
Compiler Construction I

Dr. Michael Petter

◦◦◦◦◦◦◦◦◦ ◦◦◦◦◦◦◦◦◦ ◦◦

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

SoSe 2020

1 / 7

Topic:

Overview

2 / 7

Extremes of Program Execution

Interpretation:

Output
Program

Input
Interpreter

Compilation:

Code

OutputMachine
Input

Code

Program Compiler

3 / 7

Interpretation vs. Compilation

Interpretation
No precomputation on program text necessary
⇒ no/small startup-overhead
More context information allows for specific aggressive optimization

Compilation
Program components are analyzed once, during preprocessing, instead of multiple
times during execution
⇒ smaller runtime-overhead
Runtime complexity of optimizations less important than in interpreter

4 / 7

Compiler

General Compiler setup:

Synthesis

Int. Representation

C
om

pilerC
om

pi
le

r

Program code

Code

Analysis

5 / 7

Compiler

The Analysis-Phase consists of several subcomponents:

Scanner

Parser

Program code

Token-Stream

Detecting hierarchical structure

Partitioning in tokens
lexicographic Analysis:

syntactic Analysis:

Syntax tree

semantic Analysis:

(annotated) Syntax tree

A
na

ly
si

s

Infering semantic propertiesChecker...
Type

6 / 7

Content on the Way

Regular expressions and finite automata
Specification and implementation of scanners
Context free grammars and pushdown automata
Top-Down/Bottom-Up syntax analysis
Attribute systems
Typechecking
Codegeneration for register machines

7 / 7

Topic:

Lexical Analysis

1 / 49

The Lexical Analysis

Scanner Token-StreamProgram code Scannerxyz + 42 xyz 42+ Scanner
I O C

xyz + 42 xyz 42+

A Token is a sequence of characters, which together form a unit.
Tokens are subsumed in classes. For example:

→ Names (Identifiers) e.g. xyz, pi, ...

→ Constants e.g. 42, 3.14, ”abc”, ...

→ Operators e.g. +, ...

→ Reserved terms e.g. if, int, ...
2 / 49

The Lexical Analysis - Siever

Classified tokens allow for further pre-processing:

Dropping irrelevant fragments e.g. Spacing, Comments,...
Collecting Pragmas, i.e. directives for the compiler, often implementation dependent,
directed at the code generation process, e.g. OpenMP-Statements;
Replacing of Tokens of particular classes with their meaning / internal representation,
e.g.

→ Constants;

→ Names: typically managed centrally in a Symbol-table, maybe compared to
reserved terms (if not already done by the scanner) and possibly replaced with
an index or internal format (⇒ Name Mangling).

3 / 49

The Lexical Analysis

Discussion:
Scanner and Siever are often combined into a single component, mostly by providing
appropriate callback actions in the event that the scanner detects a token.
Scanners are mostly not written manually, but generated from a specification.

ScannerSpecification Generator

4 / 49

The Lexical Analysis - Generating:

... in our case:

ScannerSpecification Generator

[0−9]

[1−9]

0

0 | [1-9][0-9]* Generator

Specification of Token-classes: Regular expressions;
Generated Implementation: Finite automata + X

5 / 49

Chapter 1:

Basics: Regular Expressions

6 / 49

Lexical Analysis
Regular Expressions

Basics
Program code is composed from a finite alphabet Σ of input characters, e.g.
Unicode
The sets of textfragments of a token class is in general regular.
Regular languages can be specified by regular expressions.

Definition Regular Expressions
The set EΣ of (non-empty) regular expressions
is the smallest set E with:

ε ∈ E (ε a new symbol not from Σ);
a ∈ E for all a ∈ Σ;
(e1 | e2), (e1 · e2), e1

∗ ∈ E if e1, e2 ∈ E .

7 / 49

Stephen Kleene

Regular Expressions

... Example:
((a · b∗)·a)
(a | b)
((a · b)·(a · b))

Attention:
We distinguish between characters a, 0, $,... and Meta-symbols (, |,),...
To avoid (ugly) parantheses, we make use of Operator-Precedences:

∗ > · > |

and omit “·”
Real Specification-languages offer additional constructs:

e? ≡ (ε | e)
e+ ≡ (e · e∗)

and omit “ε”
8 / 49

Regular Expressions

Specification needs Semantics

...Example:

Specification Semantics
abab {abab}
a | b {a, b}
ab∗a {abna | n ≥ 0}

For e ∈ EΣ we define the specified language [[e]] ⊆ Σ∗ inductively by:

[[ε]] = {ε}
[[a]] = {a}
[[e∗]] = ([[e]])∗

[[e1|e2]] = [[e1]] ∪ [[e2]]
[[e1·e2]] = [[e1]] · [[e2]]

9 / 49

Keep in Mind:

The operators (_)∗,∪, · are interpreted in the context of sets of words:

(L)∗ = {w1 . . . wk | k ≥ 0, wi ∈ L}
L1 · L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}

Regular expressions are internally represented as annotated ranked trees:

.

|

*

b

ε

a

(ab|ε)∗

Inner nodes: Operator-applications;
Leaves: particular symbols or ε.

10 / 49

Regular Expressions

Example: Identifiers in Java:

le = [a-zA-Z_\$]
di = [0-9]
Id = {le} ({le} | {di})*

Float = {di}*(\.{di}|{di}\.){di}* ((e|E)(\+|\-)?{di}+)?

Remarks:
“le” and “di” are token classes.
Defined Names are enclosed in “{”, “}”.
Symbols are distinguished from Meta-symbols via “\”.

11 / 49

Chapter 2:

Basics: Finite Automata

12 / 49

Lexical Analysis
Finite Automata

Example:

a b

ε

ε

Nodes: States;
Edges: Transitions;
Lables: Consumed input;

13 / 49

Finite Automata

Definition Finite Automata
A non-deterministic finite automaton
(NFA) is a tuple A = (Q,Σ, δ, I, F) with:

Q a finite set of states;
Σ a finite alphabet of inputs;
I ⊆ Q the set of start states;
F ⊆ Q the set of final states and
δ the set of transitions (-relation)

For an NFA, we reckon:

Definition Deterministic Finite Automata
Given δ : Q× Σ→ Q a function and |I| = 1, then we call the NFA A deterministic (DFA).

14 / 49

Michael Rabin Dana Scott

Finite Automata

Computations are paths in the graph.
Accepting computations lead from I to F .
An accepted word is the sequence of lables along an accepting computation ...

a b

ε

ε

15 / 49

Finite Automata

Once again, more formally:
We define the transitive closure δ∗ of δ as the smallest set δ′ with:

(p, ε, p) ∈ δ′ and
(p, xw, q) ∈ δ′ if (p, x, p1) ∈ δ and (p1, w, q) ∈ δ′.

δ∗ characterizes for a path between the states p and q the words obtained by
concatenating the labels along it.

The set of all accepting words, i.e. A’s accepted language can be described compactly
as:

L(A) = {w ∈ Σ∗ | ∃ i ∈ I, f ∈ F : (i, w, f) ∈ δ∗}

16 / 49

Chapter 3:

Converting Regular Expressions to NFAs

17 / 49

Lexical Analysis

In Linear Time from Regular Expressions to NFAs

ε
e = ε

ε

ε

ε

ε

ε

ε ε

ε

ε

e = e1|e2

e = e1e2

e = a

e = e∗1
e1

e1 e2

e1

e2
a

Thompson’s Algorithm
Produces O(n) states for regular expressions of
length n.

18 / 49

Ken Thompson

A formal approach to Thompson’s Algorithm

Berry-Sethi AlgorithmGlushkov Automaton
Produces exactly n+ 1 states without ε-transitions and
demonstrates→ Equality Systems and→ Attribute Grammars

Idea:
An automaton covering the syntax tree of a regular expression e tracks (conceptionally via
markers “•”), which subexpressions e′ are reachable consuming the rest of input w.

markers contribute an entry or exit point into the automaton for this
subexpression
edges for each layer of subexpression are modelled after
Thompson’s automata

e

w

e′

19 / 49

Gerard Berry Viktor M. GlushkovRavi Sethi

Berry-Sethi Approach

... for example:

b

a

aba

w = :

a b

a

a b

20 / 49

Berry-Sethi Approach

In general:

Input is only consumed at the leaves.
Navigating the tree does not consume input→ ε-transitions
For a formal construction we need identifiers for states.
For a node n’s identifier we take the subexpression, corresponding to the subtree
dominated by n.
There are possibly identical subexpressions in one regular expression.

==⇒ we enumerate the leaves ...

21 / 49

Berry-Sethi Approach

... for example:

*

.

.

||

0 1

2

3 4
a a bb

a

22 / 49

Berry-Sethi Approach (naive version)

Construction (naive version):

States: •r, r• with r nodes of e;
Start state: •e;
Final state: e•;
Transitions: for leaves r ≡ i x we require: (•r, x, r•).
The leftover transitions are:

r Transitions
r1 | r2 (•r, ε, •r1)

(•r, ε, •r2)
(r1•, ε, r•)
(r2•, ε, r•)

r1 · r2 (•r, ε, •r1)
(r1•, ε, •r2)
(r2•, ε, r•)

r Transitions
r∗1 (•r, ε, r•)

(•r, ε, •r1)
(r1•, ε, •r1)
(r1•, ε, r•)

r1? (•r, ε, r•)
(•r, ε, •r1)
(r1•, ε, r•)

23 / 49

Berry-Sethi Approach

Discussion:
Most transitions navigate through the expression
The resulting automaton is in general nondeterministic

⇒ Strategy for the sophisticated version:
Avoid generating ε-transitions

Idea:
Pre-compute helper attributes during D(epth)F(irst)S(earch)!

Necessary node-attributes:
first the set of read states below r, which may be reached first, when descending into r.
next the set of read states, which may be reached first in the traversal after r.
last the set of read states below r, which may be reached last when descending into r.

empty can the subexpression r consume ε ?

24 / 49

Berry-Sethi Approach: 1st step

empty[r] = t if and only if ε ∈ [[r]]

... for example:

.

* .

||
f f

f

f f

f f

ft

f

0 1 3 4

2

a a bb

a

25 / 49

Berry-Sethi Approach: 1st step

Implementation:
DFS post-order traversal

for leaves r ≡ i x we find empty[r] = (x ≡ ε).

Otherwise:

empty[r1 | r2] = empty[r1] ∨ empty[r2]
empty[r1 · r2] = empty[r1] ∧ empty[r2]
empty[r∗1] = t
empty[r1?] = t

26 / 49

Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that may be reached from
•r (i.e. while descending into r) via sequences of ε-transitions:
first[r] = {i in r | (•r, ε, • i x) ∈ δ∗, x 6= ε}

... for example:

.

* .

||
f f

f

f f

f f

ft

f

0 1

2

3 4

{4}{3}

{3,4}

{0,1} {2}

{2}

{0} {1}

{0,1}

{0,1,2}

a a bb

a

27 / 49

Berry-Sethi Approach: 2nd step

Implementation:
DFS post-order traversal

for leaves r ≡ i x we find first[r] = {i | x 6= ε}.

Otherwise:

first[r1 | r2] = first[r1] ∪ first[r2]

first[r1 · r2] =

{
first[r1] ∪ first[r2] if empty[r1] = t
first[r1] if empty[r1] = f

first[r∗1] = first[r1]
first[r1?] = first[r1]

28 / 49

Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states reached after reading r, that may
be reached next via sequences of ε-transitions.
next[r] = {i | (r•, ε, • i x) ∈ δ∗, x 6= ε}

... for example:

|

*

|

.

.

f

{2}

f

f

t

f {0,1,2}

f

f

f

{3,4}ff{0,1,2}

{0,1,2}

30 1 4

2

{2}

{3,4}

{4}{3}

{2}

{0,1,2}

{0,1}

{0,1}

{1}{0}

∅

∅

∅

∅∅

aa b b

a

29 / 49

Berry-Sethi Approach: 3rd step

Implementation:
DFS pre-order traversal

For the root, we find: next[e] = ∅
Apart from that we distinguish, based on the context:

r Equalities

r1 | r2 next[r1] = next[r]
next[r2] = next[r]

r1 · r2 next[r1] =

{
first[r2] ∪ next[r] if empty[r2] = t
first[r2] if empty[r2] = f

next[r2] = next[r]
r∗1 next[r1] = first[r1] ∪ next[r]
r1? next[r1] = next[r]

30 / 49

Berry-Sethi Approach: 4th step

The may-set of last reached read states: The set of read states, which may be reached
last during the traversal of r connected to the root via ε-transitions only:
last[r] = {i in r | (i x •, ε, r•) ∈ δ∗, x 6= ε}

... for example:

|

*

|

.

.

f

{2}

f

f

t

f {0,1,2}

f

f

f

{3,4}ff{0,1,2}

{0,1,2}

30 1 4

2{0} {1}

{3,4}

{0,1} {2}{3,4}

{3,4}

{4}{4}{3}{3}

{3,4}{2}{2}

{0,1,2}

{0,1}

{0,1}{0,1}

{1}{0}

∅

∅

∅

∅∅

aa b b

a

31 / 49

Berry-Sethi Approach: 4th step

Implementation:
DFS post-order traversal

for leaves r ≡ i x we find last[r] = {i | x 6= ε}.

Otherwise:

last[r1 | r2] = last[r1] ∪ last[r2]

last[r1 · r2] =

{
last[r1] ∪ last[r2] if empty[r2] = t
last[r2] if empty[r2] = f

last[r∗1] = last[r1]
last[r1?] = last[r1]

32 / 49

Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version):
Create an automaton based on the syntax tree’s new attributes:

States: {•e} ∪ {i• | i a leaf not ε}
Start state: •e

Final states: last[e] if empty[e] = f
{•e} ∪ last[e] otherwise

Transitions: (•e, a, i•) if i ∈ first[e] and i labled with a.
(i•, a, i′•) if i′ ∈ next[i] and i′ labled with a.

We call the resulting automaton Ae.

33 / 49

Berry-Sethi Approach

... for example:

a a
a

b
a

a

b

b a

a

b

3

4

2

0

1

Remarks:
This construction is known as Berry-Sethi- or Glushkov-construction.
It is used for XML to define Content Models
The result may not be, what we had in mind...

34 / 49

Chapter 4:

Turning NFAs deterministic

35 / 49

Lexical Analysis

The expected outcome:

a, b

a a, b

Remarks:
ideal automaton would be even more compact
(→ Antimirov automata, Follow Automata)
but Berry-Sethi is rather directly constructed
Anyway, we need a deterministic version

⇒ Powerset-Construction

36 / 49

Powerset Construction

... for example:

a a
a

b
a

a

b

b a

a

b

3

4

2

0

1

a

b

b

a

b

a

a b

b

a

02

1

0 32

14

37 / 49

Powerset Construction

Theorem:
For every non-deterministic automaton A = (Q,Σ, δ, I, F) we can compute a
deterministic automaton P(A) with

L(A) = L(P(A))

Construction:

States: Powersets of Q;
Start state: I;

Final states: {Q′ ⊆ Q | Q′ ∩ F 6= ∅};
Transitions: δP(Q′, a) = {q ∈ Q | ∃ p ∈ Q′ : (p, a, q) ∈ δ}.

38 / 49

Powerset Construction

Observation:
There are exponentially many powersets of Q

Idea: Consider only contributing powersets. Starting with the set QP = {I} we only
add further states by need ...
i.e., whenever we can reach them from a state in QP
However, the resulting automaton can become enormously huge
... which is (sort of) not happening in practice

Therefore, in tools like grep a regular expression’s DFA is never created!
Instead, only the sets, directly necessary for interpreting the input are generated while
processing the input

39 / 49

Powerset Construction

... for example:

ba ba

a a
a

b
a

a

b

b a

a

b

3

4

2

0

1

a

b

a

02

141

023

40 / 49

Remarks:

For an input sequence of length n , maximally O(n) sets are generated
Once a set/edge of the DFA is generated, they are stored within a hash-table.
Before generating a new transition, we check this table for already existing edges with
the desired label.

Summary:

Theorem:
For each regular expression e we can compute a deterministic automaton
A = P(Ae) with

L(A) = [[e]]

41 / 49

Chapter 5:

Scanner design

42 / 49

Lexical Analysis
Scanner design

Input (simplified): a set of rules:

e1 { action1 }
e2 { action2 }

. . .
ek { actionk }

Output: a program,

... reading a maximal prefix w from the input, that satisfies e1 | . . . | ek;

... determining the minimal i , such that w ∈ [[ei]];

... executing actioni for w.

43 / 49

Implementation:

Idea:

Create the NFA P(Ae) = (Q,Σ, δ, q0, F) for the expression e = (e1 | . . . | ek);
Define the sets:

F1 = {q ∈ F | q ∩ last[e1] 6= ∅}
F2 = {q ∈ (F\F1) | q ∩ last[e2] 6= ∅}

. . .
Fk = {q ∈ (F\(F1 ∪ . . . ∪ Fk−1)) | q ∩ last[ek] 6= ∅}

For input w we find: δ∗(q0, w) ∈ Fi iff the scanner must execute actioni
for w

44 / 49

Implementation:

Idea (cont’d):
The scanner manages two pointers 〈A,B〉 and the related states 〈qA, qB〉...
Pointer A points to the last position in the input, after which a state qA ∈ F was
reached;
Pointer B tracks the current position.

H a l l o ") ;("s t d o u t . w r i t le n

A B

H a l l o ") ;("w r i t le n

A B

⊥ q0

45 / 49

Implementation:

Idea (cont’d):
The current state being qB = ∅ , we consume input up to position A and reset:

B := A; A := ⊥;
qB := q0; qA := ⊥

H a l l o ") ;("w r i t le n

A B

q4q4

H a l l o ") ;("w r i t le n

A B

q4 ∅

H a l l o ") ;("

w r i t le n
A B

q0⊥

46 / 49

Extension: States

Now and then, it is handy to differentiate between particular scanner states.
In different states, we want to recognize different token classes with different
precedences.
Depending on the consumed input, the scanner state can be changed

Example: Comments

Within a comment, identifiers, constants, comments, ... are ignored

47 / 49

Input (generalized): a set of rules:

〈state〉 { e1 { action1 yybegin(state1); }
e2 { action2 yybegin(state2); }

. . .
ek { actionk yybegin(statek); }

}

The statement yybegin (statei); resets the current state to statei.
The start state is called (e.g.flex JFlex) YYINITIAL.

... for example:

〈YYINITIAL〉 ′′/∗′′ { yybegin(COMMENT); }
〈COMMENT〉 { ′′ ∗ /′′ { yybegin(YYINITIAL); }

. | \n { }
}

48 / 49

Remarks:

“.” matches all characters different from “\n”.
For every state we generate the scanner respectively.
Method yybegin (STATE); switches between different scanners.
Comments might be directly implemented as (admittedly overly complex) token-class.
Scanner-states are especially handy for implementing preprocessors, expanding
special fragments in regular programs.

49 / 49

Topic:

Syntactic Analysis

1 / 66

Syntactic Analysis

ParserToken-Stream Syntaxtree

Syntactic analysis tries to integrate Tokens into larger program units.

Such units may possibly be:

→ Expressions;

→ Statements;

→ Conditional branches;

→ loops; ...

2 / 66

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

ParserSpecification Generator

Specification of the hierarchical structure: contextfree grammars
Generated implementation: Pushdown automata + X

3 / 66

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

E→E{op}E Generator

Specification of the hierarchical structure: contextfree grammars
Generated implementation: Pushdown automata + X

3 / 66

Chapter 1:

Basics of Contextfree Grammars

4 / 66

Syntactic Analysis
Basics: Context-free Grammars

Programs of programming languages can have arbitrary numbers of tokens, but only
finitely many Token-classes.
This is why we choose the set of Token-classes to be the finite alphabet of terminals T .
The nested structure of program components can be described elegantly via
context-free grammars...

Definition: Context-Free Grammar
A context-free grammar (CFG) is a
4-tuple G = (N,T , P , S) with:

N the set of nonterminals,
T the set of terminals,
P the set of productions or rules, and
S ∈ N the start symbol

5 / 66

Noam Chomsky John Backus

Conventions

The rules of context-free grammars take the following form:

A→ α with A ∈ N , α ∈ (N ∪ T)∗

... for example:
S → aS b
S → ε

Specified language: {anbn | n ≥ 0}

Conventions:
In examples, we specify nonterminals and terminals in general implicitely:

nonterminals are: A,B,C, ..., 〈exp〉, 〈stmt〉, ...;
terminals are: a, b, c, ..., int, name, ...;

6 / 66

... a practical example:

S → 〈stmt〉
〈stmt〉 → 〈if〉 | 〈while〉 | 〈rexp〉;
〈if〉 → if (〈rexp〉) 〈stmt〉 else 〈stmt〉
〈while〉 → while (〈rexp〉) 〈stmt〉
〈rexp〉 → int | 〈lexp〉 | 〈lexp〉 = 〈rexp〉 | ...
〈lexp〉 → name | ...

More conventions:
For every nonterminal, we collect the right hand sides of rules and list them together.
The j-th rule for A can be identified via the pair (A, j)
(with j ≥ 0).

7 / 66

Pair of grammars:

E → E+E 0 | E∗E 1 | (E) 2 | name 3 | int 4

E → E+T 0 | T 1

T → T∗F 0 | F 1

F → (E) 0 | name 1 | int 2

E → E+E 0 | E∗E 1 | (E) 2 | name 3 | int 4

E → E+T 0 | T 1

T → T∗F 0 | F 1

F → (E) 0 | name 1 | int 2

Both grammars describe the same language

8 / 66

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T
→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗
9 / 66

... for example:

Derivation

Remarks:
The relation → depends on the grammar
In each step of a derivation, we may choose:

∗ a spot, determining where we will rewrite.

∗ a rule, determining how we will rewrite.

The language, specified by G is:

L(G) = {w ∈ T ∗ | S →∗ w}

Attention:
The order, in which disjunct fragments are rewritten is not relevant.

10 / 66

Derivation Tree

Derivations of a symbol are represented as derivation trees:

... for example:

E → 0 E + T
→ 1 T + T
→ 0 T ∗ F + T
→ 2 T ∗ int + T
→ 1 F ∗ int + T
→ 1 name ∗ int + T
→ 1 name ∗ int + F
→ 2 name ∗ int + int

A derivation tree for A ∈ N :
inner nodes: rule applications

root: rule application for A
leaves: terminals or ε

The successors of (B, i) correspond to right hand sides of the rule
11 / 66

E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

Special Derivations

Attention:
In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or
rather rightmost) occurence of a nonterminal.

These are called leftmost (or rather rightmost) derivations and are denoted with the
index L (or R respectively).
Leftmost (or rightmost) derivations correspond to a left-to-right (or right-to-left)
preorder-DFS-traversal of the derivation tree.
Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of
the derivation tree

12 / 66

Special Derivations

... for example:
E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

Leftmost derivation: (E, 0) (E, 1) (T , 0) (T , 1) (F , 1) (F , 2) (T , 1) (F , 2)
Rightmost derivation: (E, 0) (T , 1) (F , 2) (E, 1) (T , 0) (F , 2) (T , 1) (F , 1)
Reverse rightmost derivation: (F , 1) (T , 1) (F , 2) (T , 0) (E, 1) (F , 2) (T , 1) (E, 0)

13 / 66

Unique Grammars

The concatenation of leaves of a derivation tree t are often called yield(t) .

... for example:
E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

gives rise to the concatenation: name ∗ int + int .
14 / 66

Unique Grammars

Definition:
Grammar G is called unique, if for every w ∈ T ∗ there is maximally one derivation
tree t of S with yield(t) = w.

... in our example:

E → E+E 0 | E∗E 1 |
(E) 2 | name 3 | int 4

E → E+T 0 | T 1

T → T∗F 0 | F 1

F → (E) 0 | name 1 | int 2

The first one is ambiguous, the second one is unique
15 / 66

Conclusion:

A derivation tree represents a possible hierarchical structure of a word.
For programming languages, only those grammars with a unique structure are of
interest.
Derivation trees are one-to-one corresponding with leftmost derivations as well as
(reverse) rightmost derivations.

Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax
tree.

16 / 66

Finger Exercise: Redundant Nonterminals and Rules

Definition:
A ∈ N is productive, if A→∗ w for a w ∈ T ∗
A ∈ N is reachable, if S →∗ αAβ for suitable α, β ∈ (T ∪N)∗

Example:

S → aB B | bD
A → B c
B → S d | C
C → a
D → BD

Productive nonterminals: S,A,B,C
Reachable nonterminals: S,B,C,D

17 / 66

Productive Nonterminals

Idea for Productivity: And-Or-Graph for a Grammar

... here:

S 1 A 0

B 1

S 0

B 0

D 0 C 0

D B

S A

C

And-nodes: Rules
Or-nodes: Nonterminals
Edges: ((B, i), B) for all rules (B, i)

(A, (B, i)) if (B, i) ≡ B→α1Aα2

18 / 66

Productive Nonterminals

Idea for Productivity: And-Or-Graph for a Grammar

... here:

S 1 A 0

B 1

S 0

B 0

D 0 C 0

D B

S A

C
true

Productivity

true

true

true truetruetrue

false

true

And-nodes: Rules
Or-nodes: Nonterminals
Edges: ((B, i), B) for all rules (B, i)

(A, (B, i)) if (B, i) ≡ B→α1Aα2

18 / 66

Productive Nonterminals - Algorithm:

2N result = ∅; // Result-set
int count[P]; // Rule counter
2P rhs[N]; // Occurances in right hand sides

forall (A ∈ N) rhs[A] = ∅; // Initialization
forall ((A, i) ∈ P) { //

count[(A, i)] = 0; //
init(A, i); // Initialization of rhs

} //
. . . //

Helper function init counts the nonterminal-occurances in right hand sides and protocols
them in data structure rhs

19 / 66

Productive Nonterminals - Algorithm (cont.):

. . . //

2P W = {r | count[r] = 0}; // Workset
while (W 6= ∅) { //

(A, i) = extract(W); //
if (A 6∈ result) { //

result = result ∪ {A}; //
forall (r ∈ rhs[A]) { //

count[r]−−; //
if (count[r] ==0) W =W ∪ {r}; //

} // end of forall
} // end of if

} // end of while

Set W contains the rules, whose right hand sides only contain productive nonterminals

20 / 66

Productive Nonterminals - in an Example

S 1 A 0

B 1

S 0

B 0

D 0 C 0

D B

S A

C

Productivity

21 / 66

Productive Nonterminals - in an Example

S 1 A 0

B 1

S 0

B 0

D 0 C 0

D B

S A

C

Productivity

21 / 66

Runtime:

Initialization of data structures is linear.
Each rules is added once to W at most.
Each A is added once to result at most.
==⇒ Runtime is linear in the size of the grammar

Correctness:

If A is added to result in the j-th iteration of the while-loop there is a derivation tree
for A of height maximally j − 1.
For every derivation tree the root is added once to W

22 / 66

Discussion:

To simplify the test (A ∈ result) , we represent the set result as an array.
W as well as the sets rhs[A] are represented as Lists

The algorithm also works for finding smallest solutions for Boolean inequality systems
L(G) 6= ∅ (→ Emptyness Problem) can be reduced to determining productive
nonterminals

23 / 66

Reachable Nonterminals

Idea for Reachability: Dependency-Graph

... here:

D B

S A

C

Nodes: Nonterminals
Edges: (A,B) if B→α1Aα2 ∈ P

24 / 66

Reachable Nonterminals

Idea for Reachability: Dependency-Graph

... here:

D B

S A

C

Nonterminal A is reachable, if there is a path A to S in the dependency graph

24 / 66

Reduced Grammars

Conclusion:

Reachability in directed graphs can be computed via DFS in linear time.
This means the set of all reachable and productive nonterminals can be computed in
linear time.

A Grammar G is called reduced, if all of G ’s nonterminals are productive and reachable
as well...

Theorem:
Each contextfree Grammar G = (N,T , P , S) with L(G) 6= ∅ can be converted in linear
time into a reduced Grammar G′ with

L(G) = L(G′)

25 / 66

Reduced Grammars - Construction:

1. Step:
Compute the subset N1 ⊆ N of all produktive nonterminals of G.
Since L(G) 6= ∅ in particular S ∈ N1.

2. Step:
Construct: P1 = {A → α ∈ P | A ∈ N1 ∧ α ∈ (N1 ∪ T)∗}

3. Step:
Compute the subset N2 ⊆ N1 of all productive and reachable nonterminals of G.
Since L(G) 6= ∅ in particular S ∈ N2.

4. Step:
Construct: P2 = {A→α ∈ P | A ∈ N2 ∧ α ∈ (N2 ∪ T)∗}

Result: G′ = (N2, T , P2, S)

26 / 66

Reduced Grammars - Example:

S → aB B | bD
A → B c
B → S d | C
C → a
D → BD

27 / 66

Chapter 2:

Basics of Pushdown Automata

28 / 66

Syntactic Analysis

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

29 / 66

Example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

Conventions:
We do not differentiate between pushdown symbols and states
The rightmost / upper pushdown symbol represents the state
Every transition consumes / modifies the upper part of the pushdown

30 / 66

Definition: Pushdown Automaton
A pushdown automaton (PDA) is a tuple
M = (Q,T , δ, q0, F) with:

Q a finite set of states;
T an input alphabet;
q0 ∈ Q the start state;
F ⊆ Q the set of final states and
δ ⊆ Q+ × (T ∪ {ε})×Q∗ a finite set of transitions

We define computations of pushdown automata with the help of transitions; a particular
computation state (the current configuration) is a pair:

(γ,w) ∈ Q∗ × T ∗

consisting of the pushdown content and the remaining input.

31 / 66

Friedrich Bauer Klaus Samelson

... for example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

(0 , a a a b b b) ` (1 1 , a a b b b)
` (1 1 1 , a b b b)
` (1 1 1 1 , b b b)
` (1 1 2 , b b)
` (1 2 , b)
` (2 , ε)

32 / 66

A computation step is characterized by the relation ` ⊆ (Q∗ × T ∗)2 with

(αγ, xw) ` (αγ′, w) for (γ, x, γ′) ∈ δ

Remarks:

The relation ` depends on the pushdown automaton M
The reflexive and transitive closure of ` is denoted by `∗
Then, the language accepted by M is

L(M) = {w ∈ T ∗ | ∃ f ∈ F : (q0, w)`∗ (f, ε)}

We accept with a final state together with empty input.

33 / 66

Definition: Deterministic Pushdown Automaton
The pushdown automaton M is deterministic, if every configuration has maximally one
successor configuration.

This is exactly the case if for distinct transitions (γ1, x, γ2) , (γ
′
1, x
′, γ′2) ∈ δ we can

assume:
Is γ1 a suffix of γ′1, then x 6= x′ ∧ x 6= ε 6= x′ is valid.

... for example:

0 a 11
1 a 11
11 b 2
12 b 2

... this obviously holds

34 / 66

Pushdown Automata

Theorem:
For each context free grammar G = (N,T , P , S)
a pushdown automaton M with L(G) = L(M) can be built.

The theorem is so important for us, that we take a look at two constructions for automata,
motivated by both of the special derivations:

ML
G to build Leftmost derivations

MR
G to build reverse Rightmost derivations

35 / 66

M. Schützenberger A. Öttinger

Chapter 3:

Top-down Parsing

36 / 66

Syntactic Analysis

Item Pushdown Automaton

Construction: Item Pushdown Automaton ML
G

Reconstruct a Leftmost derivation.
Expand nonterminals using a rule.
Verify successively, that the chosen rule matches the input.

==⇒ The states are now Items (= rules with a bullet):

[A→α • β] , A→ αβ ∈ P

The bullet marks the spot, how far the rule is already processed

37 / 66

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

38 / 66

Item Pushdown Automaton – Example

We add another rule S′ → S $ for initialising the construction:

Start state: [S′→ • S $]
End state: [S′→S • $]
Transition relations:

[S′→ • S $] ε [S′→ • S $] [S→ • AB]
[S→ • AB] ε [S→ • AB] [A→ • a]
[A→ • a] a [A→ a •]
[S→ • AB] [A→ a •] ε [S→A • B]
[S→A • B] ε [S→A • B] [B→ • b]
[B→ • b] b [B→ b •]
[S→A • B] [B→ b •] ε [S→AB •]
[S′→ • S $] [S→AB •] ε [S′→S • $]

39 / 66

Item Pushdown Automaton

The item pushdown automaton ML
G has three kinds of transitions:

Expansions: ([A→α •B β], ε, [A→α •B β] [B→ • γ]) for
A → αB β, B→ γ ∈ P

Shifts: ([A→α • a β], a, [A→αa • β]) for A→αaβ ∈ P
Reduces: ([A→α •B β] [B→ γ•], ε, [A→αB • β]) for

A→αB β, B→ γ ∈ P

Items of the form: [A→α •] are also called complete
The item pushdown automaton shifts the bullet around the derivation tree ...

40 / 66

Item Pushdown Automaton

Discussion:

The expansions of a computation form a leftmost derivation
Unfortunately, the expansions are chosen nondeterministically

For proving correctness of the construction, we show that for every Item [A→α •B β]
the following holds:

([A→α •B β], w) `∗ ([A→αB • β], ε) iff B →∗ w

LL-Parsing is based on the item pushdown automaton and tries to make the
expansions deterministic ...

41 / 66

Item Pushdown Automaton

Example: S′ → S $ S → ε | aS b

The transitions of the according Item Pushdown Automaton:

0 [S′→ • S $] ε [S′→ • S $] [S→•]
1 [S′→ • S $] ε [S′→ • S $] [S→ • aS b]
2 [S→ • aS b] a [S→ a • S b]
3 [S→ a • S b] ε [S→ a • S b] [S→•]
4 [S→ a • S b] ε [S→ a • S b] [S→ • aS b]
5 [S→ a • S b] [S→•] ε [S→ aS • b]
6 [S→ a • S b] [S→ aS b•] ε [S→ aS • b]
7 [S→ aS • b] b [S→ aS b•]
8 [S′→ • S $] [S→•] ε [S′→S • $]
9 [S′→ • S $] [S→ aS b•] ε [S′→S • $]

Conflicts arise between the transitions (0, 1) and (3, 4), resp..

42 / 66

Topdown Parsing

Problem:
Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing
For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a lookup of the next input symbols.

43 / 66

Structure of the LL(1)-Parser:

δ

M
Output

The parser accesses a frame of length 1 of the input;
it corresponds to an item pushdown automaton, essentially;
table M [q, w] contains the rule of choice.

44 / 66

Topdown Parsing

Idea:
Emanate from the item pushdown automaton
Consider the next input symbol to determine the appropriate rule for the next expansion
A grammar is called LL(1) if a unique choice is always possible

Definition:
A reduced grammar is called LL(1), if for each two distinct
rules A→α , A→α′ ∈ P and each derivation
S →∗L uAβ with u ∈ T ∗ the following is valid:

First1(αβ) ∩ First1(α
′ β) = ∅

45 / 66

Philip Lewis Richard Stearns

Topdown Parsing

Example 1:

S → if (E) S else S |
while (E) S |
E ;

E → id

is LL(1), since First1(E) = {id}
Example 2:

S → if (E) S else S |
if (E) S |
while (E) S |
E ;

E → id

... is not LL(k) for any k > 0.
46 / 66

Lookahead Sets

Definition: First1-Sets
For a set L ⊆ T ∗ we define:

First1(L) = {ε | ε ∈ L} ∪ {u ∈ T | ∃ v ∈ T ∗ : uv ∈ L}

Example: S → ε | aS b
First1([[S]])
ε
a b
a a b b
a a a b b b
. . .

≡ the yield’s prefix of length 1
47 / 66

Lookahead Sets

Arithmetics:
First1(_) is distributive with union and concatenation:

First1(∅) = ∅
First1(L1 ∪ L2) = First1(L1) ∪ First1(L2)
First1(L1 · L2) = First1(First1(L1) · First1(L2))

:= First1(L1) �1 First1(L2)

�1 being 1− concatenation

Definition: 1-concatenation
Let L1, L2 ⊆ T ∪ {ε} with L1 6= ∅ 6= L2. Then:

L1 �1 L2 =

{
L1 if ε 6∈ L1

(L1\{ε}) ∪ L2 otherwise

If all rules of G are productive, then all sets First1(A) are non-empty.
48 / 66

Lookahead Sets

For α ∈ (N ∪ T)∗ we are interested in the set:

First1(α) = First1({w ∈ T ∗ | α→∗ w})

Idea: Treat ε separately: First1(A) = F ε(A) ∪ {ε | A→∗ε}
Let empty(X) = true iff X→∗ ε .

F ε(X1 . . . Xm) =
⋃j
i=1 F ε(Xi) if ¬empty(Xj) ∧

∧j−1
i=1 empty(Xi)

We characterize the ε-free First1-sets with an inequality system:

F ε(a) = {a} if a ∈ T
F ε(A) ⊇ F ε(Xj) if A→X1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xj−1)

49 / 66

Lookahead Sets

for example...

E → E+T 0 | T 1

T → T ∗F 0 | F 1

F → (E) 0 | name 1 | int 2

with empty(E) = empty(T) = empty(F) = false

... we obtain:

F ε(S
′) ⊇ F ε(E) F ε(E) ⊇ F ε(E)

F ε(E) ⊇ F ε(T) F ε(T) ⊇ F ε(T)
F ε(T) ⊇ F ε(F) F ε(F) ⊇ { (, name, int}

50 / 66

Fast Computation of Lookahead Sets

Observation:
The form of each inequality of these systems is:

x w y resp. x w d

for variables x, y und d ∈ D.
Such systems are called pure unification problems
Such problems can be solved in linear space/time.

for example: D = 2{a,b,c}

x0 ⊇ {a}
x1 ⊇ {b} x1 ⊇ x0 x1 ⊇ x3

x2 ⊇ {c} x2 ⊇ x1

x3 ⊇ {c} x3 ⊇ x2 x3 ⊇ x3

a b

c

c

0 1

3

2

51 / 66

Fast Computation of Lookahead Sets

a

a b c

0 1

3

2

Proceeding:
Create the Variable Dependency Graph for the inequality system.
Within a Strongly Connected Component (→ Tarjan) all variables have the same value
Is there no ingoing edge for an SCC, its value is computed via the smallest upper
bound of all values within the SCC
In case of ingoing edges, their values are also to be considered for the upper bound

52 / 66

Frank DeRemer
& Tom Pennello

Fast Computation of Lookahead Sets

... for our example grammar:

First1 :

E T FS’

(, int, name

53 / 66

Item Pushdown Automaton as LL(1)-Parser

context is relevant too: S′ → S $ S → ε 0 | aS b 1

First1(input) $ a b

S ? ? ?

54 / 66

γ

S′i0

A1i1

in

β

β1

β0

w ∈ First1()

S

aBb1

S′i0

A1i1

in

β

β0

w ∈ First1()

S

0 ε

β1

Item Pushdown Automaton as LL(1)-Parser

Inequality system for Follow1(B) = First1(β)�1 . . .�1 First1(β0)

Follow1(S) ⊇ {$}
Follow1(B) ⊇ F ε(Xj) if A→αBX1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xj−1)
Follow1(B) ⊇ Follow1(A) if A→αBX1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xm)

55 / 66

γ

S′i0

A1i1

in

Bi β

β1

β0

An

)w ∈ First1(

w ∈ First1(First1(γ)�1 First1(β)�1 . . .�1 First1(β0))
w ∈ First1(γ)�1 Follow1(B)

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M [B, w] = i with B→ γ i if w ∈ First1(γ) �1 Follow1(B)

... for example: S′ → S $ S → ε 0 | aS b 1

First1(S) = {ε, a} Follow1(S) = {b, $}

S-rule 0 : First1(ε) �1 Follow1(S) = {b, $}
S-rule 1 : First1(aSb) �1 Follow1(S) = {a}

$ a b

S 0 1 0

56 / 66

Item Pushdown Automaton as LL(1)-Parser

For example: S′ → S $ S → ε 0 | aS b 1

The transitions of the according Item Pushdown Automaton:

0 [S′→ • S $] ε [S′→ • S $] [S→•]
1 [S′→ • S $] ε [S′→ • S $] [S→ • aS b]
2 [S→ • aS b] a [S→ a • S b]
3 [S→ a • S b] ε [S→ a • S b] [S→•]
4 [S→ a • S b] ε [S→ a • S b] [S→ • aS b]
5 [S→ a • S b] [S→•] ε [S→ aS • b]
6 [S→ a • S b] [S→ aS b•] ε [S→ aS • b]
7 [S→ aS • b] b [S→ aS b•]
8 [S′→ • S $] [S→•] ε [S′→S • $]
9 [S′→ • S $] [S→ aS b•] ε [S′→S • $]

Lookahead table:
$ a b

S 0 1 0

57 / 66

Left Recursion

Attention:
Many grammars are not LL(k) !

A reason for that is:

Definition
Grammar G is called left-recursive, if

A→+Aβ for an A ∈ N , β ∈ (T ∪N)∗

Example:
E → E+T 0 | T 1

T → T ∗F 0 | F 1

F → (E) 0 | name 1 | int 2

... is left-recursive
58 / 66

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:
Let wlog. A→Aβ |α ∈ P
and A be reachable from S

Assumption: G is LL(k)

⇒Firstk(αβ
n γ) ∩

Firstk(αβ
n+1 γ) = ∅

Case 1: β→∗ ε — Contradiction !!!
Case 2: β→∗ w 6= ε ==⇒ Firstk(αw

k γ) ∩ Firstk(αw
k+1 γ) 6= ∅

59 / 66

Right-Regular Context-Free Parsing
Recurring scheme in programming languages: Lists of sth...
S → b | S a b
Alternative idea: Regular Expressions
S → (b a)∗ b

Definition: Right-Regular Context-Free Grammar
A right-regular context-free grammar (RR-CFG) is a
4-tuple G = (N,T , P , S) with:

N the set of nonterminals,
T the set of terminals,
P the set of rules with regular expressions of symbols as rhs,
S ∈ N the start symbol

Example: Arithmetic Expressions
S → E
E → T (+T)∗

T → F (∗F)∗

F → (E) | name | int
60 / 66

Idea 1: Rewrite the rules from G to 〈G〉:
A → 〈α〉 if A→ α ∈ P
〈α〉 → α if α ∈ N ∪ T
〈ε〉 → ε
〈α∗〉 → ε | 〈α〉〈α∗〉 if α ∈ RegexT,N
〈α1 . . . αn〉 → 〈α1〉 . . . 〈αn〉 if αi ∈ RegexT,N
〈α1 | . . . | αn〉 → 〈α1〉 | . . . | 〈αn〉 if αi ∈ RegexT,N

. . . and generate the according LL(k)-Parser ML
〈G〉

Example: Arithmetic Expressions cont’d
S → E
E → T (+T)∗〈T (+T)∗〉
T → F (∗F)∗〈F (∗F)∗〉
F → (E) | name | int
〈T (+T)∗〉 → T 〈(+T)∗〉
〈(+T)∗〉 → ε | 〈 +T 〉〈(+T)∗〉
〈 +T 〉 → +T
〈F (∗F)∗〉 → F 〈(∗F)∗〉
〈(∗F)∗〉 → ε | 〈∗F 〉 〈(∗F)∗〉
〈 ∗F 〉 → ∗F 61 / 66

Definition:
An RR−CFG G is called RLL(1),
if the corresponding CFG 〈G〉 is an LL(1) grammar.

Discussion
directly yields the table driven parser ML

〈G〉 for RLL(1) grammars
however: mapping regular expressions to recursive productions unnessessarily strains
the stack
→ instead directly construct automaton in the style of Berry-Sethi

62 / 66

Reinhold Heckmann

Idea 2: Recursive Descent RLL Parsers:

Recursive descent RLL(1)-parsers are an alternative to table-driven parsers; apart from
the usual function scan(), we generate a program frame with the lookahead function
expect()and the main parsing method parse():

int next;
void expect(Set E){

if ({ε, next} ∩ E = ∅){
cerr << ”Expected” << E << ”found” << next;
exit(0);

}
return ;

}
void parse(){

next = scan();
expect(First1(S)) ;
S();
expect({EOF}) ;

}
63 / 66

Idea 2: Recursive Descent RLL Parsers:

For each A→ α ∈ P , we introduce:

void A(){
generate(α)

}

with the meta-program generate being defined by structural decomposition of α:

generate(r1 . . . rk) = generate(r1)
expect(First1(r2)) ;
generate(r2)
...
expect(First1(rk)) ;
generate(rk)

generate(ε) = ;
generate(a) = next = scan();
generate(A) = A();

64 / 66

Idea 2: Recursive Descent RLL Parsers:

generate(r∗) = while (next ∈ Fε(r)) {
generate(r)
}

generate(r1 | . . . | rk) = switch(next) {
labels(First1(r1)) generate(r1) break ;
...
labels(First1(rk)) generate(rk) break ;
}

labels({α1, . . . , αm}) = label(α1): . . . label(αm):
label(α) = case α
label(ε) = default

65 / 66

Topdown-Parsing

Discussion
A practical implementation of an RLL(1)-parser via recursive descent is a
straight-forward idea
However, only a subset of the deterministic contextfree languages can be parsed this
way.
As soon as First1(_) sets are not disjoint any more,

Solution 1: For many accessibly written grammars, the alternation between right hand sides happens
too early. Keeping the common prefixes of right hand sides joined and introducing a new production
for the actual diverging sentence forms often helps.
Solution 2: Introduce ranked grammars, and decide conflicting lookahead always in favour of the
higher ranked alternative
→ relation to LL parsing not so clear any more
→ not so clear for _∗ operator how to decide
Solution 3: Going from LL(1) to LL(k)
The size of the occuring sets is rapidly increasing with larger k
Unfortunately, even LL(k) parsers are not sufficient to accept all deterministic contextfree
languages. (regular lookahead→ LL(∗))

In practical systems, this often motivates the implementation of k = 1 only ...
66 / 66

Topic:

Syntactic Analysis - Part II

1 / 49

Chapter 1:

Bottom-up Analysis

2 / 49

Syntactic Analysis - Part II

Shift-Reduce Parser

Idea:
We delay the decision whether to reduce until we
know, whether the input matches the right-hand-side of a rule!

Construction: Shift-Reduce parser MR
G

The input is shifted successively to the pushdown.
Is there a complete right-hand side (a handle) atop the pushdown, it is replaced
(reduced) by the corresponding left-hand side

3 / 49

Donald Knuth

Shift-Reduce Parser

Example:

S → AB
A → a
B → b

The pushdown automaton:

States: q0, f , a, b, A, B, S;
Start state: q0
End state: f

q0 a q0 a
a ε A
A b A b
b ε B
AB ε S
q0 S ε f

4 / 49

Shift-Reduce Parser

Construction:
In general, we create an automaton MR

G = (Q,T , δ, q0, F) with:
Q = T ∪N ∪ {q0, f} (q0, f fresh);
F = {f};
Transitions:

δ = {(q, x, q x) | q ∈ Q, x ∈ T} ∪ // Shift-transitions
{(α, ε, A) | A→α ∈ P} ∪ // Reduce-transitions
{(q0 S, ε, f)} // finish

Example-computation:

(q0, a b) ` (q0 a , b) ` (q0A, b)

` (q0A b , ε) ` (q0 AB , ε)
` (q0 S, ε) ` (f, ε)

5 / 49

Shift-Reduce Parser

Observation:

The sequence of reductions corresponds to a reverse rightmost-derivation for the input
To prove correctnes, we have to prove:

(ε, w)`∗ (A, ε) iff A→∗ w

The shift-reduce pushdown automaton MR
G is in general also non-deterministic

For a deterministic parsing-algorithm, we have to identify computation-states for
reduction

==⇒ LR-Parsing

6 / 49

The Pushdown During an RR-Derivation

7 / 49

E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

Idea: Observe a successful run of MR
G !

Input:
counter ∗ 2 + 40

Pushdown:
(q0)

E → E+T 0 | T 1

T → T∗F 0 | F 1

F → (E) 0 | name 1 | int 2

Result:
the pushdown contains sequences of symbols,
which are already processed prefixes of righthandsides of productions leading to the
topmost few states. → documentation of the processing history

→ a righthandside on top of the pushdown is only a handle in the correct historical context

Viable Prefixes and Admissable Items

Formalism: use Items as representations of prefixes of righthandsides

Generic Agreement
In a sequence of configurations of MR

G

(q0 αγ, v) ` (q0 αB, v) `∗ (q0 S, ε)

we call αγ a viable prefix for the complete item [B→ γ•] .

Reformulating the Shift-Reduce-Parsers main problem:
Find the items, for which the content of MR

G ’s stack is the viable prefix....

→ Admissable Items

8 / 49

Admissible Items

The item [B→ γ • β] is called admissible for αγ iff S→∗R αB v :

A0 i0

A2 i2

A1 i1

B iαm

α2

α1

γ β

... with α = α1 . . . αm

9 / 49

Characteristic Automaton
S′ → •E

E → •E+T

ε

E → •T

ε

ε

ε

T → •T∗F

ε

T → •F

ε

ε

ε

F → •(E)

ε

F → •int

ε

S′ → E•E

E → E•+TE
E → E+•T+

ε

ε

E → E+T•T

E → T•T

T → T•∗FT
T → T∗•F∗
ε

ε

T → T∗F•F

T → F•
F

F → (•E)
(

F → (E•)
E

εε

F → (E)•
)

F → int•
int

An automaton...
consuming pushdown symbols, i.e.
prefixes of righthandsides of
productions expanding from S

tracing admissible items in its states

10 / 49

Characteristic Automaton

Observation:
One can now consume theshift-reduce parser’s pushdown with the characteristic
automaton: If the input (N ∪ T)∗ for the characteristic automaton corresponds to a viable
prefix, its state contains the admissible items.

States: Items
Start state: [S′→ • S]

Final states: {[B→ γ•] | B→ γ ∈ P}
Transitions:
(1) ([A→α •X β],X,[A→αX • β]), X ∈ (N ∪ T), A→αX β ∈ P ;
(2) ([A→α •B β],ε, [B→ • γ]), A→αB β , B→ γ ∈ P ;

The automaton c(G) is called characteristic automaton for G.

11 / 49

Canonical LR(0)-Automaton

The canonical LR(0)-automaton LR(G) is created from c(G) by:
1 performing arbitrarily many ε-transitions after every consuming transition
2 performing the powerset construction
3 Idea: or rather apply characteristic automaton construction to powersets directly?

... for example:

12 / 49

0 5
(

2

T
T

1E

3

4

F

int

6

+

F

int

(

9

T

7

∗
∗

8E

F

int

10

11

F

+

)

int

(

(

Canonical LR(0)-Automaton – Example:

S′ → E
E → E+T 0 | T 1

T → T ∗F 0 | F 1

F → (E) 0 | int 2

S′→•E
E→•E + T
E→•T
T→•F
T→•T∗F
F→•(E)
F→•int

q0
F→(•E)
E→•E + T
E→•T
T→•F
T→•T∗F
F→•(E)
F→•int

q5

(

E→T•
T→T•∗F

q2

T

T

S′→E•
E→E•+T

E

q1

T→F•

F→int•

q3

q4

F

int

E→E+•T
T→•F
T→•T∗F
F→•(E)
F→•int

q6

+

F

int

(

E→E+T•
T→T•∗F

q9

T

T→T∗•F
F→•(E)
F→•int

q7

∗
∗

F→(E•)
E→E•+T

q8E
F

int

T→T∗F•

F→(E)•

F

+

)

q10

q11

int

(

(

13 / 49

Canonical LR(0)-Automaton

Observation:

The canonical LR(0)-automaton can be created directly from the grammar.
For this we need a helper function δ∗ε (ε-closure)

δ∗ε (q) = q ∪ {[B→ • γ] | B→ γ ∈ P ,
[A→α •B′ β′] ∈ q ,
B′→∗B β}

We define:
States: Sets of items;

Start state: δ∗ε {[S′→ • S]}
Final states: {q | [A→α •] ∈ q}
Transitions: δ(q,X) = δ∗ε {[A→αX • β] | [A→α •X β] ∈ q}

14 / 49

LR(0)-Parser

Idea for a parser:
The parser manages a viable prefix α = X1 . . . Xm on the pushdown and uses LR(G)
to identify reduction spots.
It can reduce with A→ γ , if [A→ γ •] is admissible for α

Optimization:
We push the states instead of the Xi in order not to process the pushdown’s content with
the automaton anew all the time.
Reduction with A→ γ leads to popping the uppermost |γ| states and continue with the
state on top of the stack and input A.

Attention:
This parser is only deterministic, if each final state of the canonical LR(0)-automaton is
conflict free.

15 / 49

LR(0)-Parser – Example:

q0
...

int ∗ int + int

...
q0

E→T•
T→T•∗F

q2
S′→E•
E→E•+T

E

q1

...
q5(

T T

T→F•

F→int•

q3

q4

F

int

...
q6

+

F

int

(

...
q7

∗

E→E+T•
T→T•∗F

q9

T

∗

...
q8

E

F

int

T→T∗F•

F→(E)•

F

+

)

q10

q11

int

(

(

16 / 49

LR(0)-Parser

... we observe:

S′→E•
E→E•+T

q1

E→T•
T→T•∗F

q2

T→F•
q3

F→int•
q4

E→E+T•
T→T•∗F

q9

T→T∗F•
q10

F→(E)•
q11

The final states q1, q2, q9 contain more than one admissible item
⇒ non-deterministic!

17 / 49

LR(0)-Parser

The construction of the LR(0)-parser:

States: Q ∪ {f} (f fresh)
Start state: q0
Final state: f

Transitions:

Shift: (p, a, p q) if q = δ(p, a) 6= ∅
Reduce: (p q1 . . . qm, ε, p q) if [A→X1 . . . Xm •] ∈ qm, q = δ(p,A)
Finish: (q0 p, ε, f) if [S′→S•] ∈ p

with the canonical automaton LR(G) = (Q,T , δ, q0, F) .

18 / 49

LR(0)-Parser

Correctness:

we show:

The accepting computations of an LR(0)-parser are one-to-one related to those of a
shift-reduce parser MR

G .

we conclude:

The accepted language is exactly L(G)

The sequence of reductions of an accepting computation for a word w ∈ T yields a
reverse rightmost derivation of G for w

19 / 49

LR(0)-Parser

Attention:
Unfortunately, the LR(0)-parser is in general non-deterministic.

We identify two reasons for a state q ∈ Q :

Reduce-Reduce-Conflict:

A→ γ •
A′→ γ′ •

q

with A 6= A′ ∨ γ 6= γ′

Shift-Reduce-Conflict:

A→ γ •
A′→α • a β

q

with a ∈ T

Those states are called LR(0)-unsuited.

20 / 49

Revisiting the Conflicts of the LR(0)-Automaton

21 / 49

E 0

+E 1

T 0

F 2

F 2

T 1

int

int

name

1F

T 1 ∗
?

What differenciates the particular Reductions and Shifts?

Input:
∗ 2 + 40

Pushdown:
(q0 T)

E → E+T 0 | T 1

T → T ∗F 0 | F 1

F → (E) 0 | int 2

LR(k)-Grammars

Idea: Consider k-lookahead in conflict situations.

Definition:
The reduced contextfree grammar G is called LR(k)-grammar, if
αβ w

∣∣|αβ|+k = α′ β′ w′
∣∣|αβ|+k with:

S →∗R αAw → αβ w
S →∗R α′A′ w′ → α′ β′ w′

}
follows: α = α′ ∧ β = β′ ∧ A = A′

Strategy for testing Grammars for LR(k)-property
1 Focus iteratively on all rightmost derivations S→∗R αX w→αβ w
2 Iterate over k ≥ 0

1 For each γ = αβw
∣∣|αβ|+k (handle with k-lookahead) check if there exists a differently

right-derivable α′β′w′ for which γ = α′ β′w′∣∣|αβ|+k
2 if there is none, we have found no objection against k being enough lookahead to disambiguate αβw

from other rightmost derivations
22 / 49

LR(k)-Grammars

for example:

(1) S→A | B A→ aA b | 0 B→ aB b b | 1
... is not LL(k) for any k — but LR(0):

Let S→∗R αX w→αβ w . Then αβ is of one of these forms:

A , B , an aA b , an aB b b , an 0 , an 1 (n ≥ 0)

(2) S→ aA c A→Ab b | b
... is also not LL(k) for any k — but again LR(0):

Let S→∗R αX w→αβ w . Then αβ is of one of these forms:

a b , aA b b , aA c

23 / 49

LR(k)-Grammars

for example:

(3) S→ aA c A→ b bA | b ... is not LR(0), but LR(1):

Let S→∗R αX w→αβ w with {y} = Firstk(w) then αβ y is of one of
these forms:

a b2n b c , a b2n b bA c , aA c

(4) S→ aA c A→ bA b | b ... is not LR(k) for any k ≥ 0:

Consider the rightmost derivations:

S→∗R a bnAbn c→ a bn b bn c

24 / 49

LR(1)-Parsing

Idea: Let’s equip items with 1-lookahead

Definition LR(1)-Item
An LR(1)-item is a pair [B→α • β, x] with

x ∈ Follow1(B) =
⋃
{First1(ν) | S→∗ µB ν}

25 / 49

Admissible LR(1)-Items

The LR(1)-Item [B→ γ • β, x] is admissable for αγ if:

S→∗R αB w with {x} = First1(w)

S i0

Am im

A1 i1

B iαm

α1

βγ

α0

x w

... with α0 . . . αm = α
26 / 49

The Characteristic LR(1)-Automaton

The set of admissible LR(1)-items for viable prefixes is again computed with the help of
the finite automaton c(G, 1).

The automaton c(G, 1):

States: LR(1)-items
Start state: [S′→ • S, $]

Final states: {[B→ γ•, x] | B→ γ ∈ P , x ∈ Follow1(B)}

Transitions:
(1) ([A→α •X β, x],X,[A→αX • β, x]), X ∈ (N ∪ T)
(2) ([A→α •B β, x],ε, [B→ • γ, x′]), A→αB β , B→ γ ∈ P ,

x′ ∈ First1(β)�1 {x}
This automaton works like c(G) — but additionally manages a 1-prefix from Follow1 of the
left-hand sides.

27 / 49

The Canonical LR(1)-Automaton

The canonical LR(1)-automaton LR(G, 1) is created from c(G, 1), by performing arbitrarily
many ε-transitions and then making the resulting automaton deterministic ...

But again, it can be constructed directly from the grammar; analoguously to LR(0), we
need the ε-closure δ∗ε as a helper function:

δ∗ε (q) = q ∪ {[C→ • γ, x] | [A→α •B β′, x′] ∈ q , B→∗ C β , C→ γ ∈ P ,
x ∈ First1(β β

′) �1 {x′ }}

Then, we define:
States: Sets of LR(1)-items;

Start state: δ∗ε {[S′→ • S, $]}
Final states: {q | [A→α •, x] ∈ q}
Transitions: δ(q,X) = δ∗ε {[A→αX • β, x] | [A→α •X β, x] ∈ q}

28 / 49

The Canonical LR(1)-Automaton – for example:

S′ → E
E → E+T | T 1

T → T ∗F | F 1

F → (E) | int 2 S′ → •E {$}
E → •E+T {$,+}
E → •T {$,+}
T → •F {$,+, ∗}
T → •T∗F {$,+, ∗}
F → •(E) {$,+, ∗}
F → •int {$,+, ∗}

q0
F → (•E) {$,+, ∗}
E → •E + T {),+}
E → •T {),+}
T → •F {),+, ∗}
T → •T ∗ F {),+, ∗}
F → •(E) {),+, ∗}
F → •int {),+, ∗}

q5

(

E → T• {$,+}
T → T• ∗ F {$,+, ∗}

q2

T

S′ → E• {$}
E → E•+ T {$,+}

E

q1

T → F• {$,+, ∗}

F → int• {$,+, ∗}

q3

q4

F

int

E → E + •T {$,+}
T → •F {$,+, ∗}
T → •T ∗ F {$,+, ∗}
F → •(E) {$,+, ∗}
F → •int {$,+, ∗}

q6

+

F

int

(

E → E + T• {$,+}
T → T• ∗ F {$,+, ∗}

q9

T

T → T ∗ •F {$,+, ∗}
F → •(E) {$,+, ∗}
F → •int {$,+, ∗}

q7

∗
∗

F → (E•) {$,+, ∗}
E → E•+ T {),+}

q8E

T → T ∗ F• {$,+, ∗}

F → (E)• {$,+, ∗}

F

)

q10

q11

int

(

F → (•E) {),+, ∗}
E → •E + T {),+}
E → •T {),+}
T → •F {),+, ∗}
T → •T ∗ F {),+, ∗}
F → •(E) {),+, ∗}
F → •int {),+, ∗}

T → F• {),+, ∗}

F → int• {),+, ∗}

E → T• {),+}
T → T• ∗ F {),+, ∗}

E → E + •T {),+}
T → •F {),+, ∗}
T → •T ∗ F {),+, ∗}
F → •(E) {),+, ∗}
F → •int {),+, ∗}

q6′

q5′

q3′

q4′

q2′

(

int TF

+

.

. . .

29 / 49

The Canonical LR(1)-Automaton

Discussion:

In the example, the number of states was almost doubled
... and it can become even worse

The conflicts in states q1, q2, q9 are now resolved !
e.g. we have:

E→E+T• {$,+}
T→T•∗F {$,+, ∗}

q9

with:

{$,+} ∩ (First1(∗F)�1 {$,+, ∗}) = {$,+} ∩ {∗} = ∅

30 / 49

The Action Table:

During practical parsing, we want to represent states just via an integer id. However, when
the canonical LR(1)-automaton reaches a final state, we want to know how to reduce/shift.
Thus we introduce...

The construction of the action table:
Type: action : Q× T → LR(0)-Items ∪ {s, error}

Reduce: action[q, w] = [A→β •] if [A→β •, w] ∈ q

Shift: action[q, w] = s if [A→β • b γ, a] ∈ q, w ∈ First1(b γ) �1 {a}
Error: action[q, w] = error else

31 / 49

The LR(1)-Parser:

action
Output

goto

The goto-table encodes the transitions:

goto[q,X] = δ(q,X) ∈ Q

The action-table describes for every state q and possible lookahead w the necessary
action.

32 / 49

The LR(1)-Parser:

The construction of the LR(1)-parser:

States: Q ∪ {f} (f fresh)
Start state: q0
Final state: f

Transitions:

Shift: (p, a, p q) if a = w,
s = action[p, a],
q = goto[p, a]

Reduce: (p q1 . . . q|β|, ε, p q) if q|β| ∈ F ,
[A→β •] = action[q|β|, w],
q = goto[p,A]

Finish: (q0 p, ε, f) if [S′→S•, $] ∈ p

with LR(G, 1) = (Q,T , δ, q0, F) and the lookahead w.
33 / 49

The LR(1)-Parser:

Possible actions are:

shift // Shift-operation
reduce (A→ γ) // Reduction with callback/output
error // Error

... for example:
S′ → E
E → E+T 0 | T 1

T → T ∗F 0 | F 1

F → (E) 0 | int 1

action $ int () + ∗
q1 S′, 0 s
q2 E, 1 E, 1 s
q′2 E, 1 E, 1 s
q3 T , 1 T , 1 T , 1
q′3 T , 1 T , 1 T , 1
q4 F , 1 F , 1 F , 1
q′4 F , 1 F , 1 F , 1
q9 E, 0 E, 0 s
q′9 E, 0 E, 0 s
q10 T , 0 T , 0 T , 0
q′10 T , 0 T , 0 T , 0
q11 F , 0 F , 0 F , 0
q′11 F , 0 F , 0 F , 0

34 / 49

The Canonical LR(1)-Automaton

In general: We identify two conflicts for a state q ∈ Q :

Reduce-Reduce-Conflict:

A→ γ •, x
A′→ γ′ •, x

q

with A 6= A′ ∨ γ 6= γ′

Shift-Reduce-Conflict:

A→ γ •, x
A′→α′ • a β, y

q

with a ∈ T und x ∈ {a} �k Firstk(β)�k {y} .

Such states are now called LR(1k)-unsuited

Theorem:
A reduced contextfree grammar G is called LR(k) iff the canonical LR(k)-automaton
LR(G, k) has no LR(k)-unsuited states.

35 / 49

Precedences
Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the
action table either by hand or with token precedences.

... for example:
S′ → E 0

E → E+E 0

| E ∗E 1

| (E) 2

| int 3

Shift-/Reduce Conflict in state 8:

[E → E •+E 0]
[E → E+E • 0 ,+]

< γ E+E ,+ω > ⇒ Associativity

+ left associative

Shift-/Reduce Conflict in states 8, 7:

[E → E • ∗E 1]
[E → E+E • 0 , ∗]
< γ E ∗E ,+ω >
[E → E •+E 0]
[E → E ∗E • 1 ,+]

< γ E+E , ∗ω >

∗ higher precedence
+ lower precedence

action $ int () + ∗
q0 S′, 0 s s
q1 E, 3 E, 3 E, 3 E, 3
q2 s s s
q3 s s s
q4 s s s s
q5 E, 2 E, 2 E, 2 E, 2
q6 s s s s
q7 E, 1 E, 1 ? ?
q8 E, 0 E, 0 E, 0 ?
q9 s s s s

36 / 49

Precedences
Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the
action table either by hand or with token precedences.

... for example:
S′ → E 0

E → E+E 0

| E ∗E 1

| (E) 2

| int 3

Shift-/Reduce Conflict in state 7:

[E → E • ∗E 1]
[E → E ∗E • 1 , ∗]

< γ E ∗E , ∗ω > ⇒ Associativity

∗ right associative

Shift-/Reduce Conflict in states 8, 7:

[E → E • ∗E 1]
[E → E+E • 0 , ∗]
< γ E ∗E ,+ω >
[E → E •+E 0]
[E → E ∗E • 1 ,+]

< γ E+E , ∗ω >

∗ higher precedence
+ lower precedence

action $ int () + ∗
q0 S′, 0 s s
q1 E, 3 E, 3 E, 3 E, 3
q2 s s s
q3 s s s
q4 s s s s
q5 E, 2 E, 2 E, 2 E, 2
q6 s s s s
q7 E, 1 E, 1 ? s
q8 E, 0 E, 0 E, 0 ?
q9 s s s s

36 / 49

Precedences
Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the
action table either by hand or with token precedences.

... for example:
S′ → E 0

E → E+E 0

| E ∗E 1

| (E) 2

| int 3

Shift-/Reduce Conflict in states 8, 7:

[E → E • ∗E 1]
[E → E+E • 0 , ∗]
< γ E ∗E ,+ω >
[E → E •+E 0]
[E → E ∗E • 1 ,+]

< γ E+E , ∗ω >
∗ higher precedence
+ lower precedence

action $ int () + ∗
q0 S′, 0 s s
q1 E, 3 E, 3 E, 3 E, 3
q2 s s s
q3 s s s
q4 s s s s
q5 E, 2 E, 2 E, 2 E, 2
q6 s s s s
q7 E, 1 E, 1 E, 1 s
q8 E, 0 E, 0 E, 0 s
q9 s s s s

36 / 49

What if precedences are not enough?

Example (very simplified lambda expressions):

E → (E) 0 | ident1 |L2

L → 〈args〉 ⇒ E0

〈args〉 → (〈idlist〉)0 | ident1
〈idlist〉 → 〈idlist〉 ident0 | ident1

E rightmost-derives these forms among others:

(ident), (ident)⇒ ident , . . . ⇒ at least LR(2)

Naive Idea:
poor man’s LR(2) by combining the tokens) and⇒ during lexical analysis into a single
token)⇒.

NN! in this case obvious solution, but in general not so simple

37 / 49

What if precedences are not enough?

In practice, LR(k)-parser generators working with the lookahead sets of sizes larger then
k = 1 are not common, since computing lookahead sets with k > 1 blows up exponentially.
However,

1 there exist several practical LR(k) grammars of k > 1,
e.g. Java 1.6+ (LR(2))

2 often, more lookahead is only exhausted locally
3 should we really give up, whenever we are confronted with a Shift-/Reduce-Conflict?

Theorem: LR(k)-to-LR(1)

Any LR(k) grammar can be directly transformed into an equivalent LR(1) grammar.

38 / 49

Dennis MickunasVictor Schneider

LR(2) to LR(1)

... Example:

S → Ab b0 |B b c1
A → aA0 | a1
B → aB0 | a1

S rightmost-derives one of these forms:

anabb , anabc , anaAbb , anaBbc,Abb ,Bbc ⇒ LR(2)

in LR(1), you will have Reduce-/Reduce-Conflicts between the productions A, 1 and B, 1
under lookahead b

39 / 49

LR(2) to LR(1)
Basic Idea:

S i0

Amim

A1 i1

B iγm

γ1

βα

γ0

x ωy

⇒

R
ig

ht
-c

on
te

xt
-e

xt
ra

ct
io

n

⇒

S i0

Amim

A1 i1

B iγm

γ1

βα

γ0

x

ωy

⇒

R
ig

ht
-c

on
te

xt
-p

ro
pa

ga
tio

n

⇒

S i0

Amim

A1 i1

B iγm

γ1

βα

γ0

x

ωy

in the example:
Right-context is already extracted, so we only perform Right-context-propagation:

S → Ab b0 |B b c1
A → aA0 | a1
B → aB0 | a1

⇒

S → 〈Ab〉 b0 | 〈B b〉 c1
〈Ab〉 → a 〈Ab〉0 | a b1
〈B b〉 → a 〈B b〉0 | a b1

A → aA0 | a1
B → aB0 | a1

unreachable
40 / 49

LR(2) to LR(1)

Example cont’d:

S → A′ b0 |B′ c1
A′ → aA′0 | a b1
B′ → aB′0 | a b1

S rightmost-derives one of these forms:

ana bb , ana bc , anaA′b , anaB′c, A′b , B′c ⇒ LR(1)

41 / 49

LR(2) to LR(1)

Example 2:
S → b S S 0

| a 1

| a a c 2

S rightmost-derives these forms among others:

b S S, b S a, b S a a c, b a a, b a a c a, b a a a c, b a a c a a c, . . . ⇒ min. LR(2)

in LR(1), you will have (at least) Shift-/Reduce-Conflicts between the items [S→a • , a] and [S→a • ac]

[S→a]’s right context is a nonterminal⇒ perform Right-context-extraction

S → b S S 0

| a 1

| a a c 2

⇒
S → b S a 〈a/S〉 0 | b S b 〈b/S〉 0′

| a 1 | a a c 2

〈a/S〉 → ε0 | a c 1

〈b/S〉 → S a 〈a/S〉0 |S b 〈b/S〉0′

42 / 49

LR(2) to LR(1)

Example 2 cont’d:
[S→a]’s right context is now terminal a⇒ perform Right-context-propagation

S → b S a 〈a/S〉 0
| b S b 〈b/S〉 0′

| a 1 | a a c 2

〈a/S〉 → ε0 | a c 1

〈b/S〉 → S a 〈a/S〉0 |S b 〈b/S〉0′

⇒

S → b 〈Sa〉 〈a/S〉 0
| b S b 〈b/S〉 0′

| a 1 | a a c 2

〈a/S〉 → ε0 | a c 1

〈b/S〉 → 〈Sa〉 〈a/S〉0 |S b 〈b/S〉0′

〈Sa〉 → b 〈Sa〉 〈〈a/S〉 a〉0
| b S b 〈〈b/S〉 a〉 0′

| a a 1 | a a c a 2

〈〈a/S〉a〉 → a0 | a c a 1

〈〈b/S〉a〉 → 〈Sa〉〈〈a/S〉a〉0 |S b 〈〈b/S〉a〉0′

43 / 49

LR(2) to LR(1)

Example 2 finished:
With fresh nonterminals we get the final grammar

S → b S S 0

| a 1

| a a c 2

⇒

S → bC A,0 | b S bB,1 | a 2 | a a c 3

A → ε0 | a c 1

B → C A0 |S bB1

C → bC D0 | b S bE 1 | a a 2 | a a c a 3

D → a0 | a c a 1

E → CD0 |S bE1

44 / 49

Chapter 2:

LR(k)-Parser Design

45 / 49

Syntactic Analysis - Part II
LR(k)-Parser Design

S′ ::= E:e {: RESULT = e; :}
;

E ::= E:e plus T : t {: RESULT = e+ t; :}
| T : t {: RESULT = t; :}
;

T ::= T : t times F :f {: RESULT = t ∗ f; :}
| F :f {: RESULT = f; :}
;

F ::= lbrac E:e rbrac {: RESULT = e; :}
| intconst:c {: RESULT = c; :}
;

Parser Actions
For each rule, specify user code to
be executed in case of reduction
actions.

1 add code sections delimited with
{: :} to each variant

2 produce results by assigning
values to RESULT

3 add labels to symbols to refer to
former results

Implementation Idea: add data stack that
pushes RESULT after each user action
translates labeled symbols to offset from top of stack based on the position in the rhs

46 / 49

A Practial Example: Type Definitions in ANSI C

A type definition is a synonym for a type expression.
In C they are introduced using the typedef keyword.
Type definitions are useful

as abbreviation:
typedef struct { int x; int y; } point_t;

to construct recursive types:

Possible declaration in C:

struct list {
int info;
struct list* next;

}
struct list* head;

more readable:
typedef struct list list_t;
struct list {

int info;
list_t* next;

}
list_t* head;

47 / 49

A Practial Example: Type Definitions in ANSI C
The C grammar distinguishes typename and identifier.
Consider the following declarations:

typedef struct { int x,y } point_t;
point_t origin;

Idea: in a parser action maintain a shared list between parser and scanner to
communicate identifiers to report as typenames
Relevant C grammar:

declaration → (declarationspecifier)+declarator ;
declarationspecifier → static | volatile · · · typedef

| void | char | char · · · typename
declarator → identifier | · · ·

Problem:
During reduction of the declaration, the scanner eagerly provides a new lookahead token,
thus has already interpreted point_t in line 2 as identifier

48 / 49

A Practial Example: Type Definitions in ANSI C: Solutions
Relevant C grammar:

declaration → (declarationspecifier)+declarator ;
declarationspecifier → static | volatile · · · typedef

| void | char | char · · · typename
declarator → identifier | · · ·

Solution is difficult:

1 try to fix the lookahead token class within the scanner-parser-channelNN! a mess
2 add a rule to the grammar, to make it context-free:

typename → identifier

Example input: (mytype1)(mytype2);

ambiguous

castexpr → (typename) castexpr
postfixexpr → postfixexpr (expression)

3 register identifier as typename before lookahead is harmful

declaration → (declarationspecifier)+declarator {: act(); :} ;
49 / 49

Topic:

Semantic Analysis

1 / 67

Semantic Analysis

Scanner and parser accept programs with correct syntax.
not all programs that are syntacticallly correct make sense
the compiler may be able to recognize some of these

these programs are rejected and reported as erroneous
the language definition defines what erroneous means

semantic analyses are necessary that, for instance:
check that identifiers are known and where they are defined
check the type-correct use of variables

semantic analyses are also useful to
find possibilities to “optimize” the program
warn about possibly incorrect programs

; a semantic analysis annotates the syntax tree with attributes

2 / 67

Chapter 1:

Attribute Grammars

3 / 67

Semantic Analysis

Attribute Grammars
many computations of the semantic analysis as well as the code generation operate on
the syntax tree
what is computed at a given node only depends on the type of that node (which is
usually a non-terminal)
we call this a local computation:

only accesses already computed information from neighbouring nodes
computes new information for the current node and other neighbouring nodes

Definition attribute grammar
An attribute grammar is a CFG extended by

a set of attributes for each non-terminal and terminal
local attribute equations

in order to be able to evaluate the attribute equations, all attributes mentioned in that
equation have to be evaluated already
; the nodes of the syntax tree need to be visited in a certain sequence

4 / 67

Example: Computation of the empty[r] Attribute

Consider the syntax tree of the regular expression (a|b)*a(a|b):

.

* .

||
f f

f

f f

f f

ft

f

0 1 3 4

2

a a bb

a

; equations for empty[r] are computed from bottom to top (aka bottom-up)

5 / 67

Implementation Strategy

attach an attribute empty to every node of the syntax tree
compute the attributes in a depth-first post-order traversal:

at a leaf, we can compute the value of empty without considering other nodes
the attribute of an inner node only depends on the attribute of its children

the empty attribute is a synthesized attribute
in general:

Definition
An attribute at N is called

inherited if its value is defined in terms of attributes of N ’s parent, siblings and/or N
itself (root ↪→ leaves)
synthesized if its value is defined in terms of attributes of N ’s children and/or N itself
(leaves→ root)

6 / 67

Example: Attribute Equations for empty

In order to compute an attribute locally, specify attribute equations for each node
depending on the type of the node:

In the Example from earlier, we did that intuitively:
for leaves: r ≡ i x we define empty[r] = (x ≡ ε).
otherwise:

empty[r1 | r2] = empty[r1] ∨ empty[r2]
empty[r1 · r2] = empty[r1] ∧ empty[r2]
empty[r∗1] = t
empty[r1?] = t

7 / 67

Specification of General Attribute Systems

General Attribute Systems
In general, for establishing attribute systems we need a flexible way to refer to parents and
children:
; We use consecutive indices to refer to neighbouring attributes

attributek[0] : the attribute of the current root node
attributek[i] : the attribute of the i-th child (i > 0)

... the example, now in general formalization:

x : empty[0] := (x ≡ ε)
| : empty[0] := empty[1] ∨ empty[2]

· : empty[0] := empty[1] ∧ empty[2]
∗ : empty[0] := t

? : empty[0] := t

8 / 67

Observations

the local attribute equations need to be evaluated using a global algorithm that knows
about the dependencies of the equations
in order to construct this algorithm, we need
1 a sequence in which the nodes of the tree are visited
2 a sequence within each node in which the equations are evaluated

this evaluation strategy has to be compatible with the dependencies between attributes

We visualize the attribute dependencies D(p) of a production p in a Local Dependency
Graph:

|

empty

empty

empty

Let p = N0 7→ N1|N2 in

D(p) = { (empty[1], empty[0]),
(empty[2], empty[0])}

; arrows point in the direction of information flow
9 / 67

Observations

in order to infer an evaluation strategy, it is not enough to consider the local attribute
dependencies at each node
the evaluation strategy must also depend on the global dependencies, that is, on the
information flow between nodes
NN! the global dependencies change with each particular syntax tree

in the example, the parent node is always depending on children only
; a depth-first post-order traversal is possible
in general, variable dependencies can be much more complex

10 / 67

Simultaneous Computation of Multiple Attributes
Computing empty, first, next from regular expressions:

S→E: : empty[0] := empty[1]
first[0] := first[1]
next[1] := ∅

D(S→E) :

S

E n

e

e

f

f

D(S→E) = { (empty[1], empty[0]),
(first[1], first[0])}

E→x : empty[0] := (x ≡ ε)
first[0] := {x | x 6= ε}

D(E→x) :

E

x

nef

D(E→x) = { }
11 / 67

Regular Expressions: Rules for Alternative

E→E|E : empty[0] := empty[1] ∨ empty[2]

first[0] := first[1] ∪ first[2]
next[1] := next[0]
next[2] := next[0]

D(E→E|E) :

|

E E

n

n n

e

e e

f

f f

D(E→E|E) = { (empty[1], empty[0]),
(empty[2], empty[0]),
(first[1], first[0]),
(first[2], first[0]),
(next[0], next[2]),
(next[0], next[1])}

12 / 67

Regular Expressions: Rules for Concatenation

E→E·E : empty[0] := empty[1] ∧ empty[2]
first[0] := first[1] ∪ (empty[1] ? first[2] : ∅)
next[1] := first[2] ∪ (empty[2] ? next[0]: ∅)
next[2] := next[0]

D(E→E·E) :

·

E E

n

n n

e

e e

f

f f

D(E→E·E) = { (empty[1], empty[0]),
(empty[2], empty[0]),
(empty[2], next[1]),
(empty[1], first[0]),
(first[1], first[0]),
(first[2], first[0]),
(first[2], next[1]),
(next[0], next[2]),
(next[0], next[1])}

13 / 67

Regular Expressions: Rules for Kleene-Star and Option

E→E∗ : empty[0] := t
first[0] := first[1]
next[1] := first[1] ∪ next[0]

D(E→E∗) :

∗

E

n

n

e

e

f

f

D(E→E∗) = { (first[1], first[0]),
(first[1], next[2]),
(next[0], next[1])}

E→E? : empty[0] := t
first[0] := first[1]
next[1] := next[0]

D(E→E?) :

?

E

n

n

e

e

f

f

D(E→E?) = { (first[1], first[0]),
(next[0], next[1])}

14 / 67

Challenges for General Attribute Systems

Static evaluation
Is there a static evaluation strategy, which is generally applicable?

an evaluation strategy can only exist, if for any derivation tree the dependencies
between attributes are acyclic
it is DEXPTIME-complete to check for cyclic dependencies
[Jazayeri, Odgen, Rounds, 1975]

Ideas
1 Let the User specify the strategy
2 Determine the strategy dynamically
3 Automate subclasses only

15 / 67

Subclass: Strongly Acyclic Attribute Dependencies

Idea: For all nonterminals X compute a set R(X) of relations between its attributes, as an
overapproximation of the global dependencies between root attributes of every production
for X.

Describe R(X)s as sets of relations, similar to D(p) by
setting up each production X 7→ X1 . . . Xk’s effect on the relations of R(X)

compute effect on all so far accumulated evaluations of each rhs Xi’s R(Xi)

iterate until stable

16 / 67

Subclass: Strongly Acyclic Attribute Dependencies
The 2-ary operator L[i] re-decorates relations from L

L[i] = {(a[i], b[i]) | (a, b) ∈ L}

π0 projects only onto relations between root elements only

π0(S) = {(a, b) | (a[0], b[0]) ∈ S}

[[.]]]... root-projects the transitive closure of relations from the Lis and D

[[p]]](L1, . . . , Lk) = π0((D(p) ∪ L1[1] ∪ . . . ∪ Lk[k])+)

R maps symbols to relations (global attributes dependencies)

R(X) ⊇ (
⋃
{[[p]]](R(X1), . . . ,R(Xk)) | p : X → X1 . . . Xk})+ | p ∈ P

R(X) ⊇ ∅ | X ∈ (N ∪ T)

Li nef

L0

LnL1

L0 nef

LnL1 nef nef. . .

L0 nef

. . . LnL1 nef nef
Strongly Acyclic Grammars

The system of inequalitiesR(X)

characterizes the class of strongly acyclic Dependencies

has a unique least solutionR?(X) (as [[.]]] is monotonic)

17 / 67

Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars
If all D(p) ∪R?(X1)[1] ∪ . . . ∪R?(Xk)[k] are acyclic for all p ∈ G,
G is strongly acyclic.

Idea: we compute the least solution R?(X) of R(X) by a fixpoint computation, starting
from R(X) = ∅.

18 / 67

Example: Strong Acyclic Test

Given grammar S→L, L→a | b. Dependency graphs Dp:

S

L

j

j

k

k

i

i

h

h

L

a

j kih L

b

j kih

19 / 67

Example: Strong Acyclic Test

Start with computing R(L) = [[L→a]]]() t [[L→b]]]():

L

a

j kih L

b

j kih

1 terminal symbols do not contribute dependencies
2 transitive closure of all relations in (D(L→a))+

check for cycles!

and (D(L→b))+

3 apply π0

4 R(L) = {(k, j), (i, h)}

20 / 67

Example: Strong Acyclic Test

Continue with R(S) = [[S→L]]](R(L)):

S

L

jh

j kih

L j kih

1 re-decorate and embed R(L)[1]

2 transitive closure of all relations

check for cycles!

(D(S→L) ∪ {(k[1], j[1])} ∪ {(i[1], h[1])})+

3 apply π0

4 R(S) = {}

21 / 67

Strong Acyclic and Acyclic
The grammar S→L, L→a | b has only two derivation trees which are both acyclic:

S

L

b

jh

j kih

S

L

a

jh

j kih

It is not strongly acyclic since the over-approximated global dependence graph for the
non-terminal L contributes to a cycle when computing R(S):

S

L

jh

j kih

22 / 67

From Dependencies to Evaluation Strategies

Possible strategies:
1 let the user define the evaluation order
2 automatic strategy based on the dependencies
3 consider a fixed strategy and only allow an attribute system that can be evaluated using

this strategy

23 / 67

Linear Order from Dependency Partial Order

Possible automatic strategies:

1 demand-driven evaluation
start with the evaluation of any required attribute
if the equation for this attribute relies on as-of-yet unevaluated attributes, evaluate these recursively

2 evaluation in passes
for each pass, pre-compute a global strategy to visit the nodes together with a local strategy for
evaluation within each node type
; minimize the number of visits to each node

24 / 67

Example: Demand-Driven Evaluation
Compute next at leaves a2, a3 and b4 in the expression (a|b)∗a(a|b):

| : next[1] := next[0]

next[2] := next[0]

· : next[1] := first[2] ∪ (empty[2] ? next[0]: ∅)
next[2] := next[0]

*

.

.

||

0 1

2

3 4
b

a

aba

n

n

n

n n

*

.

.

||

0 1

2

3 4
b

a

aba

f

f f

n e

e e

n

n

n

n n

*

.

.

||

0 1

2

3 4
b

a

aba

25 / 67

Demand-Driven Evaluation

Observations

each node must contain a pointer to its parent
only required attributes are evaluated
the evaluation sequence depends – in general – on the actual syntax tree
the algorithm must track which attributes it has already evaluated
the algorithm may visit nodes more often than necessary

; the algorithm is not local
in principle:

evaluation strategy is dynamic: difficult to debug
usually all attributes in all nodes are required

; computation of all attributes is often cheaper
; perform evaluation in passes

26 / 67

Implementing State
Problem: In many cases some sort of state is required.
Example: numbering the leafs of a syntax tree

*

.

.

||

0 1

2

3 4
b

a

aba

27 / 67

Example: Implementing Numbering of Leafs

Idea:
use helper attributes pre and post

in pre we pass the value for the first leaf down (inherited attribute)
in post we pass the value of the last leaf up (synthesized attribute)

root: pre[0] := 0
pre[1] := pre[0]
post[0] := post[1]

node: pre[1] := pre[0]
pre[2] := post[1]
post[0] := post[2]

leaf: post[0] := pre[0] + 1

28 / 67

L-Attributation
post

post post

pre

pre pre

postpre

the attribute system is apparently strongly acyclic
each node computes

the inherited attributes before descending into a child node (corresponding to a pre-order traversal)
the synthesized attributes after returning from a child node (corresponding to post-order traversal)

Definition L-Attributed Grammars
An attribute system is L-attributed, if for all productions S→S1 . . . Sn every inherited
attribute of Sj where 1 ≤ j ≤ n only depends on

1 the attributes of S1, S2, . . .Sj−1 and
2 the inherited attributes of S.

29 / 67

L-Attributation

Background:
the attributes of an L-attributed grammar can be evaluated during parsing
important if no syntax tree is required or if error messages should be emitted while
parsing
example: pocket calculator

L-attributed grammars have a fixed evaluation strategy:
a single depth-first traversal

in general: partition all attributes into A = A1 ∪ . . .∪An such that for all attributes in Ai

the attribute system is L-attributed
perform a depth-first traversal for each attribute set Ai

; craft attribute system in a way that they can be partitioned into few L-attributed sets

30 / 67

Practical Applications

symbol tables, type checking/inference, and simple code generation can all be
specified using L-attributed grammars
most applications annotate syntax trees with additional information
the nodes in a syntax tree usually have different types that depend on the non-terminal
that the node represents

; the different types of non-terminals are characterized by the set of attributes with which
they are decorated

Example: Def-Use Analysis
a statement may have two attributes containing valid identifiers: one ingoing (inherited)
set and one outgoing (synthesised) set
an expression only has an ingoing set

31 / 67

Implementation of Attribute Systems via a Visitor
class with a method for every non-terminal in the grammar
public abstract class Regex {

public abstract void accept(Visitor v);
}
attribute-evaluation works via pre-order / post-order callbacks
public interface Visitor {

default void pre(OrEx re) {}
default void pre(AndEx re) {}
...
default void post(OrEx re) {}
default void post(AndEx re){}

}
we pre-define a depth-first traversal of the syntax tree
public class OrEx extends Regex {

Regex l,r;
public void accept(Visitor v) {

v.pre(this);l.accept(v);v.inter(this);
r.accept(v); v.post(this);

} }
32 / 67

Example: Leaf Numbering
public abstract class AbstractVisitor implements Visitor {

public void pre (OrEx re){ pr(re); }
public void pre (AndEx re){ pr(re); }
... /* redirecting to default handler for bin exprs */
public void post(OrEx re){ po(re); }
public void post(AndEx re){ po(re); }
abstract void po(BinEx re);
abstract void in(BinEx re);
abstract void pr(BinEx re);

}
public class LeafNum extends AbstractVisitor {

public Map<Regex,Integer> pre = new HashMap<>();
public Map<Regex,Integer> post = new HashMap<>();
public LeafNum (Regex r) { pre .put(r,0); r.accept(this); }
public void pre(Const r) { post.put(r, pre .get(r)+1); }
public void pr (BinEx r) { pre .put(r.l, pre .get(r)); }
public void in (BinEx r) { pre .put(r.r, post.get(r.l)); }
public void po (BinEx r) { post.put(r, post.get(r.r)); }

}
33 / 67

Chapter 2:

Decl-Use Analysis

34 / 67

Semantic Analysis
Symbol Bindings and Visibility

Consider the following Java code:
void foo() {

int a;
while(true) {

double a;
a = 0.5;
write(a);
break;

}
a = 2;
bar();
write(a);

}

each declaration of a variable v causes memory
allocation for v
using v requires knowledge about its memory
location
→ determine the declaration v is bound to

a binding is not visible when a local declaration of
the same name is in scope

in the example the declaration of a is shadowed by
the local declaration in the loop body

35 / 67

Scope of Identifiers

void foo() {

int a;
while (true) {

double a;
a = 0.5;
write(a);
break;

}
a = 2;
bar();
write(a);

}





scope of int a





scope of

double a

NN! administration of identifiers can be quite complicated...

36 / 67

Resolving Identifiers

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing
rapid access to its declaration

Ideas:

1 rapid access: replace every identifier by a unique integer
→ integers as keys: comparisons of integers is faster

2 link each usage of a variable to the declaration of that variable
→ for languages without explicit declarations, create declarations when a variable is first encountered

37 / 67

Rapid Access: Replace Strings with Integers

Idea for Algorithm:
Input: a sequence of strings

Output: 1 sequence of numbers
2 table that allows to retrieve the string that corresponds to a number

Apply this algorithm on each identifier during scanning.

Implementation approach:
count the number of new-found identifiers in int count
maintain a hashtable S : String→ int to remember numbers for known identifiers

We thus define the function:

int indexForIdentifier(String w) {
if (S (w) ≡ undefined) {

S = S ⊕ {w 7→ count};
return count++;

} else return S (w);
}

38 / 67

Implementation: Hashtables for Strings
1 allocate an array M of sufficient size m
2 choose a hash function H : String→ [0,m− 1] with:

H(w) is cheap to compute
H distributes the occurring words equally over [0,m− 1]

Possible generic choices for sequence types (~x = 〈x0, . . . xr−1〉):

H0(~x) = (x0 + xr−1) %m

H1(~x) = (
∑r−1

i=0 xi · pi) %m
H1(~x) = (x0 + p · (x1 + p · (. . .+ p · xr−1 · · ·))) %m

for some prime number p (e.g. 31)

7 The hash value of w may not be unique!
→ Append (w, i) to a linked list located at M [H(w)]

Finding the index for w, we compare w with all x for which H(w) = H(x)

3 access on average:
insert: O(1)
lookup: O(1)

39 / 67

Example: Replacing Strings with Integers
Input:

Peter Piper picked a peck of pickled peppers

If Peter Piper picked a peck of pickled peppers

wheres the peck of pickled peppers Peter Piper picked

Output:
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6

7 9 10 4 5 6 7 0 1 2

and

0 Peter
1 Piper
2 picked
3 a
4 peck
5 of

6 pickled
7 peppers
8 If
9 wheres

10 the

Hashtable with m = 7 and H0:
0

1

2

3

6

4

If 8 the 10

1

peck6 4 2picked

a 3

of 5 9

5 Piper Peter 0

pickled

wheres peppers 7

40 / 67

Refer Uses to Declarations: Symbol Tables

Check for the correct usage of variables:
Traverse the syntax tree in a suitable sequence, such that

each declaration is visited before its use
the currently visible declaration is the last one visited

; perfect for an L-attributed grammar
equation system for basic block must add and remove identifiers

for each identifier, we manage a stack of declarations
1 if we visit a declaration, we push it onto the stack of its identifier
2 upon leaving the scope, we remove it from the stack

if we visit a usage of an identifier, we pick the top-most declaration from its stack
if the stack of the identifier is empty, we have found an undeclared identifier

41 / 67

Example: Decl-Use Analysis via Table of Stacks

1 void f()
2 { ⇐
3 int a, b;
4 b = 5; ⇐
5 if (b>3) {
6 int a, c;
7 a = 3; ⇐
8 c = a + 1;
9 b = c;

10 } else {
11 int c;
12 c = a + 1; ⇐
13 b = c;
14 }
15 b = a + b; ⇐
16 }

d declaration
b basic block
a assignment

d

int1

b

b

b

b

if

31

d

int0

d

int0

b

b51

d

int2

b

b

1 2

a

a

b

b

a

1 2

d

int2

>

=

=

=

42 / 67

Alternative Implementations for Symbol Tables

when using a list to store the symbol table, storing a marker indicating the old head of
the list is sufficient

a
b

in front of if-statement

a
c

a
b

then-branch

c

a
b

else-branch

instead of lists of symbols, it is possible to use a list of hash tables ; more efficient in
large, shallow programs
an even more elegant solution: persistent trees (updates return fresh trees with
references to the old tree where possible)
; a persistent tree t can be passed down into a basic block where new elements may be added, yielding

a t′; after examining the basic block, the analysis proceeds with the unchanged old t

43 / 67

Chapter 3:

Type Checking

44 / 67

Semantic Analysis
Goal of Type Checking

In most mainstream (imperative / object oriented / functional) programming languages,
variables and functions have a fixed type.
for example: int, void*, struct { int x; int y; }.

Types are useful to
manage memory
select correct assembler instructions
to avoid certain run-time errors

In imperative and object-oriented programming languages a declaration has to specify a
type. The compiler then checks for a type correct use of the declared entity.

45 / 67

Type Expressions

Types are given using type-expressions.
The set of type expressions T contains:

1 base types: int, char, float, void, ...
2 type constructors that can be applied to other types

example for type constructors in C:
structures: struct { t1 a1; . . . tk ak; }

pointers: t *
arrays: t []

the size of an array can be specified
the variable to be declared is written between t and [n]

functions: t (t1, . . . , tk)
the variable to be declared is written between t and (t1, . . . , tk)
in ML function types are written as: t1 ∗ . . . ∗ tk → t

46 / 67

Type Checking

Problem:
Given: A set of type declarations Γ = {t1 x1; . . . tm xm; }
Check: Can an expression e be given the type t?

Example:
struct list { int info; struct list* next; };
int f(struct list* l) { return 1; };
struct { struct list* c;}* b;
int* a[11];

Consider the expression:

*a[f(b->c)]+2;

47 / 67

Type Checking using the Syntax Tree
Check the expression *a[f(b->c)]+2:

2

a

f

c

b

+

∗

[]

()

.

∗

Idea:
traverse the syntax tree bottom-up
for each identifier, we lookup its type in Γ

constants such as 2 or 0.5 have a fixed type
the types of the inner nodes of the tree are deduced using typing rules

48 / 67

Type Systems for C-like Languages

Formally: consider judgements of the form:

Γ ` e : t

// (in the type environment Γ the expression e has type t)

Axioms:

Const: Γ ` c : tc (tc type of constant c)
Var: Γ ` x : Γ(x) (x Variable)

Rules:
Ref:

Γ ` e : t
Γ ` & e : t ∗ Deref:

Γ ` e : t ∗
Γ ` ∗ e : t

49 / 67

Type Systems for C-like Languages
More rules for typing an expression: with subtyping relation ≤

Array:
Γ ` e1 : t ∗ Γ ` e2 : int

Γ ` e1[e2] : t

Array:
Γ ` e1 : t [] Γ ` e2 : int

Γ ` e1[e2] : t

Struct:
Γ ` e : struct {t1 a1; . . . tm am; }

Γ ` e.ai : ti

App:
Γ ` e : t (t1, . . . , tm) Γ ` e1 : t1 . . . Γ ` em : tm

Γ ` e(e1, . . . , em) : t

Op �:
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` e1�e2 : t1t t2

Op =:
Γ ` e1 : t1 Γ ` e2 : t2 t2 can be converted to≤ t1

Γ ` e1 = e2 : t1

Explicit Cast:
Γ ` e : t2 t2 can be converted to≤ t1

Γ ` (t1) e : t1

50 / 67

Example: Type Checking

Given expression *a[f(b->c)]+2 and
Γ = {
struct list { int info; struct list* next; };
int f(struct list* l);
struct { struct list* c;}* b;
int* a[11];
}

2

a

f

c

b

+

∗

[]

()

.

∗

51 / 67

Example: Type Checking – More formally:
Γ = {
struct list { int info; struct list* next; };
int f(struct list* l);
struct { struct list* c;}* b;
int* a[11];
}

STRUCT

DEREF

VAR
Γ ` b : struct{struct list *c;}∗

Γ ` ∗b : struct{struct list *c;}
Γ ` (∗b).c : struct list∗

ARRAY

VAR
Γ ` a : int∗[] APP

VAR
Γ ` f : int(struct list*) 3 Γ ` (∗b).c :

t

struct list∗
Γ ` f(b→ c) : int 3

Γ ` a[f(b→ c)] : int∗

OP

DEREF
Γ ` a[f(b→ c)] : int∗
Γ ` ∗a[f(b→ c)] :

t

int
CONST

Γ ` 2 :

t

int 3

Γ ` ∗a[f(b→ c)] + 2 :

t

int

but what do we do with ≤?
52 / 67

Equality of Types =

Summary of Type Checking
Choosing which rule to apply at an AST node is determined by the type of the child
nodes
determining the rule requires a check for ; equality of types

type equality in C:
struct A {} and struct B {} are considered to be different

; the compiler could re-order the fields of A and B independently (not allowed in C)
to extend an record A with more fields, it has to be embedded into another record:
struct B {

struct A;
int field_of_B;

} extension_of_A;

after issuing typedef int C; the types C and int are the same

53 / 67

Structural Type Equality
Alternative interpretation of type equality (does not hold in C):

semantically, two types t1, t2 can be considered as equal if they accept the same set of
access paths.

Example:
struct list {

int info;
struct list* next;

}

struct list1 {
int info;
struct {

int info;
struct list1* next;

}* next;
}

Consider declarations struct list* l and struct list1* l. Both allow

l->info l->next->info

but the two declarations of l have unequal types in C.

54 / 67

Algorithm for Testing Structural Equality

Idea:

track a set of equivalence queries of type expressions
if two types are syntactically equal, we stop and report success
otherwise, reduce the equivalence query to a several equivalence queries on
(hopefully) simpler type expressions

Suppose that recursive types were introduced using type definitions:

typedef A t

(we omit the Γ). Then define the following rules:

55 / 67

Rules for Well-Typedness

s1 t1 sm tm

tt

t

t

A= s

s

A

ts

s ∗ t ∗

struct {s1 a1; ... sm am; } struct {t1 a1; ... tm am; }

56 / 67

Example:
typedef struct {int info; A ∗ next; } A
typedef struct {int info; struct {int info; B ∗ next; } ∗ next; } B

We ask, for instance, if the following equality holds:

struct {int info; A ∗ next; } = B

We construct the following deduction tree:

57 / 67

Proof for the Example:
typedef struct {int info; A ∗ next; } A

typedef struct {int info; struct {int info; B ∗ next; } ∗ next; } B

Bstruct{int info; A ∗ next; }

struct{int info; . . . ∗ next; }struct{int info; A ∗ next; }

A ∗

A struct{int info; B ∗ next; }

struct{int info; B ∗ next; }struct{int info; A ∗ next; }

int int

int int A ∗

struct{int info; A ∗ next; }

BA

B ∗

. . . ∗

B

58 / 67

Implementation

We implement a function that implements the equivalence query for two types by applying
the deduction rules:

if no deduction rule applies, then the two types are not equal
if the deduction rule for expanding a type definition applies, the function is called
recursively with a potentially larger type
in case an equivalence query appears a second time, the types are equal by definition

Termination
the set D of all declared types is finite
there are no more than |D|2 different equivalence queries
repeated queries for the same inputs are automatically satisfied

; termination is ensured

59 / 67

Subtyping ≤
On the arithmetic basic types char, int, long, etc. there exists a rich subtype hierarchy

Subtypes
t1 ≤ t2, means that the values of type t1

1 form a subset of the values of type t2;
2 can be converted into a value of type t2;
3 fulfill the requirements of type t2;
4 are assignable to variables of type t2.

Example:
assign smaller type (fewer values) to larger type (more values)

t1 int x;
t2 double y;
y = x;
t1 ≤ t2int ≤ double

60 / 67

Example: Subtyping

Extending the subtype relationship to more complex types, observe:
string extractInfo(struct { string info; } x) {

return x.info;
}

we want extractInfo to be applicable to all argument structures that return a
string typed field for accessor info
the idea of subtyping on values is related to subclasses
we use deduction rules to describe when t1 ≤ t2 should hold. . .

61 / 67

Rules for Well-Typedness of Subtyping

ss t

t ∗s ∗

struct {t1 a1; ... tk ak; }

t1s1 tksk

struct {s1 a1; ... sj aj ; }

A t

t

t t′

a1 ak

t ≤ t′ Atypedef s

j ≥ k

struct {int u, int v} x;
struct {int u} y;
y = x;

62 / 67

Rules and Examples for Subtyping

tm sm

t0 (t1, . . . , tm)s0 (s1, . . . , sm)

s0 t0 t1 s1

Examples:
struct {int a; int b; } ≤ struct {float a; }
int (int) 6≤ float (float)
int (float) ≤ float (int)

Definition
Given two function types in subtype relation s0(s1, . . . sn) ≤ t0(t1, . . . tn) then we have

co-variance of the return type s0 ≤ t0 and
contra-variance of the arguments si ≥ ti für 1 < i ≤ n

63 / 67

Subtypes: Application of Rules (I)
Check if S1 ≤ R1:

R1 = struct {int a; R1 (R1) f ; }
S1 = struct {int a; int b; S1 (S1) f ; }
R2 = struct {int a; R2 (S2) f ; }
S2 = struct {int a; int b; S2 (R2) f ; }

a f

ba f

S1 R1

intint R1 (R1)S1 (S1)

S1 R1 R1 S1

64 / 67

Subtypes: Application of Rules (II)
Check if S2 ≤ S1:

R1 = struct {int a; R1 (R1) f ; }
S1 = struct {int a; int b; S1 (S1) f ; }
R2 = struct {int a; R2 (S2) f ; }
S2 = struct {int a; int b; S2 (R2) f ; }

a

a, b f

f

S1 (S1)S2 (R2)

S2 S1 S1 R2

intint R2 (S2)S1 (S1)

S1 R2 S2 S1

S2 S1

intint

65 / 67

Subtypes: Application of Rules (III)
Check if S2 ≤ R1:

R1 = struct {int a; R1 (R1) f ; }
S1 = struct {int a; int b; S1 (S1) f ; }
R2 = struct {int a; R2 (S2) f ; }
S2 = struct {int a; int b; S2 (R2) f ; }

a

a

f

f

intint

intint

S2 R1

R1 (R1)S2 (R2)

S2 R1 R1 R2

R2 (S2)R1 (R1)

R1 R2 S2 R1

66 / 67

Discussion

for presentational purposes, proof trees are often abbreviated by omitting deductions
within the tree
structural sub-types are very powerful and can be quite intricate to understand
Java generalizes structs to objects/classes where a sub-class A inheriting form base
class O is a subtype A ≤ O
subtype relations between classes must be explicitly declared

67 / 67

Topic:

Code Synthesis

1 / 49

Generating Code: Overview

We inductively generate instructions from the AST:
there is a rule stating how to generate code for each non-terminal of the grammar
the code is merely another attribute in the syntax tree
code generation makes use of the already computed attributes

In order to specify the code generation, we require
a semantics of the language we are compiling (here: C standard)
a semantics of the machine instructions

; we commence by specifying machine instruction semantics

2 / 49

Chapter 1:

The Register C-Machine

3 / 49

Code Synthesis
The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).

there exists no processor that can execute its instructions
. . . but we can build an interpreter for it
we provide a visualization environment for the R-CMa
the R-CMa has no double, float, char, short or long types
the R-CMa has no instructions to communicate with the operating system
the R-CMa has an unlimited supply of registers

The R-CMa is more realistic than it may seem:
the mentioned restrictions can easily be lifted
the Dalvik VM/ART or the LLVM are similar to the R-CMa
an interpreter of R-CMa can run on any platform

4 / 49

Virtual Machines

A virtual machine has the following ingredients:
any virtual machine provides a set of instructions
instructions are executed on virtual hardware
the virtual hardware is a collection of data structures that is accessed and modified by
the VM instructions
... and also by other components of the run-time system, namely functions that go
beyond the instruction semantics
the interpreter is part of the run-time system

5 / 49

Components of a Virtual Machine
Consider Java as an example:

0 SP

S

0 1 PC

C

A virtual machine such as the Dalvik VM has the following structure:
S: the data store – a memory region in which cells can be stored in LIFO order ;
stack.
SP: (=̂ stack pointer) pointer to the last used cell in S
beyond S follows the memory containing the heap
C is the memory storing code

each cell of C holds exactly one virtual instruction
C can only be read

PC (=̂ program counter) address of the instruction that is to be executed next
PC contains 0 initially

6 / 49

Executing a Program

the machine loads an instruction from C[PC] into the instruction register IR in order to
execute it
before evaluating the instruction, the PC is incremented by one

while (true) {
IR = C[PC]; PC++;
execute (IR);

}

node: the PC must be incremented before the execution, since an instruction may
modify the PC
the loop is exited by evaluating a halt instruction that returns directly to the operating
system

7 / 49

Chapter 2:

Generating Code for the Register C-Machine

8 / 49

Code Synthesis

Simple Expressions and Assignments in R-CMa

Task: evaluate the expression (1 + 7) ∗ 3
that is, generate an instruction sequence that

computes the value of the expression and
keeps its value accessible in a reproducable way

Idea:
first compute the value of the sub-expressions
store the intermediate result in a temporary register
apply the operator
loop

9 / 49

Principles of the R-CMa
The R-CMa is composed of a stack, heap and a code segment, just like the JVM; it
additionally has register sets:

local registers are R1, R2, . . . Ri, . . .
global register are R0, R−1, . . . Rj , . . .

0 SP

S

0 1 PC

C

R0 R−4

R6R1

Rloc

Rglob

10 / 49

The Register Sets of the R-CMa

The two register sets have the following purpose:
1 the local registers Ri

save temporary results
store the contents of local variables of a function
can efficiently be stored and restored from the stack

2 the global registers Ri

save the parameters of a function
store the result of a function

Note:
for now, we only use registers to store temporary computations

Idea for the translation: use a register counter i:
registers Rj with j < i are in use
registers Rj with j ≥ i are available

11 / 49

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition
loadc Ri c Ri = c load constant
move Ri Rj Ri = Rj copy Rj to Ri

We define the following translation schema (with ρ x = a):

codeiR c ρ = loadc Ri c

codeiR x ρ = move Ri Ra

codeiR x = e ρ = codeiR e ρ

move Ra Ri

12 / 49

Translation of Expressions
Let op = {add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or}. The R-CMa provides
an instruction for each operator op.

op Ri Rj Rk

where Ri is the target register, Rj the first and Rk the second argument.

Correspondingly, we generate code as follows:

codeiR e1 op e2 ρ = codeiR e1 ρ

codei+1
R e2 ρ

op Ri Ri Ri+1

Example: Translate 3*4 with i = 4:

code4R 3*4 ρ = code4R 3 ρ
code5R 4 ρ

code4R 3*4 ρ = loadc R4 3
loadc R5 4
mul R4 R4 R5

13 / 49

Managing Temporary Registers
Observe that temporary registers are re-used: translate 3*4+3*4 with t = 4:

code4R 3*4+3*4 ρ = code4R 3*4 ρ
code5R 3*4 ρ
add R4 R4 R5

where

codeiR 3*4 ρ = loadc Ri 3
loadc Ri+1 4
mul Ri Ri Ri+1

we obtain

code4R 3*4+3*4 ρ = loadc R4 3
loadc R5 4
mul R4 R4 R5

loadc R5 3
loadc R6 4
mul R5 R5 R6

add R4 R4 R5

14 / 49

Semantics of Operators

The operators have the following semantics:

add Ri Rj Rk Ri = Rj +Rk

sub Ri Rj Rk Ri = Rj −Rk

div Ri Rj Rk Ri = Rj/Rk

mul Ri Rj Rk Ri = Rj ∗Rk

mod Ri Rj Rk Ri = signum(Rk) · k with
|Rj | = n · |Rk|+ k ∧ n ≥ 0, 0 ≤ k < |Rk|

le Ri Rj Rk Ri = if Rj < Rk then 1 else 0
gr Ri Rj Rk Ri = if Rj > Rk then 1 else 0
eq Ri Rj Rk Ri = if Rj = Rk then 1 else 0
leq Ri Rj Rk Ri = if Rj ≤ Rk then 1 else 0
geq Ri Rj Rk Ri = if Rj ≥ Rk then 1 else 0
and Ri Rj Rk Ri = Rj & Rk // bit-wise and
or Ri Rj Rk Ri = Rj | Rk // bit-wise or

Note: all registers and memory cells contain operands in Z

15 / 49

Translation of Unary Operators
Unary operators op = {neg, not} take only two registers:

codeiR op e ρ = codeiR e ρ
op Ri Ri

Note: We use the same register.

Example: Translate -4 into R5:

code5R -4 ρ = code5R 4 ρ
code5R -4 ρ = loadc R5 4

neg R5 R5

The operators have the following semantics:

not Ri Rj Ri ← if Rj = 0 then 1 else 0
neg Ri Rj Ri ← −Rj

16 / 49

Applying Translation Schema for Expressions
Suppose the following function
is given:

void f(void) {
int x,y,z;
x = y+z*3;

}Let ρ = {x 7→ 1, y 7→ 2, z 7→ 3} be the address environment.
Let R4 be the first free register, that is, i = 4.

code4 x=y+z*3 ρ = code4R y+z*3 ρ
move R1 R4

code4R y+z*3 ρ = move R4 R2

code5R z*3 ρ
add R4 R4 R5

code5R z*3 ρ = move R5 R3

code6R 3 ρ
mul R5 R5 R6

code6R 3 ρ = loadc R6 3

; the assignment x=y+z*3 is translated as
move R4 R2;move R5 R3; loadc R6 3;mul R5 R5 R6; add R4 R4 R5;move R1 R4

17 / 49

Chapter 3:

Statements and Control Structures

18 / 49

Code Synthesis

About Statements and Expressions
General idea for translation: codei s ρ : generate code for statement s

codeiR e ρ : generate code for expression e into Ri

Throughout: i, i+ 1, . . . are free (unused) registers

For an expression x = e with ρ x = a we defined:

codeiR x = e ρ = codeiR e ρ

move Ra Ri

However, x = e; is also an expression statement:
Define:

codei e1 = e2; ρ = codeiR e1 = e2 ρ

The temporary register Ri is ignored here. More general:

codei e; ρ = codeiR e ρ

Observation: the assignment to e1 is a side effect of the evaluating the expression
e1 = e2.

19 / 49

Translation of Statement Sequences

The code for a sequence of statements is the concatenation of the instructions for each
statement in that sequence:

codei (s ss) ρ = codei s ρ

codei ss ρ

codei ε ρ = // empty sequence of instructions

Note here: s is a statement, ss is a sequence of statements

20 / 49

Jumps

In order to diverge from the linear sequence of execution, we need jumps:

jump A

A

PCPC

PC = A;

21 / 49

Conditional Jumps
A conditional jump branches depending on the value in Ri:

jumpz Ri A

PCPC

Ri
!0

Ri
!0

jumpz Ri A
0

Ri

0
Ri

PC

A

PC

if (Ri == 0) PC = A;

22 / 49

Simple Conditional
We first consider s ≡ if (c) ss.
...and present a translation without basic blocks.

Idea:
emit the code of c and ss in sequence
insert a jump instruction in-between, so that correct control flow is ensured

codei s ρ = codeiR c ρ

jumpz Ri A

codei ss ρ

A : . . .

jumpz

Rcode for c

code for ss

23 / 49

General Conditional

code code codec tt ee

Translation of if (c) tt else ee.

codei if(c) tt else ee ρ =

codeiR c ρ

jumpz Ri A

codei tt ρ

jump B

A : codei ee ρ

B :

jumpz

jump

Rcode for c

code for tt

code for ee

24 / 49

Example for if-statement

Let ρ = {x 7→ 4, y 7→ 7} and let s be the statement
if (x>y) { /* (i) */

x = x - y; /* (ii) */
} else {

y = y - x; /* (iii) */
}

Then codei s ρ yields:

(i)

move Ri R4

move Ri+1 R7

gr Ri Ri Ri+1

jumpz Ri A

(ii)

move Ri R4

move Ri+1 R7

sub Ri Ri Ri+1

move R4 Ri

jump B

(iii)

A : move Ri R7

move Ri+1 R4

sub Ri Ri Ri+1

move R7 Ri

B :

25 / 49

Iterating Statements

We only consider the loop s ≡ while (e) s′. For this statement we define:

codei while(e) s ρ = A : codeiR e ρ

jumpz Ri B

codei s ρ

jump A

B :

jumpz

R

jump

code for e

code for s’

26 / 49

Example: Translation of Loops
Let ρ = {a 7→ 7, b 7→ 8, c 7→ 9} and let s be the statement:

while (a>0) { /* (i) */
c = c + 1; /* (ii) */
a = a - b; /* (iii) */

}

Then codei s ρ evaluates to:

(i)

A : move Ri R7

loadc Ri+1 0

gr Ri Ri Ri+1

jumpz Ri B

(ii)

move Ri R9

loadc Ri+1 1

add Ri Ri Ri+1

move R9 Ri

(iii)

move Ri R7

move Ri+1 R8

sub Ri Ri Ri+1

move R7 Ri

jump A

B :

27 / 49

for-Loops

The for-loop s ≡ for (e1; e2; e3) s′ is equivalent to the statement sequence
e1; while (e2) {s′ e3; } – as long as s′ does not contain a continue statement.

Thus, we translate:

codei for(e1; e2; e3) s ρ = codeiR e1 ρ

A : codeiR e2 ρ

jumpz Ri B

codei s ρ

codeiR e3 ρ

jump A

B :

28 / 49

The switch-Statement

Idea:
Suppose choosing from multiple options in constant time if possible
use a jump table that, at the ith position, holds a jump to the ith alternative
in order to realize this idea, we need an indirect jump instruction

Ri
q

Ri
q

PCPC

B

jumpi Ri A

A+q

PC = A + Ri;

29 / 49

Consecutive Alternatives
Let switch s be given with k consecutive case alternatives:

switch (e) {
case 0: s0; break;
...
case k − 1: sk−1; break;
default: sk; break;

}

Define codei s ρ as follows:

codei s ρ = codeiR e ρ

check i 0 k B

A0 : codei s0 ρ

jump C
...

...
Ak : codei sk ρ

jump C

B : jump A0

...
...

jump Ak

C :

check i l u B checks if l ≤ Ri < u holds and jumps accordingly.
30 / 49

Translation of the check i Macro
The macro check i l u B checks if l ≤ Ri < u. Let k = u− l.

if l ≤ Ri < u it jumps to B +Ri − l
if Ri < l or Ri ≥ u it jumps to Ak

we define:

check i l u B = loadc Ri+1 l
geq Ri+2 Ri Ri+1

jumpz Ri+2 E
sub Ri Ri Ri+1

loadc Ri+1 k
geq Ri+2 Ri Ri+1

jumpz Ri+2 D
E : loadc Ri k
D : jumpi Ri B

B : jump A0

...
...

jump Ak

C :

Note: a jump jumpi Ri B with Ri = u winds up at B + u, the default case

31 / 49

Improvements for Jump Tables

This translation is only suitable for certain switch-statement.
In case the table starts with 0 instead of u we don’t need to subtract it from e before we
use it as index
if the value of e is guaranteed to be in the interval [l, u], we can omit check

32 / 49

General translation of switch-Statements

In general, the values of the various cases may be far apart:
generate an if-ladder, that is, a sequence of if-statements
for n cases, an if-cascade (tree of conditionals) can be generated ; O(logn) tests
if the sequence of numbers has small gaps (≤ 3), a jump table may be smaller and
faster
one could generate several jump tables, one for each sets of consecutive cases
an if cascade can be re-arranged by using information from profiling, so that paths
executed more frequently require fewer tests

33 / 49

Chapter 4:

Functions

34 / 49

Code Synthesis

Ingredients of a Function

The definition of a function consists of
a name with which it can be called;
a specification of its formal parameters;
possibly a result type;
a sequence of statements.

In C we have:

codeiR f ρ = loadc Ri _f with _f starting address of f

Observe:
function names must have an address assigned to them
since the size of functions is unknown before they are translated, the addresses of
forward-declared functions must be inserted later

35 / 49

Memory Management in Functions

int fac(int x) {
if (x<=0) return 1;
else return x*fac(x-1);

}

int main(void) {
int n;
n = fac(2) + fac(1);
printf("%d", n);

}

At run-time several instances may be active, that is, the function has been called but has
not yet returned.
The recursion tree in the example:

printffacfac

fac fac

fac

main

36 / 49

Memory Management in Function Variables

The formal parameters and the local variables of the various instances of a function must
be kept separate

Idea for implementing functions:

set up a region of memory each time it is called
in sequential programs this memory region can be allocated on the stack
thus, each instance of a function has its own region on the stack
these regions are called stack frames

37 / 49

Organization of a Stack Frame
stack representation: grows upwards
SP points to the last used stack cell

SP

callee
local memory

PCold

FPold

FP organizational

cells

FP =̂ frame pointer: points to the last organizational cell
used to recover the previously active stack frame

38 / 49

Split of Obligations

Definition
Let f be the current function that calls a function g.

f is dubbed caller
g is dubbed callee

The code for managing function calls has to be split between caller and callee.
This split cannot be done arbitrarily since some information is only known in that caller or
only in the callee.

Observation:

The space requirement for parameters is only know by the caller:
Example: printf

39 / 49

Principle of Function Call and Return
actions taken on entering g:

1. compute the start address of g
2. compute actual parameters in globals
3. backup of caller-save registers

}
saveloc

4. backup of FP
}
mark

5. set the new FP
6. back up of PC and

jump to the beginning of g



 call





are in f

7. copy actual params to locals
}
...
}

is in g

actions taken on leaving g:

1. compute the result into R0

2. restore FP, SP
3. return to the call site in f ,

that is, restore PC



return





are in g

4. restore the caller-save registers
}

restoreloc
}

is in f

40 / 49

Managing Registers during Function Calls
The two register sets (global and local) are used as follows:

automatic variables live in local registers Ri

intermediate results also live in local registers Ri

parameters live in global registers Ri (with i ≤ 0)
global variables: let’s suppose there are none

convention:
the i th argument of a function is passed in register R−i

the result of a function is stored in R0

local registers are saved before calling a function

Definition
Let f be a function that calls g. A register Ri is called

caller-saved if f backs up Ri and g may overwrite it
callee-saved if f does not back up Ri, and g must restore it before returning

41 / 49

Translation of Function Calls
A function call g(e1, . . . en) is translated as follows:
codeiR g(e1, . . . en) ρ = codeiR g ρ

codei+1
R e1 ρ

...
codei+n

R en ρ

move R−1 Ri+1
...

move R−n Ri+n

saveloc R1 Ri−1

mark

call Ri

restoreloc R1 Ri−1

move Ri R0New instructions:
saveloc Ri Rj pushes the registers Ri, Ri+1 . . . Rj onto the stack
mark backs up the organizational cells
call Ri calls the function at the address in Ri

restoreloc Ri Rj pops Rj , Rj−1, . . . Ri off the stack
42 / 49

Rescuing the FP
The instruction mark allocates stack space for the return value and the organizational cells
and backs up FP.

mark

FP FP

S[SP+1] = FP;
SP = SP + 1;

43 / 49

Calling a Function
The instruction call rescues the value of PC+1 onto the stack and sets FP and PC.

q

FP

p

PC PC

q
Ri call Ri Ri

qp

SP = SP+1;
S[SP] = PC;
FP = SP;
PC = Ri;

44 / 49

Result of a Function

The global register set is also used to communicate the result value of a function:

codei return e ρ = codeiR e ρ

move R0 Ri

return

alternative without result value:

codei return ρ = return

global registers are otherwise not used inside a function body:
advantage: at any point in the body another function can be called without backing up
global registers
disadvantage: on entering a function, all global registers must be saved

45 / 49

Return from a Function
The instruction return relinquishes control of the current stack frame, that is, it restores PC
and FP.

PC

FP

PC

FP

return
p

p

PC = S[FP];
SP = FP-2;
FP = S[SP+1];

46 / 49

Translation of Functions

The translation of a function is thus defined as follows:

code1 tr f(args){decls ss} ρ = move Rl+1 R−1

...
move Rl+n R−n

codel+n+1 ss ρ′

return

Assumptions:
the function has n parameters
the local variables are stored in registers R1, . . . Rl

the parameters of the function are in R−1, . . . R−n

ρ′ is obtained by extending ρ with the bindings in decls and the function parameters args

return is not always necessary
Are the move instructions always necessary?

47 / 49

Translation of Whole Programs

A program P = F1; . . . Fn must have a single main function.

code1 P ρ = loadc R1 _main
mark
call R1

halt
_f1 : code1 F1 ρ⊕ ρf1

...
_fn : code1 Fn ρ⊕ ρfn

Assumptions:
ρ = ∅ assuming that we have no global variables
ρfi

contain the addresses of the functions up to fi

ρ1 ⊕ ρ2 = λx .

{
ρ2(x) if x ∈ dom(ρ2)
ρ1(x) otherwise

48 / 49

Translation of the fac-function
Consider:
int fac(int x) {
if (x<=0)

return 1;
else

return x*fac(x-1);
}

_fac: move R1 R−1 save param.
i = 2 move R2 R1 if (x<=0)

loadc R3 0
leq R2 R2 R3

jumpz R2 _A to else
loadc R2 1 return 1
move R0 R2

return
jump _B code is dead

_A: move R2 R1 x*fac(x-1)
i = 3 loadc R3 _fac
i = 4 move R4 R1 x-1
i = 5 loadc R5 1
i = 6 sub R4 R4 R5

i = 5 move R−1 R4 fac(x-1)
i = 3 saveloc R1 R2

mark
call R3

restoreloc R1 R2

move R3 R0

i = 4 mul R2 R2 R3

i = 3 move R0 R2 return x*...
return

_B: return

49 / 49

