
Topic:

Code Synthesis

1 / 49

Generating Code: Overview

We inductively generate instructions from the AST:
there is a rule stating how to generate code for each non-terminal of the grammar
the code is merely another attribute in the syntax tree
code generation makes use of the already computed attributes

In order to specify the code generation, we require
a semantics of the language we are compiling (here: C standard)
a semantics of the machine instructions

; we commence by specifying machine instruction semantics

2 / 49

Chapter 1:

The Register C-Machine

3 / 49

Code Synthesis

The Register C-Machine (R-CMa)

We generate Code for the Register C-Machine.
The Register C-Machine is a virtual machine (VM).

there exists no processor that can execute its instructions
. . . but we can build an interpreter for it
we provide a visualization environment for the R-CMa
the R-CMa has no double, float, char, short or long types
the R-CMa has no instructions to communicate with the operating system
the R-CMa has an unlimited supply of registers

The R-CMa is more realistic than it may seem:
the mentioned restrictions can easily be lifted
the Dalvik VM/ART or the LLVM are similar to the R-CMa
an interpreter of R-CMa can run on any platform

4 / 49

Virtual Machines

A virtual machine has the following ingredients:
any virtual machine provides a set of instructions
instructions are executed on virtual hardware
the virtual hardware is a collection of data structures that is accessed and modified by
the VM instructions
... and also by other components of the run-time system, namely functions that go
beyond the instruction semantics
the interpreter is part of the run-time system

5 / 49

Components of a Virtual Machine
Consider Java as an example:

0 SP

S

0 1 PC

C

A virtual machine such as the Dalvik VM has the following structure:
S: the data store – a memory region in which cells can be stored in LIFO order ;
stack.
SP: (=̂ stack pointer) pointer to the last used cell in S
beyond S follows the memory containing the heap
C is the memory storing code

each cell of C holds exactly one virtual instruction
C can only be read

PC (=̂ program counter) address of the instruction that is to be executed next
PC contains 0 initially

6 / 49

Executing a Program

the machine loads an instruction from C[PC] into the instruction register IR in order to
execute it
before evaluating the instruction, the PC is incremented by one

while (true) {
IR = C[PC]; PC++;
execute (IR);

}

node: the PC must be incremented before the execution, since an instruction may
modify the PC
the loop is exited by evaluating a halt instruction that returns directly to the operating
system

7 / 49

Chapter 2:

Generating Code for the Register C-Machine

8 / 49

Code Synthesis

Simple Expressions and Assignments in R-CMa

Task: evaluate the expression (1 + 7) ∗ 3
that is, generate an instruction sequence that

computes the value of the expression and
keeps its value accessible in a reproducable way

Idea:
first compute the value of the sub-expressions
store the intermediate result in a temporary register
apply the operator
loop

9 / 49

Principles of the R-CMa
The R-CMa is composed of a stack, heap and a code segment, just like the JVM; it
additionally has register sets:

local registers are R1, R2, . . . Ri, . . .
global register are R0, R−1, . . . Rj , . . .

0 SP

S

0 1 PC

C

R0 R−4

R6R1

Rloc

Rglob

10 / 49

The Register Sets of the R-CMa

The two register sets have the following purpose:
1 the local registers Ri

save temporary results
store the contents of local variables of a function
can efficiently be stored and restored from the stack

2 the global registers Ri

save the parameters of a function
store the result of a function

Note:
for now, we only use registers to store temporary computations

Idea for the translation: use a register counter i:
registers Rj with j < i are in use
registers Rj with j ≥ i are available

11 / 49

Translation of Simple Expressions

Using variables stored in registers; loading constants:

instruction semantics intuition
loadc Ri c Ri = c load constant
move Ri Rj Ri = Rj copy Rj to Ri

We define the following translation schema (with ρ x = a):

codeiR c ρ = loadc Ri c

codeiR x ρ = move Ri Ra

codeiR x = e ρ = codeiR e ρ

move Ra Ri

12 / 49

Translation of Expressions
Let op = {add, sub, div, mul, mod, le, gr, eq, leq, geq, and, or}. The R-CMa provides
an instruction for each operator op.

op Ri Rj Rk

where Ri is the target register, Rj the first and Rk the second argument.

Correspondingly, we generate code as follows:

codeiR e1 op e2 ρ = codeiR e1 ρ

codei+1
R e2 ρ

op Ri Ri Ri+1

Example: Translate 3*4 with i = 4:

code4R 3*4 ρ = code4R 3 ρ
code5R 4 ρ

code4R 3*4 ρ = loadc R4 3
loadc R5 4
mul R4 R4 R5

13 / 49

Managing Temporary Registers
Observe that temporary registers are re-used: translate 3*4+3*4 with t = 4:

code4R 3*4+3*4 ρ = code4R 3*4 ρ
code5R 3*4 ρ
add R4 R4 R5

where

codeiR 3*4 ρ = loadc Ri 3
loadc Ri+1 4
mul Ri Ri Ri+1

we obtain

code4R 3*4+3*4 ρ = loadc R4 3
loadc R5 4
mul R4 R4 R5

loadc R5 3
loadc R6 4
mul R5 R5 R6

add R4 R4 R5

14 / 49

Semantics of Operators

The operators have the following semantics:

add Ri Rj Rk Ri = Rj +Rk

sub Ri Rj Rk Ri = Rj −Rk

div Ri Rj Rk Ri = Rj/Rk

mul Ri Rj Rk Ri = Rj ∗Rk

mod Ri Rj Rk Ri = signum(Rk) · k with
|Rj | = n · |Rk|+ k ∧ n ≥ 0, 0 ≤ k < |Rk|

le Ri Rj Rk Ri = if Rj < Rk then 1 else 0
gr Ri Rj Rk Ri = if Rj > Rk then 1 else 0
eq Ri Rj Rk Ri = if Rj = Rk then 1 else 0
leq Ri Rj Rk Ri = if Rj ≤ Rk then 1 else 0
geq Ri Rj Rk Ri = if Rj ≥ Rk then 1 else 0
and Ri Rj Rk Ri = Rj & Rk // bit-wise and
or Ri Rj Rk Ri = Rj | Rk // bit-wise or

Note: all registers and memory cells contain operands in Z

15 / 49

Translation of Unary Operators
Unary operators op = {neg, not} take only two registers:

codeiR op e ρ = codeiR e ρ
op Ri Ri

Note: We use the same register.

Example: Translate -4 into R5:

code5R -4 ρ = code5R 4 ρ
code5R -4 ρ = loadc R5 4

neg R5 R5

The operators have the following semantics:

not Ri Rj Ri ← if Rj = 0 then 1 else 0
neg Ri Rj Ri ← −Rj

16 / 49

Applying Translation Schema for Expressions
Suppose the following function
is given:

void f(void) {
int x,y,z;
x = y+z*3;

}Let ρ = {x 7→ 1, y 7→ 2, z 7→ 3} be the address environment.
Let R4 be the first free register, that is, i = 4.

code4 x=y+z*3 ρ = code4R y+z*3 ρ
move R1 R4

code4R y+z*3 ρ = move R4 R2

code5R z*3 ρ
add R4 R4 R5

code5R z*3 ρ = move R5 R3

code6R 3 ρ
mul R5 R5 R6

code6R 3 ρ = loadc R6 3

; the assignment x=y+z*3 is translated as
move R4 R2;move R5 R3; loadc R6 3;mul R5 R5 R6; add R4 R4 R5;move R1 R4

17 / 49

Chapter 3:

Statements and Control Structures

18 / 49

Code Synthesis

About Statements and Expressions
General idea for translation: codei s ρ : generate code for statement s

codeiR e ρ : generate code for expression e into Ri

Throughout: i, i+ 1, . . . are free (unused) registers

For an expression x = e with ρ x = a we defined:

codeiR x = e ρ = codeiR e ρ

move Ra Ri

However, x = e; is also an expression statement:
Define:

codei e1 = e2; ρ = codeiR e1 = e2 ρ

The temporary register Ri is ignored here. More general:

codei e; ρ = codeiR e ρ

Observation: the assignment to e1 is a side effect of the evaluating the expression
e1 = e2.

19 / 49

Translation of Statement Sequences

The code for a sequence of statements is the concatenation of the instructions for each
statement in that sequence:

codei (s ss) ρ = codei s ρ

codei ss ρ

codei ε ρ = // empty sequence of instructions

Note here: s is a statement, ss is a sequence of statements

20 / 49

Jumps

In order to diverge from the linear sequence of execution, we need jumps:

jump A

A

PCPC

PC = A;

21 / 49

Conditional Jumps
A conditional jump branches depending on the value in Ri:

jumpz Ri A

PCPC

Ri
!0

Ri
!0

jumpz Ri A
0

Ri

0
Ri

PC

A

PC

if (Ri == 0) PC = A;

22 / 49

Simple Conditional
We first consider s ≡ if (c) ss.
...and present a translation without basic blocks.

Idea:
emit the code of c and ss in sequence
insert a jump instruction in-between, so that correct control flow is ensured

codei s ρ = codeiR c ρ

jumpz Ri A

codei ss ρ

A : . . .

jumpz

Rcode for c

code for ss

23 / 49

General Conditional

code code codec tt ee

Translation of if (c) tt else ee.

codei if(c) tt else ee ρ =

codeiR c ρ

jumpz Ri A

codei tt ρ

jump B

A : codei ee ρ

B :

jumpz

jump

Rcode for c

code for tt

code for ee

24 / 49

Example for if-statement

Let ρ = {x 7→ 4, y 7→ 7} and let s be the statement
if (x>y) { /* (i) */

x = x - y; /* (ii) */
} else {

y = y - x; /* (iii) */
}

Then codei s ρ yields:

(i)

move Ri R4

move Ri+1 R7

gr Ri Ri Ri+1

jumpz Ri A

(ii)

move Ri R4

move Ri+1 R7

sub Ri Ri Ri+1

move R4 Ri

jump B

(iii)

A : move Ri R7

move Ri+1 R4

sub Ri Ri Ri+1

move R7 Ri

B :

25 / 49

Iterating Statements

We only consider the loop s ≡ while (e) s′. For this statement we define:

codei while(e) s ρ = A : codeiR e ρ

jumpz Ri B

codei s ρ

jump A

B :

jumpz

R

jump

code for e

code for s’

26 / 49

Example: Translation of Loops
Let ρ = {a 7→ 7, b 7→ 8, c 7→ 9} and let s be the statement:

while (a>0) { /* (i) */
c = c + 1; /* (ii) */
a = a - b; /* (iii) */

}

Then codei s ρ evaluates to:

(i)

A : move Ri R7

loadc Ri+1 0

gr Ri Ri Ri+1

jumpz Ri B

(ii)

move Ri R9

loadc Ri+1 1

add Ri Ri Ri+1

move R9 Ri

(iii)

move Ri R7

move Ri+1 R8

sub Ri Ri Ri+1

move R7 Ri

jump A

B :

27 / 49

for-Loops

The for-loop s ≡ for (e1; e2; e3) s′ is equivalent to the statement sequence
e1; while (e2) {s′ e3; } – as long as s′ does not contain a continue statement.

Thus, we translate:

codei for(e1; e2; e3) s ρ = codeiR e1 ρ

A : codeiR e2 ρ

jumpz Ri B

codei s ρ

codeiR e3 ρ

jump A

B :

28 / 49

The switch-Statement

Idea:
Suppose choosing from multiple options in constant time if possible
use a jump table that, at the ith position, holds a jump to the ith alternative
in order to realize this idea, we need an indirect jump instruction

Ri
q

Ri
q

PCPC

B

jumpi Ri A

A+q

PC = A + Ri;

29 / 49

Consecutive Alternatives
Let switch s be given with k consecutive case alternatives:

switch (e) {
case 0: s0; break;
...
case k − 1: sk−1; break;
default: sk; break;

}

Define codei s ρ as follows:

codei s ρ = codeiR e ρ

check i 0 k B

A0 : codei s0 ρ

jump C
...

...
Ak : codei sk ρ

jump C

B : jump A0

...
...

jump Ak

C :

check i l u B checks if l ≤ Ri < u holds and jumps accordingly.
30 / 49

Translation of the check i Macro
The macro check i l u B checks if l ≤ Ri < u. Let k = u− l.

if l ≤ Ri < u it jumps to B +Ri − l
if Ri < l or Ri ≥ u it jumps to Ak

we define:

check i l u B = loadc Ri+1 l
geq Ri+2 Ri Ri+1

jumpz Ri+2 E
sub Ri Ri Ri+1

loadc Ri+1 k
geq Ri+2 Ri Ri+1

jumpz Ri+2 D
E : loadc Ri k
D : jumpi Ri B

B : jump A0

...
...

jump Ak

C :

Note: a jump jumpi Ri B with Ri = u winds up at B + u, the default case

31 / 49

Improvements for Jump Tables

This translation is only suitable for certain switch-statement.
In case the table starts with 0 instead of u we don’t need to subtract it from e before we
use it as index
if the value of e is guaranteed to be in the interval [l, u], we can omit check

32 / 49

General translation of switch-Statements

In general, the values of the various cases may be far apart:
generate an if-ladder, that is, a sequence of if-statements
for n cases, an if-cascade (tree of conditionals) can be generated ; O(logn) tests
if the sequence of numbers has small gaps (≤ 3), a jump table may be smaller and
faster
one could generate several jump tables, one for each sets of consecutive cases
an if cascade can be re-arranged by using information from profiling, so that paths
executed more frequently require fewer tests

33 / 49

Chapter 4:

Functions

34 / 49

Code Synthesis

Ingredients of a Function

The definition of a function consists of
a name with which it can be called;
a specification of its formal parameters;
possibly a result type;
a sequence of statements.

In C we have:

codeiR f ρ = loadc Ri _f with _f starting address of f

Observe:
function names must have an address assigned to them
since the size of functions is unknown before they are translated, the addresses of
forward-declared functions must be inserted later

35 / 49

Memory Management in Functions

int fac(int x) {
if (x<=0) return 1;
else return x*fac(x-1);

}

int main(void) {
int n;
n = fac(2) + fac(1);
printf("%d", n);

}

At run-time several instances may be active, that is, the function has been called but has
not yet returned.
The recursion tree in the example:

printffacfac

fac fac

fac

main

36 / 49

Memory Management in Function Variables

The formal parameters and the local variables of the various instances of a function must
be kept separate

Idea for implementing functions:

set up a region of memory each time it is called
in sequential programs this memory region can be allocated on the stack
thus, each instance of a function has its own region on the stack
these regions are called stack frames

37 / 49

Organization of a Stack Frame
stack representation: grows upwards
SP points to the last used stack cell

SP

callee
local memory

PCold

FPold

FP organizational

cells

FP =̂ frame pointer: points to the last organizational cell
used to recover the previously active stack frame

38 / 49

Split of Obligations

Definition
Let f be the current function that calls a function g.

f is dubbed caller
g is dubbed callee

The code for managing function calls has to be split between caller and callee.
This split cannot be done arbitrarily since some information is only known in that caller or
only in the callee.

Observation:

The space requirement for parameters is only know by the caller:
Example: printf

39 / 49

Principle of Function Call and Return
actions taken on entering g:

1. compute the start address of g
2. compute actual parameters in globals
3. backup of caller-save registers

}
saveloc

4. backup of FP
}
mark

5. set the new FP
6. back up of PC and

jump to the beginning of g

 call


are in f

7. copy actual params to locals
}
...
}

is in g

actions taken on leaving g:

1. compute the result into R0

2. restore FP, SP
3. return to the call site in f ,

that is, restore PC

return

 are in g

4. restore the caller-save registers
}

restoreloc
}

is in f

40 / 49

Managing Registers during Function Calls
The two register sets (global and local) are used as follows:

automatic variables live in local registers Ri

intermediate results also live in local registers Ri

parameters live in global registers Ri (with i ≤ 0)
global variables: let’s suppose there are none

convention:
the i th argument of a function is passed in register R−i

the result of a function is stored in R0

local registers are saved before calling a function

Definition
Let f be a function that calls g. A register Ri is called

caller-saved if f backs up Ri and g may overwrite it
callee-saved if f does not back up Ri, and g must restore it before returning

41 / 49

Translation of Function Calls
A function call g(e1, . . . en) is translated as follows:
codeiR g(e1, . . . en) ρ = codeiR g ρ

codei+1
R e1 ρ

...
codei+n

R en ρ

move R−1 Ri+1
...

move R−n Ri+n

saveloc R1 Ri−1

mark

call Ri

restoreloc R1 Ri−1

move Ri R0New instructions:
saveloc Ri Rj pushes the registers Ri, Ri+1 . . . Rj onto the stack
mark backs up the organizational cells
call Ri calls the function at the address in Ri

restoreloc Ri Rj pops Rj , Rj−1, . . . Ri off the stack
42 / 49

Rescuing the FP
The instruction mark allocates stack space for the return value and the organizational cells
and backs up FP.

mark

FP FP

S[SP+1] = FP;
SP = SP + 1;

43 / 49

Calling a Function
The instruction call rescues the value of PC+1 onto the stack and sets FP and PC.

q

FP

p

PC PC

q
Ri call Ri Ri

qp

SP = SP+1;
S[SP] = PC;
FP = SP;
PC = Ri;

44 / 49

Result of a Function

The global register set is also used to communicate the result value of a function:

codei return e ρ = codeiR e ρ

move R0 Ri

return

alternative without result value:

codei return ρ = return

global registers are otherwise not used inside a function body:
advantage: at any point in the body another function can be called without backing up
global registers
disadvantage: on entering a function, all global registers must be saved

45 / 49

Return from a Function
The instruction return relinquishes control of the current stack frame, that is, it restores PC
and FP.

PC

FP

PC

FP

return
p

p

PC = S[FP];
SP = FP-2;
FP = S[SP+1];

46 / 49

Translation of Functions

The translation of a function is thus defined as follows:

code1 tr f(args){decls ss} ρ = move Rl+1 R−1

...
move Rl+n R−n

codel+n+1 ss ρ′

return

Assumptions:
the function has n parameters
the local variables are stored in registers R1, . . . Rl

the parameters of the function are in R−1, . . . R−n

ρ′ is obtained by extending ρ with the bindings in decls and the function parameters args

return is not always necessary
Are the move instructions always necessary?

47 / 49

Translation of Whole Programs

A program P = F1; . . . Fn must have a single main function.

code1 P ρ = loadc R1 _main
mark
call R1

halt
_f1 : code1 F1 ρ⊕ ρf1

...
_fn : code1 Fn ρ⊕ ρfn

Assumptions:
ρ = ∅ assuming that we have no global variables
ρfi

contain the addresses of the functions up to fi

ρ1 ⊕ ρ2 = λx .

{
ρ2(x) if x ∈ dom(ρ2)
ρ1(x) otherwise

48 / 49

Translation of the fac-function
Consider:
int fac(int x) {
if (x<=0)

return 1;
else
return x*fac(x-1);

}

_fac: move R1 R−1 save param.
i = 2 move R2 R1 if (x<=0)

loadc R3 0
leq R2 R2 R3

jumpz R2 _A to else
loadc R2 1 return 1
move R0 R2

return
jump _B code is dead

_A: move R2 R1 x*fac(x-1)
i = 3 loadc R3 _fac
i = 4 move R4 R1 x-1
i = 5 loadc R5 1
i = 6 sub R4 R4 R5

i = 5 move R−1 R4 fac(x-1)
i = 3 saveloc R1 R2

mark
call R3

restoreloc R1 R2

move R3 R0

i = 4 mul R2 R2 R3

i = 3 move R0 R2 return x*...
return

_B: return

49 / 49

	Code Synthesis
	The Register C-Machine
	Generating Code for the Register C-Machine
	Statements and Control Structures
	Functions

