots S_n$ every inherited attribute of S_j where $1 \le j \le n$ only depends on

- \bullet the attributes of $S_1, S_2, \dots S_{j-1}$ and
- \bigcirc the inherited attributes of S.

Background:

- ullet the attributes of an L-attributed grammar can be evaluated during parsing
- important if no syntax tree is required or if error messages should be emitted while parsing
- example: pocket calculator

Background:

- the attributes of an L-attributed grammar can be evaluated during parsing
- important if no syntax tree is required or if error messages should be emitted while parsing
- example: pocket calculator

L-attributed grammars have a fixed evaluation strategy:

a single *depth-first* traversal

- in general: partition all attributes into $A = A_1 \cup ... \cup A_n$ such that for all attributes in A_i the attribute system is L-attributed
- ullet perform a depth-first traversal for each attribute set A_i
- ightharpoonup craft attribute system in a way that they can be partitioned into few L-attributed sets

• symbol tables, type checking/inference, and simple code generation can all be specified using *L*-attributed grammars

- symbol tables, type checking/inference, and simple code generation can all be specified using L-attributed grammars
- most applications annotate syntax trees with additional information

- symbol tables, type checking/inference, and simple code generation can all be specified using L-attributed grammars
- most applications annotate syntax trees with additional information
- the nodes in a syntax tree usually have different types that depend on the non-terminal that the node represents

- symbol tables, type checking/inference, and simple code generation can all be specified using L-attributed grammars
- most applications annotate syntax trees with additional information
- the nodes in a syntax tree usually have different types that depend on the non-terminal that the node represents
- the different types of non-terminals are characterized by the set of attributes with which they are decorated

- symbol tables, type checking/inference, and simple code generation can all be specified using L-attributed grammars
- most applications annotate syntax trees with additional information
- the nodes in a syntax tree usually have different types that depend on the non-terminal that the node represents
- the different types of non-terminals are characterized by the set of attributes with which they are decorated

Example: Def-Use Analysis

- a statement may have two attributes containing valid identifiers: one ingoing (inherited) set and one outgoing (synthesised) set
- an expression only has an ingoing set

Implementation of Attribute Systems via a visitor

```
    class with a method for every non-terminal in the grammar

 public abstract class Regex
    public abstract void accept (Visitor v);

    attribute-evaluation works via pre-order / post-order callbacks

 public interface Visitor
    default void pre(OrEx re) {}
    default void pre (AndEx re) {}
    default void post(OrEx re) {}
    default void post(AndEx re){}

    we pre-define a depth-first traversal of the syntax tree

 public class OrEx extends Regex
    Regex l,r;
    public void accept (Visitor v) {
       v.pre(this); l.accept(v); v.inter(this);
       r.accept(v); v.post(this);
```

Example: Leaf Numbering

```
public abstract class AbstractVisitor implements Visitor {
  public void pre (OrEx re) { pr(re); }
  public void pre (AndEx re) { pr(re); }
  ... /* redirecting to default handler for bin exprs */
  public void post(OrEx re) { po(re); }
  public void post (AndEx re) { po(re); }
  abstract void po(BinEx re);
  abstract void in(BinEx re);
  abstract void pr(BinEx re);
public class LeafNum extends AbstractVisitor {
  public Map<Regex, Integer> pre = new HashMap<>();
  public Map<Regex, Integer> post = new HashMap<>();
  public LeafNum (Regex r) { pre .put(r,0); r.accept(this); }
  public void pre(Const r) { post.put(r, pre .get(r)+1); }
  public void pr (BinEx r) { pre .put(r.1, pre .get(r)); }
  public void in (BinEx r) { pre .put(r.r, post.get(r.l)); }
  public void po (BinEx r) { post.put(r, post.get(r.r)); }
```

Semantic Analysis

Chapter 2:

Decl-Use Analysis

Symbol Bindings and Visibility

Consider the following Java code:

```
void foo() {
  int a:
  while(true) {
    double a;
    a = 0.5:
    write(a);
    break;
  a = 2:
  bar();
  write(a);
```

- each declaration of a variable v causes memory allocation for v
- using v requires knowledge about its memory location
 - → determine the declaration v is bound to
- a binding is not visible when a local declaration of the same name is in scope

in the example the declaration of a is shadowed by the *local declaration* in the loop body

Scope of Identifiers

```
void foo() {
  int a;
  while (true)
    double a;
    a = 0.5;
    write(a);
    break;
  a = 2;
  bar();
  write(a);
```

 $\textbf{scope of int} \ \ a$

Scope of Identifiers

```
void foo() {
  int a;
  while (true)
    double a;
    a = 0.5;
    write(a);
    break;
  a = 2;
  bar();
  write(a);
```

scope of double a

Scope of Identifiers

```
void foo() {
  int a;
  while (true)
    double a;
    a = 0.5;
    write(a);
    break;
  a = 2;
  bar();
  write(a);
```

∆ administration of identifiers can be quite complicated...

Observation: each identifier in the AST must be translated into a memory access

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing *rapid* access to its *declaration*

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing *rapid* access to its *declaration*

Ideas:

- rapid access: replace every identifier by a unique integer
 - → integers as keys: comparisons of integers is faster

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing *rapid* access to its *declaration*

Ideas:

- rapid access: replace every identifier by a unique integer
 - → integers as keys: comparisons of integers is faster
- Iink each usage of a variable to the declaration of that variable
 - ightarrow for languages without explicit declarations, create declarations when a variable is first encountered

Rapid Access: Replace Strings with Integers

Idea for Algorithm:

- Input: a sequence of strings
- Output: sequence of numbers
- table that allows to retrieve the string that corresponds to a number

Apply this algorithm on each identifier during *scanning*.

Implementation approach:

- count the number of new-found identifiers in int count
- ullet maintain a *hashtable* $S: \mathbf{String} \to \mathbf{int}$ to remember numbers for known identifiers

We thus define the function:

```
\begin{array}{ll} \mathbf{int} \  \, \mathbf{indexForldentifier}(\mathbf{String} \ w) \  \, \{ \\ \mathbf{if} \  \, (S \ (w) \equiv \mathbf{undefined}) \  \, \{ \\ S = S \oplus \{w \mapsto \mathsf{count}\}; \\ \mathbf{return} \  \, \mathsf{count}++; \\ \} \  \, \mathbf{else} \  \, \mathbf{return} \  \, S \ (w); \\ \} \end{array}
```

Implementation: Hashtables for Strings

- lacktriangle allocate an array M of sufficient size m
- ② choose a *hash function* $H: \mathbf{String} \to [0, m-1]$ with:
 - H(w) is cheap to compute
 - ullet H distributes the occurring words equally over [0,m-1]

Possible generic choices for sequence types ($ec{x} = \langle x_0, \dots x_{r-1} \rangle$):

$$\begin{array}{ll} H_0(\vec{x}) = & (x_0 + x_{r-1}) \, \% \, m \\ H_1(\vec{x}) = & (\sum_{i=0}^{r-1} x_i \cdot p^i) \, \% \, m \\ & = & (x_0 + p \cdot (x_1 + p \cdot (\ldots + p \cdot x_{r-1} \cdot \cdots))) \, \% \, m \\ & \text{for some prime number } p \text{ (e.g. 31)} \end{array}$$

- X The hash value of w may not be unique!
 - \rightarrow Append (w, i) to a linked list located at M[H(w)]
 - Finding the index for w, we compare w with all x for which H(w) = H(x)
- ✓ access on average:

insert: $\mathcal{O}(1)$ lookup: $\mathcal{O}(1)$

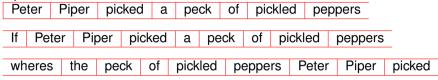
Example: Replacing Strings with Integers

Input:

Peter		Piper		picked		а	peck		of	pic	kle	d per	pers		
lf	If Peter		Pip	Piper		picked		peck		of	pickled		peppe	rs	
wheres		1	the	peck		of pic		led	р	pepper		Peter	Pipe	r	picked

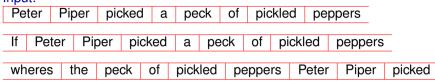
Output:

Example: Replacing Strings with Integers



Output:

Example: Replacing Strings with Integers



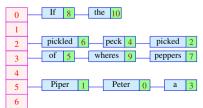
Output:

0	1	2	3	4	5	6	7	8	3	0	1	2	3	4	5	6
	7	9	10	4	. 5	5 (6	7	0	1	2	2				

and

0	Peter
1	Piper
2	picked
3	а
4	peck
5	of

Hashtable with m = 7 and H_0 :



Refer Uses to Declarations: Symbol Tables

Check for the correct usage of variables:

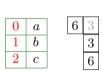
- Traverse the syntax tree in a suitable sequence, such that
 - each declaration is visited before its use
 - the currently visible declaration is the last one visited
 - → perfect for an L-attributed grammar
 - equation system for basic block must add and remove identifiers
- for each identifier, we manage a *stack* of declarations
- if we visit a *declaration*, we push it onto the stack of its identifier
- upon leaving the scope, we remove it from the stack
- if we visit a *usage* of an identifier, we pick the top-most declaration from its stack
- if the stack of the identifier is empty, we have found an undeclared identifier

```
void f()
  int a, b;
   b = 5;
  if (b>3) {
 int a, c;
   a = 3;
   c = a + 1;
  b = c;
  } else {
10
   int c;
   c = a + 1;
12
    b = c;
   b = a + b;
```



```
void f()
   int a, b;
   b = 5;
   if (b>3) {
                                          a
   int a, c;
                                          \overline{b}
    a = 3;
   c = a + 1;
   b = c;
  } else {
10
    int c;
    c = a + 1;
12
      b = c;
    b = a + b;
```

```
void f()
   int a, b;
   b = 5;
   if (b>3) {
    int a, c;
    a = 3; \Leftarrow
   c = a + 1;
   b = c;
  } else {
10
    int c;
    c = a + 1;
12
      b = c;
    b = a + b;
```



```
void f()
  int a, b;
   b = 5;
  if (b>3) {
                                        a
 int a, c;
                                        b
   a = 3;
   c = a + 1;
   b = c;
  } else {
10
    int c;
    c = a + 1; \Leftarrow
12
     b = c;
    b = a + b;
```

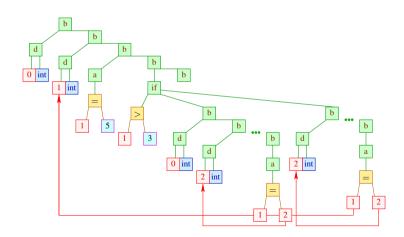
```
void f()
   int a, b;
   b = 5;
5 if (b>3) {
                                          a
  int a, c;
                                          \overline{b}
   a = 3;
   c = a + 1;
   b = c;
  } else {
10
    int c;
    c = a + 1;
12
      b = c;
    b = a + b; \Leftarrow
```

```
void f()
3 int a, b;
  b = 5;
5 if (b>3) {
6 int a, c;
   a = 3;
  c = a + 1;
  b = c;
 } else {
10
   int c;
   c = a + 1;
12
   b = c;
  b = a + b;
```

```
d declaration
   void f()
                                   b basic block
                                   a assignment
      int a, b;
     b = 5;
      if (b>3)
        int a, c;
        a = 3;
                             0 int
                                                      b
        c = a + 1;
                                  1 int
        b = c;
        else
10
        int c;
                                     1
                                         5
11
                                                3
                                                                    b
        c = a + 1;
12
        b = c;
13
                                                                       2 int
14
      b = a + b;
```

```
void f()
     int a, b;
     b = 5;
     if (b>3) {
     int a, c;
       a = 3;
       c = a + 1;
       b = c;
       else {
10
       int c;
       c = a + 1;
12
       b = c;
13
14
     b = a + b;
```

d declarationb basic blocka assignment



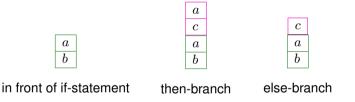
 when using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient

in front of if-statement

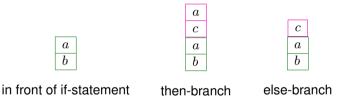
 when using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient

in front of if-statement then-branch

 when using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient



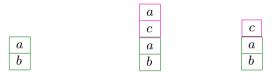
 when using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient



instead of lists of symbols, it is possible to use a list of hash tables

 → more efficient in large, shallow programs

 when using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient



- in front of if-statement then-branch else-branch
- instead of lists of symbols, it is possible to use a list of hash tables → more efficient in large, shallow programs
- an even more elegant solution: persistent trees (updates return fresh trees with references to the old tree where possible)
- \rightarrow a persistent tree t can be passed down into a basic block where new elements may be added, yielding a t'; after examining the basic block, the analysis proceeds with the unchanged old t

Semantic Analysis

Chapter 3:

Type Checking

Goal of Type Checking

In most mainstream (imperative / object oriented / functional) programming languages, variables and functions have a fixed type.

```
for example: int, void*, struct { int x; int y; }.
```

Goal of Type Checking

In most mainstream (imperative / object oriented / functional) programming languages, variables and functions have a fixed type.

```
for example: int, void*, struct { int x; int y; }.
```

Types are useful to

- manage memory
- select correct assembler instructions
- to avoid certain run-time errors

Goal of Type Checking

In most mainstream (imperative / object oriented / functional) programming languages, variables and functions have a fixed type.

```
for example: int, void*, struct { int x; int y; }.
```

Types are useful to

- manage memory
- select correct assembler instructions
- to avoid certain run-time errors

In imperative and object-oriented programming languages a declaration has to specify a type. The compiler then checks for a type correct use of the declared entity.

Type Expressions

Types are given using type-expressions.

The set of type expressions T contains:

- base types: int, char, float, void, ...
- type constructors that can be applied to other types

Type Expressions

```
The set of type expressions T contains:
base types: int, char, float, void, ...
type constructors that can be applied to other types
example for type constructors in C:
 • structures: struct { t_1 a_1 : ... t_k a_k: }
 pointers: t *
 arrays: t []

    the size of an array can be specified

    • the variable to be declared is written between t and [n]
 • functions: t(t_1,\ldots,t_k)
    • the variable to be declared is written between t and (t_1, \ldots, t_k)
    • in ML function types are written as: t_1 * ... * t_k \rightarrow t
```

Types are given using type-expressions.

Type Checking

Problem:

Given: A set of type declarations $\Gamma = \{t_1 \ x_1; \dots t_m \ x_m; \}$

Check: Can an expression e be given the type t?

Type Checking

Problem:

```
Given: A set of type declarations \Gamma = \{t_1 \ x_1; \dots t_m \ x_m; \} Check: Can an expression e be given the type t?
```

Example:

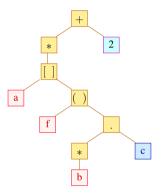
```
struct list { int info; struct list* next; };
int f(struct list* l) { return 1; };
struct { struct list* c;}* b;
int* a[11];
```

Consider the expression:

```
*a[f(b->c)]+2;
```

Type Checking using the Syntax Tree

Check the expression *a[f(b->c)]+2:



Idea:

- traverse the syntax tree bottom-up
- ullet for each identifier, we lookup its type in Γ
- ullet constants such as 2 or 0.5 have a fixed type
- the types of the inner nodes of the tree are deduced using typing rules

Type Systems for C-like Languages

Formally: consider *judgements* of the form:

```
\Gamma \vdash e : t
```

// (in the type environment Γ the expression e has type t)

Axioms:

$$\begin{array}{lll} \text{Const:} & \Gamma \vdash c : t_c & (t_c & \text{type of constant } c) \\ \text{Var:} & \Gamma \vdash x : \Gamma(x) & (x & \text{Variable}) \end{array}$$

Rules:

Ref:
$$\frac{\Gamma \vdash e : t}{\Gamma \vdash \& e : t*}$$
 Deref: $\frac{\Gamma \vdash e : t*}{\Gamma \vdash *e : t}$

Type Systems for C-like Languages

More rules for typing an expression:

Array:
$$\frac{\Gamma \vdash e_1 : t * \Gamma \vdash e_2 : \mathbf{int}}{\Gamma \vdash e_1[e_2] : t}$$
 Array:
$$\frac{\Gamma \vdash e_1 : t[] \quad \Gamma \vdash e_2 : \mathbf{int}}{\Gamma \vdash e_1[e_2] : t}$$
 Struct:
$$\frac{\Gamma \vdash e : \mathbf{struct} \left\{ t_1 \ a_1; \dots t_m \ a_m; \right\}}{\Gamma \vdash e : a_i : t_i}$$
 App:
$$\frac{\Gamma \vdash e : t \left(t_1, \dots, t_m \right) \quad \Gamma \vdash e_1 : t_1 \quad \dots \quad \Gamma \vdash e_m : t_m}{\Gamma \vdash e(e_1, \dots, e_m) : t}$$
 Op \square :
$$\frac{\Gamma \vdash e_1 : t \quad \Gamma \vdash e_2 : t}{\Gamma \vdash e_1 \square e_2 : t}$$
 Cop $=$:
$$\frac{\Gamma \vdash e_1 : t_1 \quad \Gamma \vdash e_2 : t_2 \quad t_2 \text{ can be converted to } t_1}{\Gamma \vdash e_1 = e_2 : t_1}$$
 Explicit Cast:
$$\frac{\Gamma \vdash e : t_2 \quad t_2 \text{ can be converted to } t_1}{\Gamma \vdash (t_1) \ e : t_1}$$

Type Systems for C-like Languages

More rules for typing an expression: with subtyping relation ≤

Array:
$$\frac{\Gamma \vdash e_1 : t * \Gamma \vdash e_2 : \mathbf{int}}{\Gamma \vdash e_1[e_2] : t}$$
 Array:
$$\frac{\Gamma \vdash e_1 : t [] \quad \Gamma \vdash e_2 : \mathbf{int}}{\Gamma \vdash e_1[e_2] : t}$$
 Struct:
$$\frac{\Gamma \vdash e : \mathbf{struct} \left\{ t_1 \ a_1; \dots t_m \ a_m; \right\}}{\Gamma \vdash e \cdot a_i : t_i}$$
 App:
$$\frac{\Gamma \vdash e : t \left(t_1, \dots, t_m \right) \quad \Gamma \vdash e_1 : t_1 \quad \dots \quad \Gamma \vdash e_m : t_m}{\Gamma \vdash e \left(e_1, \dots, e_m \right) : t}$$
 Op \square :
$$\frac{\Gamma \vdash e_1 : t_1 \quad \Gamma \vdash e_2 : t_2}{\Gamma \vdash e_1 \square e_2 : t_1 \sqcup t_2}$$
 Op $=$:
$$\frac{\Gamma \vdash e_1 : t_1 \quad \Gamma \vdash e_2 : t_2 \quad t_2 \leq t_1}{\Gamma \vdash e_1 = e_2 : t_1}$$
 Explicit Cast:
$$\frac{\Gamma \vdash e : t_2 \quad t_2 \leq t_1}{\Gamma \vdash (t_1) e : t_1}$$

Example: Type Checking

```
Given expression *a[f(b->c)]+2 and \Gamma = \{
struct list { int info; struct list* next; };
int f(struct list* 1);
struct { struct list* c;}* b;
int* a[11];
```



```
\Gamma = \{
    struct list \{ int info; struct list* next; \};
    int f(struct list* 1);
    struct \{ struct list* c; \}* b;
    int* a[11];
}
```

```
\mathsf{OP} \ \frac{\mathsf{DEREF} \ \frac{\Gamma \vdash a[f(b \to c)] :}{\Gamma \vdash *a[f(b \to c)] : t} \quad \mathsf{Const} \ \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}
```

```
\Gamma = \{
    struct list \{ int info; struct list* next; \};
    int f(struct list* 1);
    struct \{ struct list* c; \}* b;
    int* a[11];
}
```

```
\mathsf{ARRAY} \xrightarrow{\mathsf{VAR}} \frac{\mathsf{VAR}}{\Gamma \vdash a:} \xrightarrow{\mathsf{APP}} \frac{\mathsf{VAR}}{\frac{\Gamma \vdash f: \_(t)}{\Gamma \vdash f: \_(t)}} \frac{\Gamma \vdash (*b).c: t}{\Gamma \vdash a[f(b \to c)]:}
```

$$\mathsf{OP} \ \frac{\mathsf{DEREF} \ \frac{\Gamma \vdash a[f(b \to c)] :}{\Gamma \vdash *a[f(b \to c)] : t} \quad \mathsf{Const} \ \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}$$

```
Γ = {
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

$$\mathsf{ARRAY} \xrightarrow{\mathsf{VAR}} \frac{\mathsf{VAR}}{\frac{\Gamma \vdash a:}{\Gamma \vdash a:}} \xrightarrow{\mathsf{APP}} \frac{\frac{\mathsf{VAR}}{\Gamma \vdash f: _(t)} \qquad \qquad \Gamma \vdash (*b).c:t}{\Gamma \vdash a[f(b \to c)]:}$$

$$\mathsf{OP} \ \frac{\mathsf{DEREF} \ \frac{\Gamma \vdash a[f(b \to c)] :}{\Gamma \vdash *a[f(b \to c)] : t} \quad \mathsf{Const} \ \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}$$

```
Γ = {
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

$$\texttt{STRUCT} \ \frac{\mathsf{DEREF}}{\frac{\Gamma \vdash b : \mathsf{struct}\{\mathsf{struct} \ \mathsf{list} \ ^*\mathsf{c};\}*}{\Gamma \vdash *b :}}{\frac{\Gamma \vdash *b :}{\Gamma \vdash (*b).c :}}$$

$$\operatorname{ARRAY} \frac{\operatorname{Var} \frac{}{\Gamma \vdash a:} \qquad \operatorname{APP} \frac{\operatorname{Var} \frac{}{\Gamma \vdash f: _(t)} \qquad \Gamma \vdash (*b).c:t}{\Gamma \vdash a[f(b \to c)]:}}{\Gamma \vdash a[f(b \to c)]:}$$

$$\mathsf{OP} \frac{\mathsf{DEREF} \; \frac{\Gamma \vdash a[f(b \to c)] :}{\Gamma \vdash *a[f(b \to c)] : t} \quad \mathsf{Const} \; \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}$$

```
\Gamma = \{
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

```
\mathsf{STRUCT} \frac{\mathsf{DEREF}}{\frac{\Gamma \vdash b : \mathsf{struct}\{\mathsf{struct} \ \mathsf{list} \ ^*\mathbf{c};\}_*}{\Gamma \vdash *b : \mathsf{struct}\{\mathsf{struct} \ \mathsf{list} \ ^*\mathbf{c};\}_*}}{\Gamma \vdash (*b).c :}
```

$$\mathsf{ARRAY} \xrightarrow{\mathsf{VAR}} \frac{\mathsf{VAR}}{\Gamma \vdash a:} \xrightarrow{\mathsf{APP}} \frac{\mathsf{VAR}}{\Gamma \vdash f: _(t)} \frac{\Gamma \vdash (*b).c:t}{\Gamma \vdash f(b \to c): \mathsf{int}} \\ \frac{\Gamma \vdash a[f(b \to c)]:}{\Gamma \vdash a[f(b \to c)]:}$$

$$\mathsf{OP} \frac{\mathsf{DEREF} \; \frac{\Gamma \vdash a[f(b \to c)] :}{\Gamma \vdash *a[f(b \to c)] : t} \quad \mathsf{Const} \; \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}$$

```
T = {
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

$$\mathsf{STRUCT} \frac{\mathsf{DEREF}}{\frac{\mathsf{VAR}}{\Gamma \vdash b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\!c;\}^*}{\Gamma \vdash *b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\!c;\}^*}}{\Gamma \vdash (*b).c : \mathsf{struct}\ \mathsf{list}*}$$

$$\mathsf{ARRAY} \xrightarrow{\mathsf{VAR}} \frac{\mathsf{VAR}}{\Gamma \vdash a:} \xrightarrow{\mathsf{APP}} \frac{\mathsf{VAR}}{\Gamma \vdash f: _(\mathsf{struct} \ \mathsf{list}*)} \xrightarrow{\Gamma \vdash f(b \to c) : \mathsf{int}} \frac{\Gamma \vdash a[f(b \to c)] :}{\Gamma \vdash a[f(b \to c)] :}$$

$$\mathsf{OP} \frac{\mathsf{DEREF} \; \frac{\Gamma \vdash a[f(b \to c)] :}{\Gamma \vdash *a[f(b \to c)] : t} \quad \mathsf{Const} \; \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}$$

```
\Gamma = \{
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

$$\mathsf{STRUCT} \frac{\mathsf{DEREF}}{\frac{\mathsf{VAR}}{\Gamma \vdash b : \mathsf{struct}\{\mathsf{struct} \ \mathsf{list} \ ^*\mathbf{c};\}^*}{\Gamma \vdash *b : \mathsf{struct}\{\mathsf{struct} \ \mathsf{list} \ ^*\mathbf{c};\}}}{\Gamma \vdash (*b).c : \mathsf{struct} \ \mathsf{list} *}$$

$$\mathsf{ARRAY} \xrightarrow{\mathsf{VAR}} \frac{\mathsf{VAR}}{\Gamma \vdash a:} \xrightarrow{\mathsf{APP}} \frac{\mathsf{VAR}}{\frac{\Gamma \vdash f : \mathsf{int}(\mathsf{struct} \, \mathsf{list}^*) \checkmark}{\Gamma \vdash f(b \to c) : \mathsf{int} \, \checkmark}} \xrightarrow{\Gamma \vdash a[f(b \to c)] :}$$

$$\mathsf{OP} \frac{\mathsf{DEREF} \; \frac{\Gamma \vdash a[f(b \to c)] :}{\Gamma \vdash *a[f(b \to c)] : t} \quad \mathsf{Const} \; \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}$$

```
\Gamma = \{
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

$$\mathsf{STRUCT} \frac{\mathsf{DEREF}}{\frac{\mathsf{VAR}}{\Gamma \vdash b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\!c;\}^*}{\Gamma \vdash *b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\!c;\}^*}}{\Gamma \vdash (*b).c : \mathsf{struct}\ \mathsf{list}*}$$

$$\mathsf{ARRAY} \frac{\mathsf{VAR} \; \frac{\mathsf{VAR} \; \overline{\Gamma \vdash a : \mathsf{int*}[]}}{\Gamma \vdash a : \mathsf{int*}[]} \quad \mathsf{APP} \; \frac{\mathsf{VAR} \; \overline{\Gamma \vdash f : \mathsf{int}(\mathsf{struct} \, \mathsf{list*}) \, \checkmark} \quad \Gamma \vdash (*b).c : \; \mathsf{struct} \, \mathsf{list*}}{\Gamma \vdash a[f(b \to c)] :}$$

$$\mathsf{OP} \frac{\mathsf{DEREF} \; \frac{\Gamma \vdash a[f(b \to c)] :}{\Gamma \vdash *a[f(b \to c)] : t} \quad \mathsf{Const} \; \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}$$

```
\Gamma = \{
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

$$\mathsf{STRUCT} \frac{\mathsf{DEREF}}{\frac{\mathsf{VAR}}{\Gamma \vdash b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\!c;\}^*}{\Gamma \vdash *b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\!c;\}^*}}{\Gamma \vdash (*b).c : \mathsf{struct}\ \mathsf{list}*}$$

$$\mathsf{ARRAY} \frac{\mathsf{VAR} \; \frac{\mathsf{VAR} \; \overline{\Gamma \vdash a : \mathsf{int*}[]} \; \; \; \mathsf{APP} \; \frac{\mathsf{VAR} \; \overline{\Gamma \vdash f : \mathsf{int}(\mathsf{struct} \, \mathsf{list*}) \, \checkmark \quad \; \Gamma \vdash (*b).c : \; \mathsf{struct} \, \mathsf{list*}}{\Gamma \vdash a[f(b \to c)] : \mathsf{int*}} } \\ \frac{\mathsf{VAR} \; \overline{\Gamma \vdash a : \mathsf{int*}[]} \; \; \; \mathsf{APP} \; \frac{\mathsf{VAR} \; \overline{\Gamma \vdash f : \mathsf{int}(\mathsf{struct} \, \mathsf{list*}) \, \checkmark} \; \; \; \Gamma \vdash (*b).c : \; \mathsf{struct} \, \mathsf{list*}}{\Gamma \vdash a[f(b \to c)] : \mathsf{int*}}$$

$$\mathsf{OP} \frac{\mathsf{DEREF} \; \frac{\Gamma \vdash a[f(b \to c)] : \mathsf{int*}}{\Gamma \vdash *a[f(b \to c)] : t} \quad \mathsf{Const} \; \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}$$

```
\Gamma = \{
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

$$\mathsf{STRUCT} \frac{\mathsf{DEREF}}{\frac{\mathsf{VAR}}{\Gamma \vdash b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\mathsf{c};\}^*}}{\Gamma \vdash *b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\mathsf{c};\}^*}}{\Gamma \vdash (*b).c : \mathsf{struct}\ \mathsf{list}*}$$

$$\mathsf{ARRAY} \frac{\mathsf{VAR} \; \frac{\mathsf{VAR} \; \frac{\mathsf{VAR} \; \overline{\Gamma \vdash f : \mathsf{int}(\mathsf{struct} \, \mathsf{list}^*) \, \checkmark}{\Gamma \vdash f : \mathsf{int}(\mathsf{struct} \, \mathsf{list}^*) \, \checkmark} \quad \Gamma \vdash (*b).c : \; \mathsf{struct} \, \mathsf{list}^*}{\Gamma \vdash a[f(b \to c)] : \mathsf{int} \, \checkmark}}$$

$$\mathsf{OP} \frac{\mathsf{DEREF} \; \frac{\Gamma \vdash a[f(b \to c)] : \mathsf{int} *}{\Gamma \vdash *a[f(b \to c)] : \mathsf{int}} \; \; \mathsf{Const} \; \frac{}{\Gamma \vdash 2 : t}}{\Gamma \vdash *a[f(b \to c)] + 2 : t}$$

```
\Gamma = \{
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

$$\mathsf{STRUCT} \frac{\mathsf{DEREF}}{\frac{\mathsf{VAR}}{\Gamma \vdash b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\mathbf{c};\}^*}}{\Gamma \vdash *b : \mathsf{struct}\{\mathsf{struct}\ \mathsf{list}\ ^*\mathbf{c};\}}}{\Gamma \vdash (*b).c : \mathsf{struct}\ \mathsf{list}*}$$

$$\mathsf{ARRAY} \frac{\mathsf{VAR} \; \frac{\mathsf{VAR} \; \overline{\Gamma \vdash a : \mathsf{int*}[]} \quad \mathsf{APP} \; \frac{\mathsf{VAR} \; \overline{\Gamma \vdash f : \mathsf{int}(\mathsf{struct} \, \mathsf{list*}) \, \checkmark \quad \Gamma \vdash (*b).c : \; \mathsf{struct} \, \mathsf{list*}}{\Gamma \vdash f(b \to c) : \mathsf{int} \, \checkmark}}{\Gamma \vdash a[f(b \to c)] : \mathsf{int*}}$$

$$\mathsf{OP} \ \frac{\mathsf{DEREF} \ \frac{\Gamma \vdash a[f(b \to c)] : \mathsf{int} *}{\Gamma \vdash *a[f(b \to c)] : \mathsf{int}} \quad \mathsf{Const} \ \frac{\Gamma \vdash 2 : \mathsf{int} \checkmark}{\Gamma \vdash 2 : \mathsf{int} \checkmark}}{\Gamma \vdash *a[f(b \to c)] + 2 : \mathsf{int}}$$

```
r = {
    struct list { int info; struct list* next; };
    int f(struct list* 1);
    struct { struct list* c;}* b;
    int* a[11];
}
```

```
\mathsf{STRUCT} \frac{\mathsf{DEREF}}{\frac{\mathsf{VAR}}{\Gamma \vdash b : \mathsf{struct}\{\mathsf{struct} \ \mathsf{list} \ ^*\mathbf{c};\}^*}{\Gamma \vdash *b : \mathsf{struct}\{\mathsf{struct} \ \mathsf{list} \ ^*\mathbf{c};\}}}{\Gamma \vdash (*b).c : \mathsf{struct} \ \mathsf{list} *}
```

$$\mathsf{ARRAY} \xrightarrow{\mathsf{VAR}} \frac{\mathsf{VAR}}{\Gamma \vdash a : \mathsf{int*}[]} \xrightarrow{\mathsf{APP}} \frac{\mathsf{VAR}}{\Gamma \vdash f : \mathsf{int}(\mathsf{struct} \, \mathsf{list*}) \checkmark} \xrightarrow{\Gamma \vdash (*b).c : \; \mathsf{struct} \, \mathsf{list*}}}{\Gamma \vdash a[f(b \to c)] : \mathsf{int} \checkmark}$$

$$\mathsf{OP} \ \frac{\mathsf{DEREF} \ \frac{\Gamma \vdash a[f(b \to c)] : \mathsf{int} *}{\Gamma \vdash *a[f(b \to c)] : \mathsf{int}} \quad \mathsf{Const} \ \frac{\Gamma \vdash 2 : \mathsf{int} \checkmark}{\Gamma \vdash 2 : \mathsf{int} \checkmark}}{\Gamma \vdash *a[f(b \to c)] + 2 : \mathsf{int}}$$

Equality of Types =

Summary of Type Checking

- Choosing which rule to apply at an AST node is determined by the type of the child nodes
- determining the rule requires a check for → equality of types

type equality in C:

- struct A {} and struct B {} are considered to be different
 - → the compiler could re-order the fields of A and B independently (not allowed in C)
 - to extend an record A with more fields, it has to be embedded into another record:

```
struct B {
    struct A;
    int field_of_B;
} extension_of_A;
```

after issuing typedef int C; the types C and int are the same

Structural Type Equality

Alternative interpretation of type equality (*does not hold in C*):

semantically, two types t_1, t_2 can be considered as *equal* if they accept the same set of access paths.

but the two declarations of 1 have unequal types in C.

Algorithm for Testing Structural Equality

Idea:

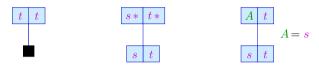
- track a set of equivalence queries of type expressions
- if two types are syntactically equal, we stop and report success
- otherwise, reduce the equivalence query to a several equivalence queries on (hopefully) simpler type expressions

Suppose that recursive types were introduced using type definitions:

typedef A t

(we omit the Γ). Then define the following rules:

Rules for Well-Typedness

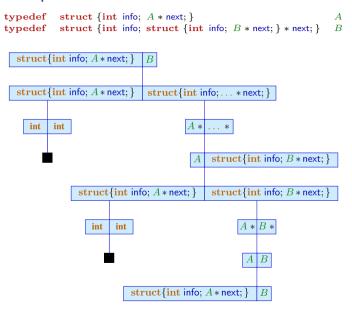


Example:

```
struct {int info; A * next; } = B
```

We construct the following deduction tree:

Proof for the Example:



Implementation

We implement a function that implements the equivalence query for two types by applying the deduction rules:

- if no deduction rule applies, then the two types are not equal
- if the deduction rule for expanding a type definition applies, the function is called recursively with a potentially larger type
- in case an equivalence query appears a second time, the types are equal by definition

Implementation

We implement a function that implements the equivalence query for two types by applying the deduction rules:

- if no deduction rule applies, then the two types are not equal
- if the deduction rule for expanding a type definition applies, the function is called recursively with a potentially larger type
- in case an equivalence query appears a second time, the types are equal by definition

Termination

- the set D of all declared types is finite
- there are no more than $|D|^2$ different equivalence queries
- repeated queries for the same inputs are automatically satisfied
- → termination is ensured.

On the arithmetic basic types char, int, long, etc. there exists a rich subtype hierarchy

Subtypes

- $t_1 \le t_2$, means that the values of type t_1
- form a subset of the values of type t_2 ;
- ② can be converted into a value of type t_2 ;
- ① fulfill the requirements of type t_2 ;
- \bullet are assignable to variables of type t2.

On the arithmetic basic types char, int, long, etc. there exists a rich subtype hierarchy

Subtypes

- $t_1 \le t_2$, means that the values of type t_1
- form a subset of the values of type t_2 ;
- ② can be converted into a value of type t_2 ;
- fulfill the requirements of type t₂;
- \bigcirc are assignable to variables of type t2.

Example:

assign smaller type (fewer values) to larger type (more values)

```
t_1 \quad x;
t_2 \quad y;
y = x;
```

On the arithmetic basic types char, int, long, etc. there exists a rich subtype hierarchy

Subtypes

- $t_1 \leq t_2$, means that the values of type t_1
- form a subset of the values of type t_2 ;
- ② can be converted into a value of type t_2 ;
- fulfill the requirements of type t₂;
- \bigcirc are assignable to variables of type t2.

Example:

assign smaller type (fewer values) to larger type (more values)

```
t_1 \quad x;
t_2 \quad y;
y = x;
t_1 \le t_2
```

On the arithmetic basic types char, int, long, etc. there exists a rich subtype hierarchy

Subtypes $t_1 \le t_2$, means that the values of type t_1 of form a subset of the values of type t_2 ; can be converted into a value of type t_2 ; fulfill the requirements of type t_2 ;

Example:

assign smaller type (fewer values) to larger type (more values)

 \bigcirc are assignable to variables of type t2.

```
\begin{aligned} & \text{int } x; \\ & \text{double } y; \\ & y = x; \\ & \text{int } \leq \text{double} \end{aligned}
```

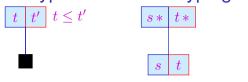
Example: Subtyping

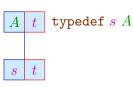
Extending the subtype relationship to more complex types, observe:

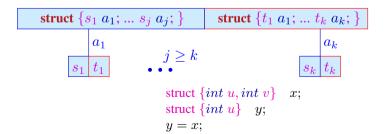
```
string extractInfo( struct { string info; } x) {
  return x.info;
}
```

- we want extractInfo to be applicable to all argument structures that return a string typed field for accessor info
- the idea of subtyping on values is related to subclasses
- we use deduction rules to describe when $t_1 \leq t_2$ should hold. . .

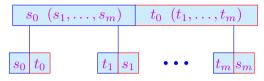
Rules for Well-Typedness of Subtyping







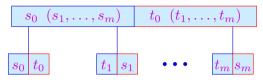
Rules and Examples for Subtyping



Examples:

```
\begin{array}{ll} \text{struct } \{\text{int } a; \text{ int } b; \} & \text{struct } \{\text{float } a; \} \\ \text{int } (\text{int}) & \text{float } (\text{float}) \\ \text{int } (\text{float}) & \text{float } (\text{int}) \end{array}
```

Rules and Examples for Subtyping



Examples:

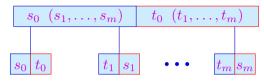
```
\begin{array}{lll} \text{struct } \{\text{int } a; \text{ int } b; \} & \text{struct } \{\text{float } a; \} \\ \text{int } (\text{int}) & \text{float } (\text{float}) \\ \text{int } (\text{float}) & \text{float } (\text{int}) \end{array}
```

Definition

Given two function types in subtype relation $s_0(s_1, \ldots s_n) \le t_0(t_1, \ldots t_n)$ then we have

- co-variance of the return type $s_0 \le t_0$ and
- contra-variance of the arguments $s_i \ge t_i$ für $1 < i \le n$

Rules and Examples for Subtyping



Examples:

```
\begin{array}{lll} \mathbf{struct} \left\{ \mathbf{int} \ a; \ \mathbf{int} \ b; \right\} & \leq & \mathbf{struct} \left\{ \mathbf{float} \ a; \right\} \\ \mathbf{int} \ (\mathbf{int}) & \not \leq & \mathbf{float} \ (\mathbf{float}) \\ \mathbf{int} \ (\mathbf{float}) & \leq & \mathbf{float} \ (\mathbf{int}) \end{array}
```

Definition

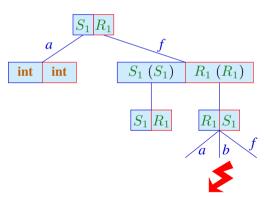
Given two function types in subtype relation $s_0(s_1, \ldots s_n) \le t_0(t_1, \ldots t_n)$ then we have

- co-variance of the return type $s_0 \le t_0$ and
- contra-variance of the arguments $s_i \ge t_i$ für $1 < i \le n$

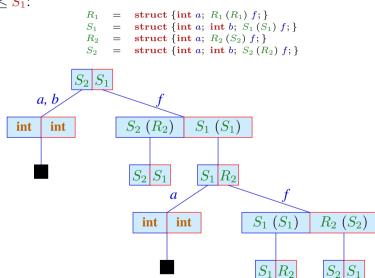
Subtypes: Application of Rules (I)

Check if $S_1 \leq R_1$:

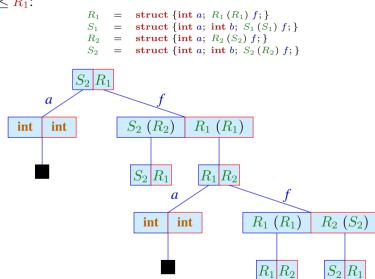
```
\begin{array}{rcl} R_1 & = & \textbf{struct} \left\{ \textbf{int} \ a; \ R_1 \left( R_1 \right) f; \right\} \\ S_1 & = & \textbf{struct} \left\{ \textbf{int} \ a; \ \textbf{int} \ b; \ S_1 \left( S_1 \right) f; \right\} \\ R_2 & = & \textbf{struct} \left\{ \textbf{int} \ a; \ R_2 \left( S_2 \right) f; \right\} \\ S_2 & = & \textbf{struct} \left\{ \textbf{int} \ a; \ \textbf{int} \ b; \ S_2 \left( R_2 \right) f; \right\} \end{array}
```



Subtypes: Application of Rules (II) Check if $S_2 \leq S_1$:



Subtypes: Application of Rules (III) Check if $S_2 \leq R_1$:



Discussion

- for presentational purposes, proof trees are often abbreviated by omitting deductions within the tree
- structural sub-types are very powerful and can be quite intricate to understand
- Java generalizes structs to objects/classes where a sub-class A inheriting form base class O is a subtype $A \leq O$
- subtype relations between classes must be explicitly declared

Topic:

Code Synthesis

Generating Code: Overview

We inductively generate instructions from the AST:

- there is a rule stating how to generate code for each non-terminal of the grammar
- the code is merely another attribute in the syntax tree
- code generation makes use of the already computed attributes

Generating Code: Overview

We inductively generate instructions from the AST:

- there is a rule stating how to generate code for each non-terminal of the grammar
- the code is merely another attribute in the syntax tree
- code generation makes use of the already computed attributes

In order to specify the code generation, we require

- a semantics of the language we are compiling (here: C standard)
- a semantics of the machine instructions

Generating Code: Overview

We inductively generate instructions from the AST:

- there is a rule stating how to generate code for each non-terminal of the grammar
- the code is merely another attribute in the syntax tree
- code generation makes use of the already computed attributes

In order to specify the code generation, we require

- a semantics of the language we are compiling (here: C standard)
- a semantics of the machine instructions
- ightharpoonup we commence by specifying machine instruction semantics

Code Synthesis

Chapter 1:

The Register C-Machine

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine. The Register C-Machine is a virtual machine (VM).

- there exists no processor that can execute its instructions
- ... but we can build an interpreter for it
- we provide a visualization environment for the R-CMa
- the R-CMa has no double, float, char, short or long types
- the R-CMa has no instructions to communicate with the operating system
- the R-CMa has an unlimited supply of registers

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.

The Register C-Machine is a virtual machine (VM).

- there exists no processor that can execute its instructions
- ... but we can build an interpreter for it
- we provide a visualization environment for the R-CMa
- the R-CMa has no double, float, char, short or long types
- the R-CMa has no instructions to communicate with the operating system
- the R-CMa has an unlimited supply of registers

The R-CMa is more realistic than it may seem:

- the mentioned restrictions can easily be lifted
- the *Dalvik VM/ART* or the *LLVM* are similar to the R-CMa
- an interpreter of R-CMa can run on any platform

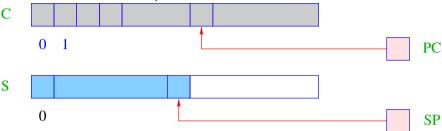
Virtual Machines

A virtual machine has the following ingredients:

- any virtual machine provides a set of instructions
- instructions are executed on virtual hardware
- the virtual hardware is a collection of data structures that is accessed and modified by the VM instructions
- ... and also by other components of the run-time system, namely functions that go beyond the instruction semantics
- the interpreter is part of the run-time system

Components of a Virtual Machine

Consider Java as an example:

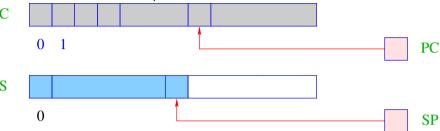


A virtual machine such as the Dalvik VM has the following structure:

- S: the data store a memory region in which cells can be stored in LIFO order → stack.
- beyond S follows the memory containing the heap

Components of a Virtual Machine

Consider Java as an example:



A virtual machine such as the Dalvik VM has the following structure:

- S: the data store a memory region in which cells can be stored in LIFO order → stack.
- SP: (≘ stack pointer) pointer to the last used cell in S
- beyond S follows the memory containing the heap
- C is the memory storing code
 - each cell of C holds exactly one virtual instruction
 - C can only be read
- PC (\hat{\text{program counter}}) address of the instruction that is to be executed next
- PC contains 0 initially

Executing a Program

- the machine loads an instruction from C[PC] into the instruction register IR in order to execute it
- before evaluating the instruction, the PC is incremented by one

```
while (true) {
   IR = C[PC]; PC++;
   execute (IR);
}
```

- node: the PC must be incremented before the execution, since an instruction may modify the PC
- the loop is exited by evaluating a halt instruction that returns directly to the operating system

Code Synthesis

Chapter 2:

Generating Code for the Register C-Machine

Simple Expressions and Assignments in R-CMa

Task: evaluate the expression (1+7)*3 that is, generate an instruction sequence that

- computes the value of the expression and
- keeps its value accessible in a reproducable way

Simple Expressions and Assignments in R-CMa

Task: evaluate the expression (1+7)*3 that is, generate an instruction sequence that

- computes the value of the expression and
- keeps its value accessible in a reproducable way

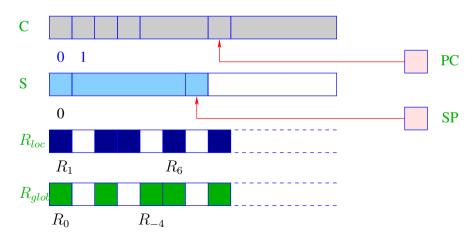
Idea:

- first compute the value of the sub-expressions
- store the intermediate result in a temporary register
- apply the operator
- loop

Principles of the R-CMa

The R-CMa is composed of a stack, heap and a code segment, just like the JVM; it additionally has register sets:

- *local* registers are $R_1, R_2, \ldots R_i, \ldots$
- *global* register are $R_0, R_{-1}, \dots R_j, \dots$



The two register sets have the following purpose:

- the *local* registers R_i
 - save temporary results
 - store the contents of local variables of a function
 - can efficiently be stored and restored from the stack

The two register sets have the following purpose:

- the *local* registers R_i
 - save temporary results
 - store the contents of local variables of a function
 - can efficiently be stored and restored from the stack
- ② the *global* registers R_i
 - save the parameters of a function
 - store the result of a function

The two register sets have the following purpose:

- the *local* registers R_i
 - save temporary results
 - store the contents of local variables of a function
 - can efficiently be stored and restored from the stack
- \bigcirc the *global* registers R_i
 - save the parameters of a function
 - store the result of a function

Note:

for now, we only use registers to store temporary computations

The two register sets have the following purpose:

- the *local* registers R_i
 - save temporary results
 - store the contents of local variables of a function
 - can efficiently be stored and restored from the stack
- \bigcirc the *global* registers R_i
 - save the parameters of a function
 - store the result of a function

Note:

for now, we only use registers to store temporary computations

Idea for the translation: use a register counter i:

- registers R_j with j < i are in use
- registers R_j with $j \ge i$ are available

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction	semantics	intuition
loadc R_i c	$R_i = c$	load constant
move $R_i R_j$	$R_i = R_j$	copy R_j to R

Translation of Simple Expressions

Using variables stored in registers; loading constants:

```
\begin{array}{ll} \text{instruction} & \text{semantics} & \text{intuition} \\ \text{loadc } R_i \ c & R_i = c & \text{load constant} \\ \text{move } R_i \ R_j & R_i = R_j & \text{copy } R_j \text{ to } R_i \end{array}
```

We define the following translation schema (with $\rho x = a$):

```
\operatorname{code}_{\mathrm{R}}^{i} c \rho = \operatorname{loadc} R_{i} c
\operatorname{code}_{\mathrm{R}}^{i} x \rho = \operatorname{move} R_{i} R_{a}
\operatorname{code}_{\mathrm{R}}^{i} x = e \rho = \operatorname{code}_{\mathrm{R}}^{i} e \rho
\operatorname{move} R_{a} R_{i}
```

Translation of Expressions

Let op = $\{add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or\}$. The R-CMa provides an instruction for each operator op.

op
$$R_i R_j R_k$$

where R_i is the target register, R_i the first and R_k the second argument.

Correspondingly, we generate code as follows:

$$\begin{array}{lll} \operatorname{code}_{\mathrm{R}}^{i} \ e_{1} \ \mathsf{op} \ e_{2} \ \rho & = & \operatorname{code}_{\mathrm{R}}^{i} \ e_{1} \ \rho \\ & \operatorname{code}_{\mathrm{R}}^{i+1} \ e_{2} \ \rho \\ & \operatorname{op} \ R_{i} \ R_{i} \ R_{i+1} \end{array}$$

Translation of Expressions

Let op = $\{add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or\}$. The R-CMa provides an instruction for each operator op.

op
$$R_i R_j R_k$$

where R_i is the target register, R_j the first and R_k the second argument.

Correspondingly, we generate code as follows:

$$\begin{array}{rcl} \operatorname{code}_{\mathbf{R}}^{i} \ e_{1} \ \mathsf{op} \ e_{2} \ \rho & = & \operatorname{code}_{\mathbf{R}}^{i} \ e_{1} \ \rho \\ & & \operatorname{code}_{\mathbf{R}}^{i+1} \ e_{2} \ \rho \\ & & & \operatorname{op} \ R_{i} \ R_{i+1} \end{array}$$

Example: Translate 3 * 4 with i = 4:

Translation of Expressions

Let op = $\{add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or\}$. The R-CMa provides an instruction for each operator op.

op
$$R_i R_j R_k$$

where R_i is the target register, R_j the first and R_k the second argument.

Correspondingly, we generate code as follows:

$$\begin{array}{rcl} \operatorname{code}_{\mathbf{R}}^{i} \ e_{1} \ \mathsf{op} \ e_{2} \ \rho &=& \operatorname{code}_{\mathbf{R}}^{i} \ e_{1} \ \rho \\ && \operatorname{code}_{\mathbf{R}}^{i+1} \ e_{2} \ \rho \\ && \operatorname{op} \ R_{i} \ R_{i+1} \end{array}$$

Example: Translate 3 * 4 with i = 4:

$$\operatorname{code}_{R}^{4} 3 * 4 \rho = \operatorname{loadc}_{R_{4}} 3$$

 $\operatorname{loadc}_{R_{5}} 4$
 $\operatorname{mul}_{R_{4}} R_{4} R_{5}$

Managing Temporary Registers

Observe that temporary registers are re-used: translate 3*4+3*4 with t=4:

$$\operatorname{code}_{R}^{4} \ 3*4+3*4 \ \rho = \operatorname{code}_{R}^{4} \ 3*4 \ \rho$$
$$\operatorname{code}_{R}^{5} \ 3*4 \ \rho$$
$$\operatorname{add} R_{4} R_{4} R_{5}$$

where

$$code_{R}^{i} 3*4 \rho = loadc R_{i} 3$$

$$loadc R_{i+1} 4$$

$$mul R_{i} R_{i} R_{i+1}$$

we obtain

$$code_{R}^{4} 3*4+3*4 \rho =$$

Managing Temporary Registers

Observe that temporary registers are re-used: translate 3 * 4 + 3 * 4 with t = 4:

$$\operatorname{code}_{R}^{4} \ 3*4+3*4 \ \rho = \operatorname{code}_{R}^{4} \ 3*4 \ \rho$$
$$\operatorname{code}_{R}^{5} \ 3*4 \ \rho$$
$$\operatorname{add} R_{4} R_{4} R_{5}$$

where

$$code_{R}^{i} 3*4 \rho = loadc R_{i} 3$$

$$loadc R_{i+1} 4$$

$$mul R_{i} R_{i} R_{i+1}$$

we obtain

$$\operatorname{code}_{\mathbf{R}}^{4} \ 3*4+3*4 \ \rho = \operatorname{loadc} \ R_{4} \ 3$$
 $\operatorname{loadc} \ R_{5} \ 4$
 $\operatorname{mul} \ R_{4} \ R_{4} \ R_{5}$
 $\operatorname{loadc} \ R_{6} \ 4$
 $\operatorname{mul} \ R_{5} \ R_{5} \ R_{6}$
 $\operatorname{add} \ R_{4} \ R_{4} \ R_{5}$

Semantics of Operators

The operators have the following semantics:

```
add R_i R_j R_k R_i = R_j + R_k
\operatorname{sub} R_i R_i R_k \qquad R_i = R_i - R_k
\operatorname{div} R_i R_j R_k \qquad R_i = R_j / R_k
\operatorname{mul} R_i R_j R_k \qquad R_i = R_j * R_k
\operatorname{mod} R_i R_i R_k \qquad R_i = \operatorname{signum}(R_k) \cdot k \text{ with}
                                |R_i| = n \cdot |R_k| + k \wedge n \geq 0, 0 \leq k < |R_k|
le R_i R_j R_k R_i = \text{if } R_i < R_k \text{ then } 1 \text{ else } 0
\operatorname{gr} R_i R_j R_k R_i = \operatorname{if} R_i > R_k \operatorname{then} 1 \operatorname{else} 0
eq R_i R_j R_k   R_i = \text{if } R_j = R_k \text{ then } 1 \text{ else } 0
\operatorname{leq} R_i \stackrel{\circ}{R_i} R_k R_i = \operatorname{if} \stackrel{\circ}{R_i} \leq R_k \operatorname{then} 1 \operatorname{else} 0
\operatorname{geq} R_i R_j R_k R_i = \operatorname{if} R_j > R_k \operatorname{then} 1 \operatorname{else} 0
and R_i R_j R_k R_i = R_j \& R_k // bit-wise and
or R_i R_j R_k R_i = R_j | R_k // bit-wise or
```

Semantics of Operators

The operators have the following semantics:

```
add R_i R_j R_k R_i = R_j + R_k
\operatorname{sub} R_i R_i R_k \qquad R_i = R_i - R_k
\operatorname{div} R_i R_j R_k \qquad R_i = R_j / R_k
\operatorname{mul} R_i R_j R_k \qquad R_i = R_j * R_k
\operatorname{mod} R_i R_i R_k \qquad R_i = \operatorname{signum}(R_k) \cdot k \text{ with}
                              |R_i| = n \cdot |R_k| + k \wedge n > 0, 0 < k < |R_k|
le R_i R_j R_k   R_i = \text{if } R_j < R_k \text{ then } 1 \text{ else } 0
\operatorname{gr} R_i R_j R_k R_i = \operatorname{if} R_j > R_k \operatorname{then} 1 \operatorname{else} 0
eq R_i R_j R_k   R_i = \text{if } R_j = R_k \text{ then } 1 \text{ else } 0
\operatorname{leq} R_i \stackrel{\circ}{R_j} R_k R_i = \operatorname{if} R_j \leq R_k \text{ then } 1 \text{ else } 0
\operatorname{geq} R_i R_j R_k R_i = \operatorname{if} R_j > R_k \operatorname{then} 1 \operatorname{else} 0
and R_i R_j R_k R_i = R_j \& R_k // bit-wise and
or R_i R_j R_k R_i = R_j | R_k // bit-wise or
```

Note: all registers and memory cells contain operands in \mathbb{Z}

Unary operators op = $\{neg, not\}$ take only two registers:

$$\operatorname{code}_{\mathbf{R}}^{i} \operatorname{op} e \rho = \operatorname{code}_{\mathbf{R}}^{i} e \rho$$

$$\operatorname{op} R_{i} R_{i}$$

Unary operators op = $\{neg, not\}$ take only two registers:

$$\operatorname{code}_{R}^{i} \operatorname{op} e \rho = \operatorname{code}_{R}^{i} e \rho$$

$$\operatorname{op} R_{i} R_{i}$$

Note: We use the same register.

Unary operators op = $\{neg, not\}$ take only two registers:

$$\operatorname{code}_{R}^{i} \operatorname{op} e \rho = \operatorname{code}_{R}^{i} e \rho$$

$$\operatorname{op} R_{i} R_{i}$$

Note: We use the same register.

Example: Translate -4 into R_5 :

$$\operatorname{code_{R}^{5}} - 4 \rho = \operatorname{code_{R}^{5}} 4 \rho$$

$$\operatorname{neg} R_{5} R_{5}$$

Unary operators op = $\{neg, not\}$ take only two registers:

$$\operatorname{code}_{R}^{i} \operatorname{op} e \rho = \operatorname{code}_{R}^{i} e \rho$$

$$\operatorname{op} R_{i} R_{i}$$

Note: We use the same register.

Example: Translate -4 into R_5 :

$$\operatorname{code}_{R}^{5} - 4 \rho = \operatorname{loadc}_{R_{5}} 4$$

$$\operatorname{neg}_{R_{5}} R_{5}$$

Unary operators op = $\{neg, not\}$ take only two registers:

$$\operatorname{code}_{R}^{i} \operatorname{op} e \rho = \operatorname{code}_{R}^{i} e \rho$$

$$\operatorname{op} R_{i} R_{i}$$

Note: We use the same register.

Example: Translate -4 into R_5 :

$$\operatorname{code}_{R}^{5} - 4 \rho = \operatorname{loadc} R_{5} 4$$

$$\operatorname{neg} R_{5} R_{5}$$

The operators have the following semantics:

$$\begin{array}{ll} \text{not } R_i \; R_j & \quad R_i \leftarrow \text{if } R_j = 0 \text{ then } 1 \text{ else } 0 \\ \text{neg } R_i \; R_j & \quad R_i \leftarrow -R_j \end{array}$$

void f(void) { is given:

- int x, y, z; x = v+z*3:
- Let $\rho = \{x \mapsto 1, y \mapsto 2, z \mapsto 3\}$ be the address environment.
- Let R_4 be the first free register, that is, i=4.

$$\operatorname{code}^{4} x = y + z * 3 \rho = \operatorname{code}_{R}^{4} y + z * 3 \rho$$

$$\operatorname{move} R_{1} R_{4}$$

- Let $\rho = \{x \mapsto 1, y \mapsto 2, z \mapsto 3\}$ be the address environment.
- Let R_4 be the first free register, that is, i = 4.

```
\operatorname{code}^4 x = y + z * 3 \rho = \operatorname{code}_R^4 y + z * 3 \rho
\operatorname{move} R_1 R_4
\operatorname{code}_R^4 y + z * 3 \rho = \operatorname{move} R_4 R_2
\operatorname{code}_R^5 z * 3 \rho
\operatorname{add} R_4 R_4 R_5
```

- Let $\rho = \{x \mapsto 1, y \mapsto 2, z \mapsto 3\}$ be the address environment.
- Let R_4 be the first free register, that is, i = 4.

Suppose the following function void f(void) { is given: void f(void) f(voi

- Let $\rho = \{x \mapsto 1, y \mapsto 2, z \mapsto 3\}$ be the address environment.
- Let R_4 be the first free register, that is, i = 4.

```
\operatorname{code}^4 x = y + z * 3 \rho = \operatorname{code}_R^4 y + z * 3 \rho
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 move R_1 R_4
                                             \operatorname{code}_{R}^{4} \text{ y+z+3 } \rho = \operatorname{move} R_{4} R_{2}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \operatorname{code}_{P}^{5} z * 3 \rho
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    add R_4 R_4 R_5
                                                                                                \operatorname{code}_{R}^{5} z * 3 \rho = \operatorname{move} R_{5} R_{3}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              code_{P}^{6} 3 \rho
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \operatorname{mul} R_5 R_5 R_6
                                                                                                                                                 \operatorname{code}_{\mathsf{P}}^{6} = \operatorname{loadc} R_{6} =
```

- Let $\rho = \{x \mapsto 1, y \mapsto 2, z \mapsto 3\}$ be the address environment.
- Let R_4 be the first free register, that is, i = 4.

 \rightarrow the assignment x=y+z*3 is translated as

move R_4 R_2 ; move R_5 R_3 ; loadc R_6 3; mul R_5 R_5 R_6 ; add R_4 R_4 R_5 ; move R_1 R_4

Code Synthesis

Chapter 3:

Statements and Control Structures

General idea for translation: $\operatorname{code}^i s \rho$: generate code for statement s

 $\operatorname{code}_{\mathrm{R}}^{i} e \
ho$: generate code for expression e into R_{i}

Throughout: $i, i+1, \ldots$ are free (unused) registers

General idea for translation: $\operatorname{code}^i s \rho$: generate code for statement s

 $\operatorname{code}^i_{\mathrm{R}} e \
ho$: generate code for expression e into R_i

Throughout: $i, i + 1, \ldots$ are free (unused) registers

For an *expression* x = e with $\rho x = a$ we defined:

$$\operatorname{code}_{\mathbf{R}}^{i} x = e \ \rho = \operatorname{code}_{\mathbf{R}}^{i} e \ \rho$$

$$\operatorname{move} R_{a} R_{i}$$

However, x = e; is also an *expression statement*:

General idea for translation: $\operatorname{code}^i s \rho$: generate code for statement s

 $\operatorname{code}^i_{\mathrm{R}} e \
ho$: generate code for expression e into R_i

Throughout: $i, i + 1, \ldots$ are free (unused) registers

For an *expression* x = e with $\rho x = a$ we defined:

$$\operatorname{code}_{\mathbf{R}}^{i} x = e \ \rho = \operatorname{code}_{\mathbf{R}}^{i} e \ \rho$$

$$\operatorname{move} R_{a} R_{i}$$

However, x = e; is also an *expression statement*:

Define:

$$\operatorname{code}^{i} e_{1} = e_{2}; \ \rho = \operatorname{code}_{R}^{i} e_{1} = e_{2} \ \rho$$

The temporary register R_i is ignored here. More general:

$$\operatorname{code}^{i} e; \ \rho = \operatorname{code}_{R}^{i} e \ \rho$$

General idea for translation: $\operatorname{code}^i s \rho$: generate code for statement s

 $\operatorname{code}^i_{\mathrm{R}} e \
ho$: generate code for expression e into R_i

Throughout: $i, i + 1, \ldots$ are free (unused) registers

For an *expression* x = e with $\rho x = a$ we defined:

$$code_{R}^{i} x = e \rho = code_{R}^{i} e \rho$$
$$move R_{a} R_{i}$$

However, x = e; is also an *expression statement*:

Define:

$$\operatorname{code}^{i} e_{1} = e_{2}; \ \rho = \operatorname{code}_{R}^{i} e_{1} = e_{2} \ \rho$$

The temporary register R_i is ignored here. More general:

$$\operatorname{code}^{i} e; \ \rho = \operatorname{code}_{R}^{i} e \ \rho$$

• Observation: the assignment to e_1 is a side effect of the evaluating the expression $e_1 = e_2$.

Translation of Statement Sequences

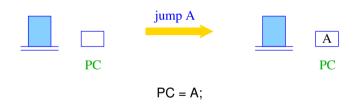
The code for a sequence of statements is the concatenation of the instructions for each statement in that sequence:

$$\operatorname{code}^{i}(s\,ss)\,\rho = \operatorname{code}^{i}s\,\rho \ \operatorname{code}^{i}ss\,\rho \ \operatorname{code}^{i}\varepsilon\,\rho = \# \text{ empty sequence of instructions}$$

Note here: s is a statement, ss is a sequence of statements

Jumps

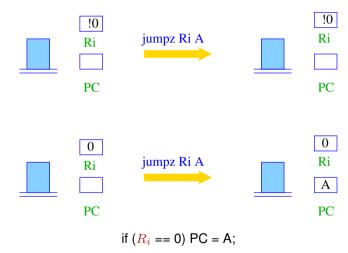
In order to diverge from the linear sequence of execution, we need *jumps*:



21/49

Conditional Jumps

A conditional jump branches depending on the value in R_i :



Simple Conditional

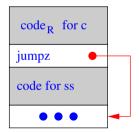
```
We first consider s \equiv \mathtt{if} \quad (\ c\ ) \quad ss. ...and present a translation without basic blocks.
```

Idea:

- ullet emit the code of c and ss in sequence
- insert a jump instruction in-between, so that correct control flow is ensured

```
\begin{array}{rcl}
\operatorname{code}^{i} & s \, \rho & = & \operatorname{code}^{i}_{R} \, c \, \rho \\
& & \operatorname{jumpz} R_{i} \, A \\
& & \operatorname{code}^{i} s s \, \rho
\end{array}

A : \dots
```



General Conditional

Translation of if (c) tt else ee.

 $\operatorname{code}^i \operatorname{if}(c) tt \operatorname{else} ee \rho$ $\operatorname{code}_{\mathrm{R}}^{i} c \rho$ jumpz R_i A $code^i tt \rho$ jump Bjump $A: \operatorname{code}^{i} ee \rho$ B:



Example for if-statement

```
Let \rho = \{x \mapsto 4, y \mapsto 7\} and let s be the statement if (x > y)  {  /* (i) */   x = x - y;  /* (ii) */  } else {  y = y - x;  /* (iii) */  }
```

Then $code^i s \rho$ yields:

Example for if-statement

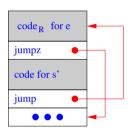
```
Let \rho = \{x \mapsto 4, y \mapsto 7\} and let s be the statement if (x > y)  {  /* (i) */   x = x - y;  /* (ii) */  } else {  y = y - x;  /* (iii) */  }
```

Then $code^i s \rho$ yields:

Iterating Statements

We only consider the loop $s \equiv \text{while } (e) \ s'$. For this statement we define:

```
\begin{split} \operatorname{code}^i \operatorname{while}(e) \ s \ \rho &= A: & \operatorname{code}_{\mathbf{R}}^i \ e \ \rho \\ & \operatorname{jumpz} R_i \ B \\ & \operatorname{code}^i \ s \ \rho \\ & \operatorname{jump} A \\ B: \end{split}
```



Example: Translation of Loops

Then $code^i s \rho$ evaluates to:

Example: Translation of Loops

Then $code^i s \rho$ evaluates to:

for-Loops

The for-loop $s \equiv$ for $(e_1; e_2; e_3)$ s' is equivalent to the statement sequence e_1 ; while (e_2) $\{s' e_3;\}$ – as long as s' does not contain a **continue** statement.

Thus, we translate:

```
\begin{array}{rcl} \operatorname{code}^{i}\operatorname{\mathbf{for}}(e_{1};e_{2};e_{3})\;s\;\rho & = & \operatorname{code}_{\mathrm{R}}^{i}\;e_{1}\;\rho \\ & A: & \operatorname{code}_{\mathrm{R}}^{i}\;e_{2}\;\rho \\ & & \operatorname{\mathsf{jumpz}} R_{i}\;B \\ & & \operatorname{code}^{i}\;s\;\rho \\ & & \operatorname{code}_{\mathrm{R}}^{i}\;e_{3}\;\rho \\ & & \operatorname{\mathsf{jump}}\;A \\ & B: \end{array}
```

The switch-Statement

Idea:

- Suppose choosing from multiple options in constant time if possible
- use a jump table that, at the ith position, holds a jump to the ith alternative
- in order to realize this idea, we need an *indirect jump* instruction

The switch-Statement

Idea:

- Suppose choosing from multiple options in *constant time* if possible
- use a jump table that, at the ith position, holds a jump to the ith alternative
- in order to realize this idea, we need an *indirect jump* instruction

$$PC = A + R_i$$
;

Consecutive Alternatives

Let switch s be given with k consecutive case alternatives:

```
\begin{array}{lll} \textbf{switch} & (e) & \{\\ & \textbf{case} & 0 \colon s_0; \ \textbf{break}; \\ & \vdots & \\ & \textbf{case} & k-1 \colon s_{k-1}; \ \textbf{break}; \\ & \textbf{default} \colon s_k; \ \textbf{break}; \\ \} \end{array}
```

Consecutive Alternatives

```
Let switch s be given with k consecutive case alternatives:
      switch (e) {
         case 0: s_0; break;
         case k-1: s_{k-1}; break;
         default: s_k; break;
                                 code^{i} s \rho = code^{i}_{R} e \rho
                                                     check^i \ 0 \ k \ B \qquad B : jump \ A_0
                                              A_0: \operatorname{code}^i s_0 \rho
Define code^i s \rho as follows:
                                                      jump C
                                                                                 jump A_k
                                                                            C:
                                              A_k: \operatorname{code}^i s_k \rho
                                                      \operatorname{\mathsf{jump}} C
```

Consecutive Alternatives

```
Let switch s be given with k consecutive case alternatives:
      switch (e) {
         case 0: s_0; break;
         case k-1: s_{k-1}; break;
         default: s_k; break;
                               code^{i} s \rho = code^{i}_{R} e \rho
                                                   check^i \ 0 \ k \ B B: jump \ A_0
                                             A_0: \operatorname{code}^i s_0 \rho :
Define code^i s \rho as follows:
                                                    jump C
                                                                               jump A_k
                                                                         C:
                                             A_{k}: \operatorname{code}^{i} s_{k} \rho
                                                    \operatorname{\mathsf{jump}} C
```

*check*ⁱ l u B checks if $l \leq R_i < u$ holds and jumps accordingly.

Translation of the *check*ⁱ Macro

The macro $\operatorname{check}^i l \ u \ B$ checks if $l \leq R_i < u$. Let k = u - l.

- if $l \leq R_i < u$ it jumps to $B + R_i l$
- if $R_i < l$ or $R_i \ge u$ it jumps to A_k

```
B: \text{ jump } A_0
\vdots \qquad \vdots
\text{ jump } A_k
C:
```

Translation of the *check*ⁱ Macro

The macro $check^i \ l \ u \ B$ checks if $l \le R_i < u$. Let k = u - l.

- if $l \leq R_i < u$ it jumps to $B + R_i l$
- if $R_i < l$ or $R_i \ge u$ it jumps to A_k

we define:

Translation of the *check*ⁱ Macro

The macro $check^i \ l \ u \ B$ checks if $l \le R_i < u$. Let k = u - l.

- if $l \leq R_i < u$ it jumps to $B + R_i l$
- if $R_i < l$ or $R_i \ge u$ it jumps to A_k

we define:

```
\begin{array}{rcl} \operatorname{check}^i \ l \ u \ B &=& \operatorname{loadc} R_{i+1} \ l \\ & & \operatorname{geq} R_{i+2} R_i \ R_{i+1} \\ & \operatorname{jumpz} R_{i+2} E & B: \ \operatorname{jump} A_0 \\ & \operatorname{sub} R_i \ R_i \ R_{i+1} & \vdots & \vdots \\ & \operatorname{loadc} R_{i+1} \ k & \vdots & \vdots \\ & \operatorname{geq} R_{i+2} R_i \ R_{i+1} & \operatorname{jump} A_k \\ & \operatorname{jumpz} R_{i+2} D & C: \\ E: \ \operatorname{loadc} R_i \ k \\ D: \ \operatorname{jumpi} R_i \ B \end{array}
```

Note: a jump jumpi R_i B with $R_i = u$ winds up at B + u, the default case

Improvements for Jump Tables

This translation is only suitable for certain switch-statement.

- ullet In case the table starts with 0 instead of u we don't need to subtract it from e before we use it as index
- if the value of e is guaranteed to be in the interval [l, u], we can omit *check*

General translation of switch-Statements

In general, the values of the various cases may be far apart:

- generate an if-ladder, that is, a sequence of if-statements
- ullet for n cases, an if-cascade (tree of conditionals) can be generated $\leadsto O(\log n)$ tests
- if the sequence of numbers has small gaps (≤ 3), a jump table may be smaller and faster
- one could generate several jump tables, one for each sets of consecutive cases
- an if cascade can be re-arranged by using information from profiling, so that paths
 executed more frequently require fewer tests

Code Synthesis

Chapter 4:

Functions

Ingredients of a Function

The definition of a function consists of

- a name with which it can be called;
- a specification of its formal parameters;
- possibly a result type;
- a sequence of statements.

In C we have:

```
\operatorname{code}_{R}^{i} f \rho = \operatorname{loadc} R_{i} f with f starting address of f
```

Observe:

- function names must have an address assigned to them
- since the size of functions is unknown before they are translated, the addresses of forward-declared functions must be inserted later

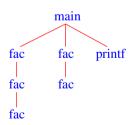
Memory Management in Functions

```
int fac(int x) {
   if (x<=0) return 1;
   else return x*fac(x-1);
}

int main(void) {
   int n;
   n = fac(2) + fac(1);
   printf("%d", n);
}</pre>
```

At run-time several instances may be active, that is, the function has been called but has not yet returned.

The recursion tree in the example:



Memory Management in Function Variables

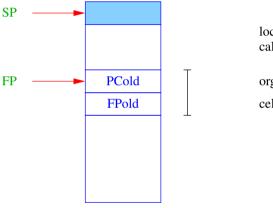
The formal parameters and the local variables of the various instances of a function must be kept separate

Idea for implementing functions:

- set up a region of memory each time it is called
- in sequential programs this memory region can be allocated on the stack
- thus, each instance of a function has its own region on the stack
- these regions are called stack frames

Organization of a Stack Frame

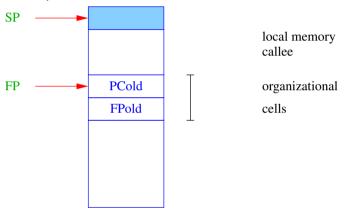
- stack representation: grows upwards
- SP points to the last used stack cell



organizational cells

Organization of a Stack Frame

- stack representation: grows upwards
- SP points to the last used stack cell



- used to recover the previously active stack frame

Split of Obligations

Definition

Let f be the current function that calls a function g.

- f is dubbed caller
- g is dubbed callee

The code for managing function calls has to be split between caller and callee. This split cannot be done arbitrarily since some information is only known in that caller or only in the callee.

Observation:

The space requirement for parameters is only know by the caller:

Example: printf

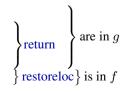
Principle of Function Call and Return

actions taken on entering g:

- 1. compute the start address of g
- 2. compute actual parameters in globals
- 3. backup of caller-save registers
- 4. backup of FP
- 5. set the new FP
- 6. back up of PC and jump to the beginning of g
- 7. copy actual params to locals

actions taken on leaving g:

- 1. compute the result into R_0
- 2. restore FP, SP
- 3. return to the call site in f, that is, restore PC
- 4. restore the caller-save registers



The two register sets (global and local) are used as follows:

- automatic variables live in *local* registers R_i
- ullet intermediate results also live in *local* registers R_i
- parameters live in *global* registers R_i (with $i \leq 0$)
- global variables:

The two register sets (global and local) are used as follows:

- automatic variables live in local registers R_i
- intermediate results also live in *local* registers R_i
- parameters live in *global* registers R_i (with $i \le 0$)
- global variables: let's suppose there are none convention:

The two register sets (global and local) are used as follows:

- automatic variables live in *local* registers R_i
- ullet intermediate results also live in *local* registers R_i
- parameters live in *global* registers R_i (with $i \le 0$)
- global variables: let's suppose there are none

convention:

- ullet the i th argument of a function is passed in register R_{-i}
- ullet the result of a function is stored in R_0
- local registers are saved before calling a function

The two register sets (global and local) are used as follows:

- automatic variables live in *local* registers R_i
- ullet intermediate results also live in *local* registers R_i
- parameters live in *global* registers R_i (with $i \le 0$)
- global variables: let's suppose there are none

convention:

- the i th argument of a function is passed in register R_{-i}
- the result of a function is stored in R_0
- local registers are saved before calling a function

Definition

Let f be a function that calls g. A register R_i is called

- *caller-saved* if f backs up R_i and g may overwrite it
- *callee-saved* if f does not back up R_i , and g must restore it before returning

A function call $g(e_1, \dots e_n)$ is translated as follows:

```
\operatorname{code}_{R}^{i} g(e_{1}, \dots e_{n}) \rho = \operatorname{code}_{R}^{i} g \rho
                                          \operatorname{code}_{\mathbf{R}}^{i+1} e_1 \rho
                                         move R_{-1} R_{i+1}
                                          move R_{-n} R_{i+n}
                                          saveloc R_1 R_{i-1}
                                          mark
                                          call R_i
                                          restoreloc R_1 R_{i-1}
                                          move R_i R_0
```

```
A function call g(e_1, \dots e_n) is translated as follows:
```

```
\operatorname{code}_{R}^{i} g(e_{1}, \dots e_{n}) \rho = \operatorname{code}_{R}^{i} g \rho
                                                      \operatorname{code}_{\mathbf{R}}^{i+1} e_1 \rho

\vdots \\
\operatorname{code}_{\mathbf{R}}^{i+n} e_n \rho

                                                      move R_{-1} R_{i+1}
                                                       move R_{-n} R_{i+n}
                                                      saveloc R_1 R_{i-1}
                                                       mark
                                                      call R_i
                                                       restoreloc R_1 R_{i-1}
```

New instructions:

move R_i R_0

- saveloc R_i R_j pushes the registers R_i , R_{i+1} ... R_j onto the stack
- mark backs up the organizational cells
- call R_i calls the function at the address in R_i
- restoreloc R_i R_j pops $R_i, R_{i-1}, \dots R_i$ off the stack

Rescuing the FP

The instruction mark allocates stack space for the return value and the organizational cells and backs up FP.

$$S[SP+1] = FP;$$

 $SP = SP + 1;$

Calling a Function

The instruction call rescues the value of PC+1 onto the stack and sets FP and PC.

Result of a Function

The global register set is also used to communicate the result value of a function:

Result of a Function

The global register set is also used to communicate the result value of a function:

$$\operatorname{code}^i\operatorname{return} e\
ho = \operatorname{code}^i_{\mathrm{R}} e\
ho$$

$$\operatorname{move} R_0\ R_i$$

$$\operatorname{return}$$

alternative without result value:

$$code^i return \rho = return$$

Result of a Function

The global register set is also used to communicate the result value of a function:

$$\operatorname{code}^i\operatorname{return} e \
ho = \operatorname{code}^i_{\mathrm{R}} e \
ho$$

$$\operatorname{move} R_0 \ R_i$$

$$\operatorname{return}$$

alternative without result value:

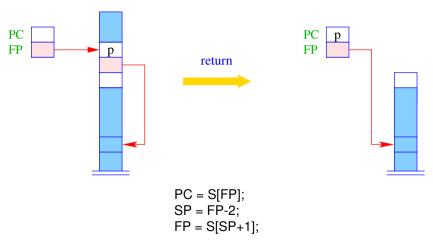
$$code^i return \rho = return$$

global registers are otherwise not used inside a function body:

- advantage: at any point in the body another function can be called without backing up global registers
- disadvantage: on entering a function, all global registers must be saved

Return from a Function

The instruction return relinquishes control of the current stack frame, that is, it restores PC and FP.



The translation of a function is thus defined as follows:

```
\operatorname{code}^{1} t_{r} \mathbf{f}(args) \{ decls \ ss \} \rho = \operatorname{move} R_{l+1} R_{-1}
\vdots
\operatorname{move} R_{l+n} R_{-n}
\operatorname{code}^{l+n+1} ss \rho'
return
```

The translation of a function is thus defined as follows:

```
\operatorname{code}^{1} t_{r} \mathbf{f}(\operatorname{args}) \{ \operatorname{decls} ss \} \rho = \operatorname{move} R_{l+1} R_{-1}
\vdots
\operatorname{move} R_{l+n} R_{-n}
\operatorname{code}^{l+n+1} ss \rho'
return
```

Assumptions:

ullet the function has n parameters

The translation of a function is thus defined as follows:

```
\operatorname{code}^{1} t_{r} \mathbf{f}(\operatorname{args}) \{ \operatorname{decls} ss \} \rho = \operatorname{move} \frac{R_{l+1}}{R_{-1}} R_{-1}
\vdots
\operatorname{move} \frac{R_{l+n}}{R_{-n}} R_{-n}
\operatorname{code}^{l+n+1} ss \rho'
\operatorname{return}
```

- the function has n parameters
- the local variables are stored in registers $R_1, \dots R_l$

The translation of a function is thus defined as follows:

```
\operatorname{code}^{1} t_{r} \mathbf{f}(\operatorname{args}) \{ \operatorname{decls} ss \} \rho = \operatorname{move} R_{l+1} R_{-1} \\ \vdots \\ \operatorname{move} R_{l+n} R_{-n} \\ \operatorname{code}^{l+n+1} ss \rho' \\ \operatorname{return}
```

- the function has *n* parameters
- the local variables are stored in registers $R_1, \dots R_l$
- ullet the parameters of the function are in $R_{-1}, \dots R_{-n}$

The translation of a function is thus defined as follows:

```
\operatorname{code}^{1} t_{r} \mathbf{f}(\operatorname{args}) \{ \operatorname{decls} ss \} \rho = \operatorname{move} \frac{R_{l+1}}{R_{-1}} R_{-1}
\vdots
\operatorname{move} \frac{R_{l+n}}{R_{-n}} R_{-n}
\operatorname{code}^{l+n+1} ss \rho'
\operatorname{return}
```

- the function has *n* parameters
- the local variables are stored in registers $R_1, \dots R_l$
- the parameters of the function are in $R_{-1}, \dots R_{-n}$
- ullet ho' is obtained by extending ho with the bindings in decls and the function parameters args

The translation of a function is thus defined as follows:

```
\operatorname{code}^{1} t_{r} \mathbf{f}(\operatorname{args}) \{ \operatorname{decls} ss \} \rho = \operatorname{move} \frac{R_{l+1}}{R_{-1}} R_{-1}
\vdots
\operatorname{move} \frac{R_{l+n}}{R_{-n}} R_{-n}
\operatorname{code}^{l+n+1} ss \rho'
\operatorname{return}
```

- the function has *n* parameters
- the local variables are stored in registers $R_1, \dots R_l$
- the parameters of the function are in $R_{-1}, \dots R_{-n}$
- ullet ho' is obtained by extending ho with the bindings in decls and the function parameters args
- return is not always necessary

The translation of a function is thus defined as follows:

```
\operatorname{code}^1 t_r \ \mathbf{f}(args) \{ decls \ ss \} \ \rho = \operatorname{move} \frac{R_{l+1}}{R_{-1}} R_{-1}
\vdots
\operatorname{move} \frac{R_{l+n}}{R_{-n}} R_{-n}
\operatorname{code}^{l+n+1} ss \ \rho'
\operatorname{return}
```

Assumptions:

- the function has *n* parameters
- the local variables are stored in registers $R_1, \dots R_l$
- the parameters of the function are in $R_{-1}, \dots R_{-n}$
- ullet ho' is obtained by extending ho with the bindings in decls and the function parameters args
- return is not always necessary

Are the move instructions always necessary?

Translation of Whole Programs

A program $P = F_1; \dots F_n$ must have a single main function.

```
\begin{array}{rcl} \operatorname{code}^1 P \, \rho & = & \operatorname{loadc} \, R_1 \, \underline{\phantom{a}} \operatorname{main} \\ & & \operatorname{mark} \\ & \operatorname{call} \, R_1 \\ & & \operatorname{halt} \\ & \underline{\phantom{a}} f_1 : & \operatorname{code}^1 F_1 \, \rho \oplus \rho_{f_1} \\ & & \vdots \\ & \underline{\phantom{a}} f_n : & \operatorname{code}^1 F_n \, \rho \oplus \rho_{f_n} \end{array}
```

Translation of Whole Programs

A program $P = F_1; \dots F_n$ must have a single main function.

```
\begin{array}{rcl} \operatorname{code}^1 P \, \rho & = & \operatorname{loadc} \, R_1 \, \_{\mathtt{main}} \\ & & \operatorname{mark} \\ & \operatorname{call} \, R_1 \\ & & \operatorname{halt} \\ & \underline{\phantom{a}} f_1 : & \operatorname{code}^1 F_1 \, \rho \oplus \rho_{f_1} \\ & & \vdots \\ & \underline{\phantom{a}} f_n : & \operatorname{code}^1 F_n \, \rho \oplus \rho_{f_n} \end{array}
```

- $\rho = \emptyset$ assuming that we have no global variables
- ullet ho_{f_i} contain the addresses of the functions up to f_i

•
$$\rho_1 \oplus \rho_2 = \lambda x \cdot \begin{cases} \rho_2(x) & \text{if } x \in \text{dom}(\rho_2) \\ \rho_1(x) & \text{otherwise} \end{cases}$$

Translation of the fac-function

Consider:

```
int fac(int x) {
 if (x <= 0)
   return 1;
 else
   return x*fac(x-1);
 fac:
       move R_1 R_{-1} save param.
i=2
       move R_2 R_1 if (x<=0)
       loade R_3 0
       leq R_2 R_2 R_3
       jumpz R_2 A
                     to else
       loadc R_2 1 return 1
       move R_0 R_2
       return
                     code is dead
       jump B
```

```
move R_2 R_1  x*fac(x-1)
i = 3 loade R_3 fac
i = 4 move R_4 R_1
                       x-1
i = 5 loade R_5 1
i = 6 sub R_4 R_4 R_5
i = 5 move R_{-1} R_4 fac (x-1)
i = 3 saveloc R_1 R_2
       mark
       call R_3
       restoreloc R_1 R_2
       move R_3 R_0
i=4 \quad \text{mul } R_2 R_2 R_3
i = 3
       move R_0 R_2
                       return x*...
       return
B:
       return
```