

Scanner and parser accept programs with correct syntax.

- not all programs that are syntactically correct make sense
- the compiler may be able to recognize some of these
 - these programs are rejected and reported as erroneous
 - the language definition defines what erroneous means
- semantic analyses are necessary that, for instance:
 - check that identifiers are known and where they are defined
 - check the type-correct use of variables
- semantic analyses are also useful to
 - find possibilities to "optimize" the program
 - warn about possibly incorrect programs
- \rightsquigarrow a semantic analysis annotates the syntax tree with attributes

Chapter 1: Attribute Grammars

Attribute Grammars

- many computations of the semantic analysis as well as the code generation operate on the syntax tree
- what is computed at a given node only depends on the *type* of that node (which is usually a non-terminal)
- we call this a *local* computation:
 - only accesses already computed information from neighbouring nodes
 - computes new information for the current node and other neighbouring nodes

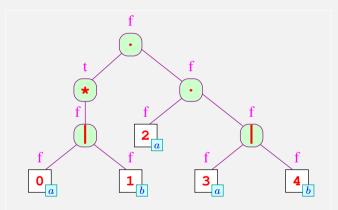
Definition attribute grammar

An attribute grammar is a CFG extended by

- a set of attributes for each non-terminal and terminal
- local attribute equations

Example: Computation of the empty[r] Attribute

Consider the syntax tree of the regular expression $(a|b)^*a(a|b)$:



 \rightarrow equations for empty[r] are computed from bottom to top (aka bottom-up)

Implementation Strategy

- attach an attribute empty to every node of the syntax tree
- ocompute the attributes in a depth-first post-order traversal:
 - at a leaf, we can compute the value of empty without considering other nodes
 - the attribute of an inner node only depends on the attribute of its children
- the empty attribute is a *synthesized* attribute

in general:

Definition

An attribute at N is called

- inherited if its value is defined in terms of attributes of N's parent, siblings and/or N itself (root → leaves)
- synthesized if its value is defined in terms of attributes of N's children and/or N itself (leaves → root)

Example: Attribute Equations for empty

In order to compute an attribute *locally*, specify attribute equations for each node depending on the *type* of the node:

In the Example from earlier, we did that intuitively:

for leaves: $r \equiv \boxed{i \ x}$ we define $empty[r] = (x \equiv \epsilon)$. otherwise: $empty[r_1 \mid r_2] = empty[r_1] \lor empty[r_2]$ $empty[r_1 \cdot r_2] = empty[r_1] \land empty[r_2]$ $empty[r_1^*] = t$ $empty[r_1^*] = t$

Specification of General Attribute Systems

General Attribute Systems

In general, for establishing attribute systems we need a flexible way to *refer to parents and children*:

 \rightsquigarrow We use consecutive indices to refer to neighbouring attributes

$attribute_{k}[0]:$	the attribute of the current root node	÷
$attribute_{k}[i]:$	the attribute of the i -th child $(i > 0)$))

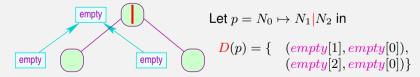
... the example, now in general formalization:

x	:	empty[0]	:=	$(x\equiv\epsilon)$
	:	empty[0]	:=	$empty[1] \lor empty[2]$
•	:	empty[0]	:=	$empty[1] \land empty[2]$
*	:	empty[0]	:=	t
?	:	empty[0]	:=	t

Observations

- the *local* attribute equations need to be evaluated using a *global* algorithm that knows about the dependencies of the equations
- in order to construct this algorithm, we need
 - a sequence in which the nodes of the tree are visited
 - a sequence within each node in which the equations are evaluated
- this evaluation strategy has to be compatible with the dependencies between attributes

We visualize the attribute dependencies D(p) of a production p in a *Local Dependency Graph*:



 \rightsquigarrow arrows point in the direction of information flow

Observations

- in order to infer an evaluation strategy, it is not enough to consider the *local* attribute dependencies at each node
- the evaluation strategy must also depend on the *global* dependencies, that is, on the information flow between nodes
- Δ the global dependencies change with each particular syntax tree
 - in the example, the parent node is always depending on children only
 → a depth-first post-order traversal is possible
 - in general, variable dependencies can be much more complex

Simultaneous Computation of Multiple Attributes

Computing empty, first, next from regular expressions:

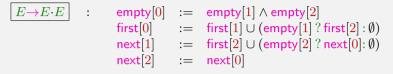
 $D(S \to E) = \{ (empty[1], empty[0]), \}$ (first[1], first[0])

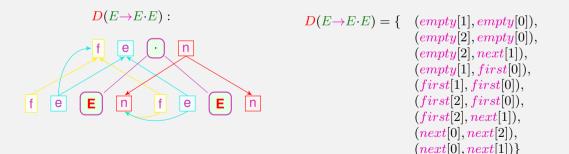
Regular Expressions: Rules for Alternative

:

 $E \rightarrow E | E$

Regular Expressions: Rules for Concatenation





13/67

Regular Expressions: Rules for Kleene-Star and Option

$$E \rightarrow E*$$
: empty[0] := t
first[0] := first[1]
next[1] := first[1] \cup next[0]
$$E \rightarrow E?$$
: empty[0] := t
first[0] := first[1]
next[1] := next[0]
$$D(E \rightarrow E*):$$

$$f = E$$

$$D(E \rightarrow E*) = \{ (first[1], first[0]), first[0]), first[0], first[0],$$

 $D(E \to E^*) = \{ (first[1], first[0]), (first[1], next[2]), (next[0], next[1]) \}$

Challenges for General Attribute Systems

Static evaluation

Is there a static evaluation strategy, which is generally applicable?

- an evaluation strategy can only exist, if for any derivation tree the dependencies between attributes are acyclic
- it is *DEXPTIME*-complete to check for cyclic dependencies [Jazayeri, Odgen, Rounds, 1975]

Ideas

- Let the User specify the strategy
- Oetermine the strategy dynamically
- Automate subclasses only

Subclass: Strongly Acyclic Attribute Dependencies

Idea: For all nonterminals X compute a set $\mathcal{R}(X)$ of relations between its attributes, as an *overapproximation of the global dependencies* between root attributes of every production for X.

Describe $\mathcal{R}(X)$ s as sets of relations, similar to D(p) by

- setting up each production $X \mapsto X_1 \dots X_k$'s effect on the relations of $\mathcal{R}(X)$
- compute effect on all so far accumulated evaluations of each rhs X_i 's $\mathcal{R}(X_i)$
- iterate until stable

Subclass: Strongly Acyclic Attribute Dependencies

The 2-ary operator L[i] re-decorates relations from L

 $L[i] = \{ (a[i], b[i]) \mid (a, b) \in L \}$

 π_0 projects only onto relations between root elements only

 $\pi_0(S) = \{ (a, b) \mid (a[0], b[0]) \in S \}$

 $[.]^{\sharp}...$ root-projects the transitive closure of relations from the L_i s and D

$$\llbracket p \rrbracket^{\sharp}(L_1,\ldots,L_k) = \pi_0((D(p) \cup L_1[1] \cup \ldots \cup L_k[k]))$$

R maps symbols to relations (global attributes dependencies)

 $\mathcal{R}(X) \supseteq \left(\bigcup \{ \llbracket p \rrbracket^{\sharp}(\mathcal{R}(X_1), \dots, \mathcal{R}(X_k)) \mid p : X \to X_1 \dots X_k \} \right)^+ \mid p \in \mathcal{P}$

 $\mathcal{R}(X) \supseteq \emptyset \quad | X \in (N \cup T)$

Strongly Acyclic Grammars

Lı

The system of inequalities $\mathcal{R}(X)$

e L1

characterizes the class of strongly acyclic Dependencies

L₀ n

Lo

 $L_{\mathbf{n}}$

Ln?

 $\begin{bmatrix} \mathbf{l} \\ \mathbf{L}_{\mathbf{i}} \end{bmatrix}$

e Lo

n

f e

f e

• has a unique least solution $\mathcal{R}^{\star}(X)$ (as $[.]^{\sharp}$ is monotonic)

Subclass: Strongly Acyclic Attribute Dependencies

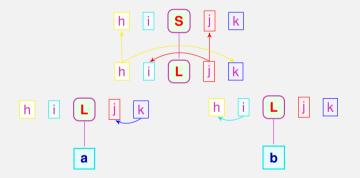
Strongly Acyclic Grammars

If all $D(p) \cup \mathcal{R}^{\star}(X_1)[1] \cup \ldots \cup \mathcal{R}^{\star}(X_k)[k]$ are acyclic for all $p \in G$, *G* is strongly acyclic.

Idea: we compute the least solution $\mathcal{R}^{\star}(X)$ of $\mathcal{R}(X)$ by a fixpoint computation, starting from $\mathcal{R}(X) = \emptyset$.

Example: Strong Acyclic Test

Given grammar $S \rightarrow L$, $L \rightarrow a \mid b$. Dependency graphs D_p :



Example: Strong Acyclic Test

Start with computing $\mathcal{R}(L) = \llbracket L \rightarrow a \rrbracket^{\sharp}() \sqcup \llbracket L \rightarrow b \rrbracket^{\sharp}()$:

terminal symbols do not contribute dependencies

check for cycles!

- **③** transitive closure of all relations in $(D(L \rightarrow a))^+$ and $(D(L \rightarrow b))^+$
- (apply π_0
- $\textcircled{3} \ \mathcal{R}(L) = \{(k, j), (i, h)\}$

Example: Strong Acyclic Test

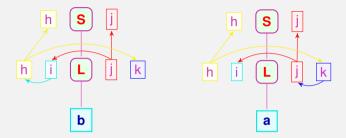
Continue with $\mathcal{R}(S) = [\![S \rightarrow L]\!]^{\sharp}(\mathcal{R}(L))$:

• re-decorate and embed $\mathcal{R}(L)[1]$

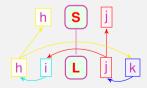
- Solution transitive closure of all relations $(D(S \rightarrow L) \cup \{(k[1], j[1])\} \cup \{(i[1], h[1])\})^+$
- (3) apply π_0
- $\textcircled{3} \mathcal{R}(S) = \{\}$

Strong Acyclic and Acyclic

The grammar $S \rightarrow L$, $L \rightarrow a \mid b$ has only two derivation trees which are both *acyclic*:



It is *not strongly acyclic* since the over-approximated global dependence graph for the non-terminal L contributes to a cycle when computing $\mathcal{R}(S)$:



From Dependencies to Evaluation Strategies

Possible strategies:

- Iet the user define the evaluation order
- automatic strategy based on the dependencies
- consider a *fixed* strategy and only allow an attribute system that can be evaluated using this strategy

Linear Order from Dependency Partial Order

Possible automatic strategies:

demand-driven evaluation

- start with the evaluation of any required attribute
- if the equation for this attribute relies on as-of-yet unevaluated attributes, evaluate these recursively

evaluation in passes

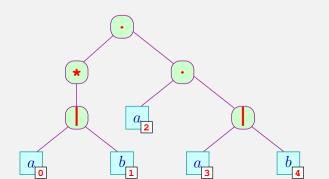
for each pass, pre-compute a global strategy to visit the *nodes* together with a local strategy for evaluation *within each node* type

→ *minimize* the number of *visits* to each node

Example: Demand-Driven Evaluation

Compute next at leaves a_2, a_3 and b_4 in the expression $(a|b)^*a(a|b)$:

$$| | : next[1] := next[0] next[2] := next[0]
: next[1] := first[2] \cup (empty[2] ? next[0]: \emptyset) next[2] := next[0]
(.)$$



Demand-Driven Evaluation

Observations

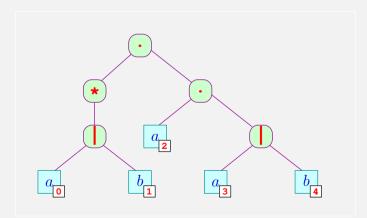
- each node must contain a pointer to its parent
- only required attributes are evaluated
- the evaluation sequence depends in general on the actual syntax tree
- the algorithm must track which attributes it has already evaluated
- the algorithm may visit nodes more often than necessary
- \rightarrow the algorithm is not local

in principle:

- evaluation strategy is dynamic: difficult to debug
- usually all attributes in all nodes are required
- \rightsquigarrow computation of all attributes is often cheaper
- \rightsquigarrow perform evaluation in <code>passes</code>

Implementing State

Problem: In many cases some sort of state is required. Example: numbering the leafs of a syntax tree



Example: Implementing Numbering of Leafs

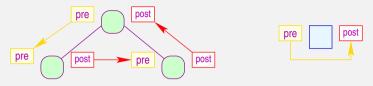
Idea:

- use helper attributes pre and post
- in pre we pass the value for the first leaf down (inherited attribute)
- in post we pass the value of the last leaf up (synthesized attribute)

$$\begin{array}{rcrcr} {\rm root:} & {\rm pre}[0] & := & 0 \\ & {\rm pre}[1] & := & {\rm pre}[0] \\ & {\rm post}[0] & := & {\rm post}[1] \end{array}$$
$$\begin{array}{rcrcr} {\rm node:} & {\rm pre}[1] & := & {\rm pre}[0] \\ & {\rm pre}[2] & := & {\rm post}[1] \\ & {\rm post}[0] & := & {\rm post}[2] \end{array}$$

leaf: post[0] := pre[0] + 1

L-Attributation



- the attribute system is apparently strongly acyclic
- each node computes
 - the inherited attributes before descending into a child node (corresponding to a pre-order traversal)
 - the synthesized attributes after returning from a child node (corresponding to post-order traversal)

Definition L-Attributed Grammars

An attribute system is *L*-attributed, if for all productions $S \rightarrow S_1 \dots S_n$ every inherited attribute of S_j where $1 \le j \le n$ only depends on

• the attributes of $S_1, S_2, \ldots S_{j-1}$ and

2 the inherited attributes of S.

L-Attributation

Background:

- the attributes of an L-attributed grammar can be evaluated during parsing
- important if no syntax tree is required or if error messages should be emitted while parsing
- example: pocket calculator
- *L*-attributed grammars have a fixed evaluation strategy: a single *depth-first* traversal
 - in general: partition all attributes into $A = A_1 \cup \ldots \cup A_n$ such that for all attributes in A_i the attribute system is *L*-attributed
 - perform a depth-first traversal for each attribute set A_i

 \sim craft attribute system in a way that they can be partitioned into few L-attributed sets

Practical Applications

- symbol tables, type checking/inference, and simple code generation can all be specified using *L*-attributed grammars
- most applications annotate syntax trees with additional information
- the nodes in a syntax tree usually have different *types* that depend on the non-terminal that the node represents
- → the different types of non-terminals are characterized by the set of attributes with which they are decorated

Example: Def-Use Analysis

- *a statement* may have two attributes containing valid identifiers: one ingoing (inherited) set and one outgoing (synthesised) set
- an expression only has an ingoing set

Implementation of Attribute Systems via a Visitor

```
    class with a method for every non-terminal in the grammar
public abstract class Regex {
    public abstract void accept (Visitor v);
```

```
• attribute-evaluation works via pre-order / post-order callbacks
```

```
public interface Visitor
```

```
default void pre(OrEx re) {}
```

```
default void pre(AndEx re) { }
```

```
default void post(OrEx re) {}
default void post(AndEx re) {}
```

```
• we pre-define a depth-first traversal of the syntax tree
```

```
public class OrEx extends Regex {
   Regex l, r;
   public void accept(Visitor v) {
      v.pre(this);l.accept(v);v.inter(this);
      r.accept(v); v.post(this);
   }
}
```

Example: Leaf Numbering

```
public abstract class AbstractVisitor implements Visitor {
```

```
public void pre (OrEx re) { pr(re); }
public void pre (AndEx re) { pr(re); }
... /* redirecting to default handler for bin exprs */
public void post(OrEx re) { po(re); }
public void post(AndEx re) { po(re); }
abstract void po(BinEx re);
abstract void in(BinEx re);
abstract void pr(BinEx re);
```

```
public class LeafNum extends AbstractVisitor {
    public Map<Regex, Integer> pre = new HashMap<>();
    public Map<Regex, Integer> post = new HashMap<>();
    public LeafNum (Regex r) { pre .put(r,0); r.accept(this); }
    public void pre(Const r) { post.put(r, pre .get(r)+1); }
    public void pr (BinEx r) { pre .put(r.1, pre .get(r)); }
    public void in (BinEx r) { pre .put(r.r, post.get(r.l)); }
    public void po (BinEx r) { post.put(r, post.get(r.r)); }
```

Chapter 2: Decl-Use Analysis

Symbol Bindings and Visibility

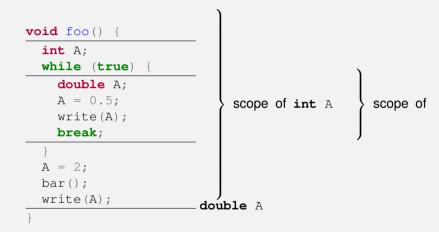
Consider the following Java code:

```
void foo() {
  int a;
  while(true) {
    double a;
    a = 0.5;
    write(a);
    break;
  a = 2;
  bar();
  write(a);
```

- each *declaration* of a variable v causes memory allocation for v
- using v requires knowledge about its memory location
 - \rightarrow determine the declaration v is $\ensuremath{\textit{bound}}$ to
- a binding is not *visible* when a local declaration of the same name is in scope

in the example the definition of \mathbb{A} is shadowed by the *local definition* in the loop body

Scope of Identifiers



administration of identifiers can be quite complicated...

Resolving Identifiers

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing *rapid* access to its *declaration*

Idea:

- rapid access: replace every identifier by a unique integer
 - $\rightarrow\,$ integers as keys: comparisons of integers is faster
- Iink each usage of a variable to the *declaration* of that variable
 - ightarrow for languages without explicit declarations, create declarations when a variable is first encountered

Rapid Access: Replace Strings with Integers

Idea for Algorithm:

Input: a sequence of strings

Output:
 sequence of numbers

table that allows to retrieve the string that corresponds to a number Apply this algorithm on each identifier during *scanning*.

Implementation approach:

• count the number of new-found identifiers in int count

• maintain a *hashtable* S : String \rightarrow int to remember numbers for known identifiers

We thus define the function:

```
int indexForldentifier(String w) {

if (S(w) \equiv \text{undefined}) {

S = S \oplus \{w \mapsto \text{count}\};

return count++;

} else return S(w);
```

Implementation: Hashtables for Strings

- allocate an array M of sufficient size m
- ② choose a hash function $H: \operatorname{\mathbf{String}} \to [0, m-1]$ with:
 - H(w) is cheap to compute
 - H distributes the occurring words equally over [0, m-1]

Possible generic choices for sequence types ($ec{x} = \langle x_0, \dots x_{r-1}
angle$):

$$H_{0}(\vec{x}) = (x_{0} + x_{r-1}) \% m$$

$$H_{1}(\vec{x}) = (\sum_{i=0}^{r-1} x_{i} \cdot p^{i}) \% m$$

$$H_{1}(\vec{x}) = (x_{0} + p \cdot (x_{1} + p \cdot (\dots + p \cdot x_{r-1} \cdots))) \% m$$

for some prime number p (e.g. 31)

- X The hash value of *w* may not be unique!
 - \rightarrow Append (w, i) to a linked list located at M[H(w)]
 - Finding the index for w, we compare w with all x for which H(w) = H(x)
- ✓ access on average:

insert: $\mathcal{O}(1)$ lookup: $\mathcal{O}(1)$

Example: Replacing Strings with Integers

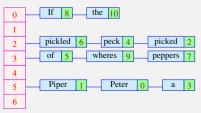
Input: Peter Piper pickled picked peck of а peppers lf Peter Piper picked peck of pickled а peppers Piper wheres the peck of pickled Peter picked peppers Output: 2 5 5 6 0 3 4 6 7 8 0 2 3 4 9 10 5 6 2 0 4

and

0	Peter
1	Piper
2	picked
3	а
4	peck
5	of

6	pickled
7	peppers
8	lf
9	wheres
10	the

Hashtable with m = 7 and H_0 :

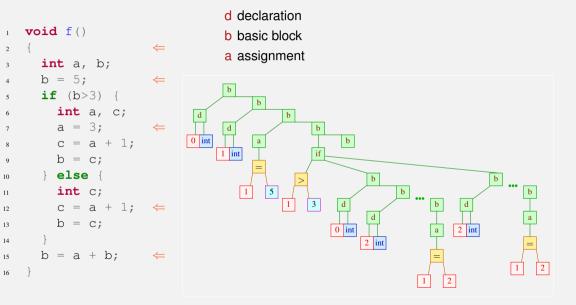


Refer Uses to Declarations: Symbol Tables

Check for the correct usage of variables:

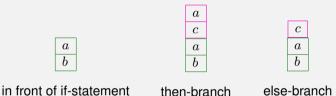
- Traverse the syntax tree in a suitable sequence, such that
 - each declaration is visited before its use
 - the currently visible declaration is the last one visited
 - → perfect for an L-attributed grammar
 - equation system for basic block must add and remove identifiers
- for each identifier, we manage a stack of declarations
 - If we visit a declaration, we push it onto the stack of its identifier
 - Ipon leaving the scope, we remove it from the stack
- if we visit a *usage* of an identifier, we pick the top-most declaration from its stack
- if the stack of the identifier is empty, we have found an undeclared identifier

Example: Decl-Use Analysis via Table of Stacks



Alternative Implementations for Symbol Tables

 when using a list to store the symbol table, storing a marker indicating the old head of the list is sufficient



- instead of lists of symbols, it is possible to use a list of hash tables → more efficient in large, shallow programs
- an even more elegant solution: *persistent trees* (updates return fresh trees with references to the old tree where possible)
- \sim a persistent tree *t* can be passed down into a basic block where new elements may be added, yielding a *t*'; after examining the basic block, the analysis proceeds with the unchanged old *t*

Semantic Analysis

Chapter 3: Type Checking In most mainstream (imperative / object oriented / functional) programming languages, variables and functions have a fixed type.

```
for example: int, void*, struct { int x; int y; }.
```

Types are useful to

- manage memory
- to avoid certain run-time errors

In imperative and object-oriented programming languages a declaration has to specify a type. The compiler then checks for a type correct use of the declared entity.

Type Expressions

Types are given using type-*expressions*. The set of type expressions T contains:

base types: int, char, float, void, ...

type constructors that can be applied to other types

example for type constructors in C:

- structures: struct { $t_1 a_1; \ldots t_k a_k;$ }
- pointers: $t \star$
- arrays: *t* []
 - the size of an array can be specified
 - the variable to be declared is written between t and [n]
- functions: $t(t_1, \ldots, t_k)$
 - the variable to be declared is written between t and (t_1,\ldots,t_k)
 - in ML function types are written as: $t_1 * \ldots * t_k
 ightarrow t$

Type Checking

Problem:

Given: A set of type declarations $\Gamma = \{t_1 \ x_1; \dots t_m \ x_m; \}$ **Check:** Can an expression *e* be given the type *t*?

Example:

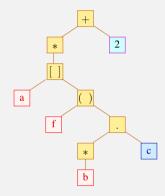
```
struct list { int info; struct list* next; };
int f(struct list* l) { return 1; };
struct { struct list* c;}* b;
int* a[11];
```

Consider the expression:

```
*a[f(b->c)]+2;
```

Type Checking using the Syntax Tree

Check the expression *a[f(b->c)]+2:



Idea:

- traverse the syntax tree bottom-up
- \bullet for each identifier, we lookup its type in Γ
- constants such as 2 or 0.5 have a fixed type
- the types of the inner nodes of the tree are deduced using typing rules

Type Systems

Formally: consider *judgements* of the form:

 $\Gamma \ \vdash e \ : \ t$

// (in the type environment Γ the expression e has type t)

Axioms:

Const: $\Gamma \vdash c$: t_c Var: $\Gamma \vdash x$: $\Gamma(x)$ $egin{array}{cc} (t_c & ext{type of constant } c)\ (x & ext{Variable}) \end{array}$

Rules:

Ref:
$$\frac{\Gamma \vdash e : t}{\Gamma \vdash \& e : t*}$$

Deref:
$$\frac{\Gamma \vdash e : t *}{\Gamma \vdash * e : t}$$

Type Systems for C-like Languages

More rules for typing an expression: with subtyping relation \leq

Array:	$\frac{\Gamma \vdash e_1 \ : \ t \ast \Gamma \vdash e_2 \ : \ \mathbf{int}}{\Gamma \vdash e_1[e_2] \ : \ t}$
Array:	$\frac{\Gamma \vdash e_1 \ : \ t \left[\right] \Gamma \vdash e_2 \ : \ \mathbf{int}}{\Gamma \vdash e_1 [e_2] \ : \ t}$
Struct:	$\frac{\Gamma \vdash e : \text{ struct } \{t_1 \ a_1; \dots t_m \ a_m; \}}{\Gamma \vdash e.a_i : t_i}$
App:	$\frac{\Gamma \vdash e : t(t_1, \dots, t_m) \Gamma \vdash e_1 : t_1 \ \dots \ \Gamma \vdash e_m : t_m}{\Gamma \vdash e(e_1, \dots, e_m) : t}$
Ор □:	$\frac{\Gamma \vdash e_1 \ : \ t_1 \qquad \Gamma \vdash e_2 \ : \ t_2}{\Gamma \vdash e_1 \Box e_2 \ : \ t_1 \sqcup t_2}$
Op =:	$\frac{\Gamma \vdash e_1 : t_1 \qquad \Gamma \vdash e_2 : t_2 \qquad t_2 \text{ can be converted to} \leq t_1}{\Gamma \vdash e_1 = e_2 : t_1}$
Explicit Cast:	$\frac{\Gamma \vdash e \ : \ t_2}{\Gamma \vdash (t_1) \ e \ : \ t_1} \frac{t_2 \text{ can be converted to} \leq t_1}{t_1}$

Example: Type Checking

```
Given expression *a[f(b->c)]+2 and

r = {

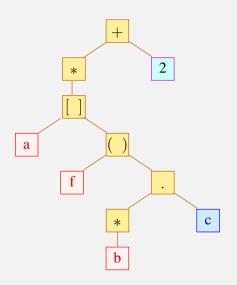
struct list { int info; struct list* next; };

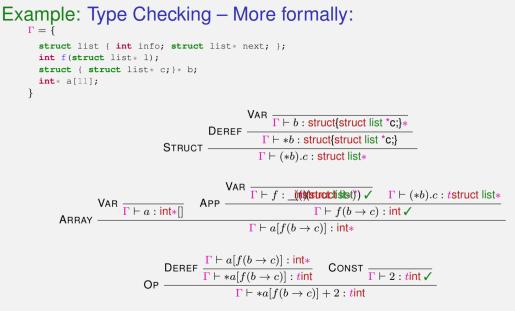
int f(struct list* 1);

struct { struct list* c;}* b;

int* a[11];

}
```





but what do we do with \leq ?

Equality of Types =

Summary of Type Checking

- Choosing which rule to apply at an AST node is determined by the type of the child nodes
- determining the rule requires a check for
 quality of types

```
type equality in C:
```

- struct $A \in$ and struct $B \in$ are considered to be different
 - ~> the compiler could re-order the fields of A and B independently (not allowed in C)
 - to extend an record A with more fields, it has to be embedded into another record:

```
struct B {
    struct A;
    int field_of_B;
} extension_of_A;
```

• after issuing typedef int C; the types C and int are the same

Structural Type Equality

Alternative interpretation of type equality (does not hold in C):

semantically, two types t_1, t_2 can be considered as *equal* if they accept the same set of access paths.

```
Example:
  struct list {
                           struct list1 {
                          int info;
    int info;
    struct list* next;
                            struct {
                               int info;
                               struct list1* next;
                             }* next;
Consider declarations struct list * 1 and struct list1 * 1. Both allow
                       1->info 1->next->info
```

but the two declarations of l have unequal types in C.

Algorithm for Testing Structural Equality

Idea:

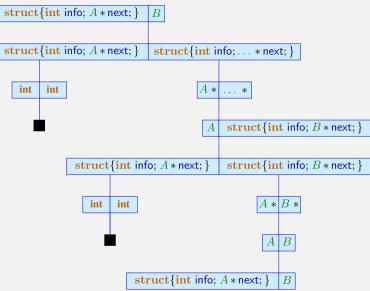
- track a set of equivalence queries of type expressions
- if two types are syntactically equal, we stop and report success
- otherwise, reduce the equivalence query to a several equivalence queries on (hopefully) simpler type expressions

Suppose that recursive types were introduced using type definitions:

$\texttt{typedef} \ A \ t$

(we omit the Γ). Then define the following rules:

Rules for Well-Typedness



Example:

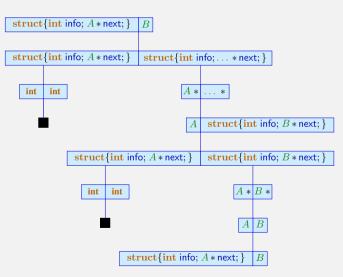
 $\begin{array}{rl} \mbox{typedef} & \mbox{struct {int info; } $A * next; } & A \\ \mbox{typedef} & \mbox{struct {int info; } struct {int info; $B * next; } * next; } & B \\ \mbox{We ask, for instance, if the following equality holds:} \end{array}$

```
struct {int info; A * next; } = B
```

We construct the following deduction tree:

Proof for the Example:

typedefstruct {int info; $A * next; }<math>A$ typedefstruct {int info; struct {int info; $B * next; } * next; }<math>B$



Implementation

We implement a function that implements the equivalence query for two types by applying the deduction rules:

- if no deduction rule applies, then the two types are not equal
- if the deduction rule for expanding a type definition applies, the function is called recursively with a *potentially larger* type
- in case an equivalence query appears a second time, the types are equal by definition

Termination

- the set D of all declared types is finite
- there are no more than $|D|^2$ different equivalence queries
- repeated queries for the same inputs are automatically satisfied

 \rightsquigarrow termination is ensured

Subtyping <

On the arithmetic basic types char, int, long, etc. there exists a rich subtype hierarchy

Subtypes

- $t_1 \leq t_2$, means that the values of type t_1
- form a subset of the values of type t_2 ;
- (2) can be converted into a value of type t_2 ;
- I fulfill the requirements of type t_2 ;
- are assignable to variables of type t2.

Example:

assign smaller type (fewer values) to larger type (more values)

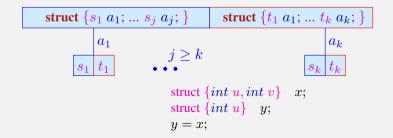
 $\begin{array}{l} t_1 \quad \text{int } x; \\ t_2 \quad \text{double } y; \\ y = x; \\ t_1 \leq t_2 \text{int} \leq \text{double} \end{array}$

Extending the subtype relationship to more complex types, observe:

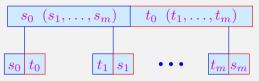
```
string extractInfo( struct { string info; } x) {
  return x.info;
}
```

- we want extractInfo to be applicable to all argument structures that return a string typed field for accessor info
- the idea of subtyping on values is related to subclasses
- we use deduction rules to describe when $t_1 \leq t_2$ should hold...

Rules for Well-Typedness of Subtyping



Rules and Examples for Subtyping



Examples:

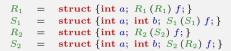
Definition

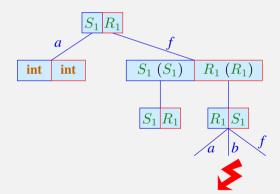
Given two function types in subtype relation $s_0(s_1, \ldots s_n) \le t_0(t_1, \ldots t_n)$ then we have

- co-variance of the return type $s_0 \leq t_0$ and
- contra-variance of the arguments $s_i \ge t_i$ für $1 < i \le n$

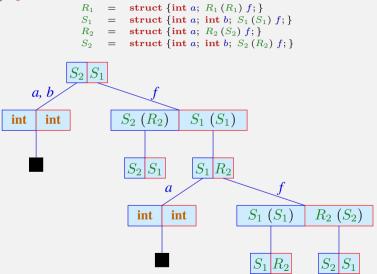
Subtypes: Application of Rules (I)

Check if $S_1 \leq R_1$:

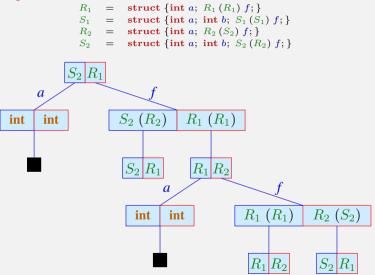




Subtypes: Application of Rules (II) Check if $S_2 \leq S_1$:



Subtypes: Application of Rules (III) Check if $S_2 \leq R_1$:



Discussion

- for presentational purposes, proof trees are often abbreviated by omitting deductions within the tree
- structural sub-types are very powerful and can be quite intricate to understand
- Java generalizes structs to objects/classes where a sub-class A inheriting form base class O is a subtype $A \leq O$
- subtype relations between classes must be explicitly declared