
Topic:

Semantic Analysis

1 / 67

Semantic Analysis

Scanner and parser accept programs with correct syntax.
not all programs that are syntacticallly correct make sense
the compiler may be able to recognize some of these

these programs are rejected and reported as erroneous
the language definition defines what erroneous means

semantic analyses are necessary that, for instance:
check that identifiers are known and where they are defined
check the type-correct use of variables

semantic analyses are also useful to
find possibilities to “optimize” the program
warn about possibly incorrect programs

; a semantic analysis annotates the syntax tree with attributes

2 / 67

Chapter 1:

Attribute Grammars

3 / 67

Semantic Analysis

Attribute Grammars
many computations of the semantic analysis as well as the code generation operate on
the syntax tree
what is computed at a given node only depends on the type of that node (which is
usually a non-terminal)
we call this a local computation:

only accesses already computed information from neighbouring nodes
computes new information for the current node and other neighbouring nodes

Definition attribute grammar
An attribute grammar is a CFG extended by

a set of attributes for each non-terminal and terminal
local attribute equations

in order to be able to evaluate the attribute equations, all attributes mentioned in that
equation have to be evaluated already
; the nodes of the syntax tree need to be visited in a certain sequence

4 / 67

Example: Computation of the empty[r] Attribute

Consider the syntax tree of the regular expression (a|b)*a(a|b):

.

* .

||
f f

f

f f

f f

ft

f

0 1 3 4

2

a a bb

a

; equations for empty[r] are computed from bottom to top (aka bottom-up)

5 / 67

Implementation Strategy

attach an attribute empty to every node of the syntax tree
compute the attributes in a depth-first post-order traversal:

at a leaf, we can compute the value of empty without considering other nodes
the attribute of an inner node only depends on the attribute of its children

the empty attribute is a synthesized attribute
in general:

Definition
An attribute at N is called

inherited if its value is defined in terms of attributes of N ’s parent, siblings and/or N
itself (root ↪→ leaves)
synthesized if its value is defined in terms of attributes of N ’s children and/or N itself
(leaves→ root)

6 / 67

Example: Attribute Equations for empty

In order to compute an attribute locally, specify attribute equations for each node
depending on the type of the node:

In the Example from earlier, we did that intuitively:
for leaves: r ≡ i x we define empty[r] = (x ≡ ε).
otherwise:

empty[r1 | r2] = empty[r1] ∨ empty[r2]
empty[r1 · r2] = empty[r1] ∧ empty[r2]
empty[r∗1] = t
empty[r1?] = t

7 / 67

Specification of General Attribute Systems

General Attribute Systems
In general, for establishing attribute systems we need a flexible way to refer to parents and
children:
; We use consecutive indices to refer to neighbouring attributes

attributek[0] : the attribute of the current root node
attributek[i] : the attribute of the i-th child (i > 0)

... the example, now in general formalization:

x : empty[0] := (x ≡ ε)
| : empty[0] := empty[1] ∨ empty[2]

· : empty[0] := empty[1] ∧ empty[2]
∗ : empty[0] := t

? : empty[0] := t

8 / 67

Observations

the local attribute equations need to be evaluated using a global algorithm that knows
about the dependencies of the equations
in order to construct this algorithm, we need
1 a sequence in which the nodes of the tree are visited
2 a sequence within each node in which the equations are evaluated

this evaluation strategy has to be compatible with the dependencies between attributes

We visualize the attribute dependencies D(p) of a production p in a Local Dependency
Graph:

|

empty

empty

empty

Let p = N0 7→ N1|N2 in

D(p) = { (empty[1], empty[0]),
(empty[2], empty[0])}

; arrows point in the direction of information flow
9 / 67

Observations

in order to infer an evaluation strategy, it is not enough to consider the local attribute
dependencies at each node
the evaluation strategy must also depend on the global dependencies, that is, on the
information flow between nodes
NN! the global dependencies change with each particular syntax tree

in the example, the parent node is always depending on children only
; a depth-first post-order traversal is possible
in general, variable dependencies can be much more complex

10 / 67

Simultaneous Computation of Multiple Attributes
Computing empty, first, next from regular expressions:

S→E: : empty[0] := empty[1]
first[0] := first[1]
next[1] := ∅

D(S→E) :

S

E n

e

e

f

f

D(S→E) = { (empty[1], empty[0]),
(first[1], first[0])}

E→x : empty[0] := (x ≡ ε)
first[0] := {x | x 6= ε}

D(E→x) :

E

x

nef

D(E→x) = { }

11 / 67

Regular Expressions: Rules for Alternative

E→E|E : empty[0] := empty[1] ∨ empty[2]

first[0] := first[1] ∪ first[2]
next[1] := next[0]
next[2] := next[0]

D(E→E|E) :

|

E E

n

n n

e

e e

f

f f

D(E→E|E) = { (empty[1], empty[0]),
(empty[2], empty[0]),
(first[1], first[0]),
(first[2], first[0]),
(next[0], next[2]),
(next[0], next[1])}

12 / 67

Regular Expressions: Rules for Concatenation

E→E·E : empty[0] := empty[1] ∧ empty[2]
first[0] := first[1] ∪ (empty[1] ? first[2] : ∅)
next[1] := first[2] ∪ (empty[2] ? next[0]: ∅)
next[2] := next[0]

D(E→E·E) :

·

E E

n

n n

e

e e

f

f f

D(E→E·E) = { (empty[1], empty[0]),
(empty[2], empty[0]),
(empty[2], next[1]),
(empty[1], first[0]),
(first[1], first[0]),
(first[2], first[0]),
(first[2], next[1]),
(next[0], next[2]),
(next[0], next[1])}

13 / 67

Regular Expressions: Rules for Kleene-Star and Option

E→E∗ : empty[0] := t
first[0] := first[1]
next[1] := first[1] ∪ next[0]

D(E→E∗) :

∗

E

n

n

e

e

f

f

D(E→E∗) = { (first[1], first[0]),
(first[1], next[2]),
(next[0], next[1])}

E→E? : empty[0] := t
first[0] := first[1]
next[1] := next[0]

D(E→E?) :

?

E

n

n

e

e

f

f

D(E→E?) = { (first[1], first[0]),
(next[0], next[1])}

14 / 67

Challenges for General Attribute Systems

Static evaluation
Is there a static evaluation strategy, which is generally applicable?

an evaluation strategy can only exist, if for any derivation tree the dependencies
between attributes are acyclic
it is DEXPTIME-complete to check for cyclic dependencies
[Jazayeri, Odgen, Rounds, 1975]

Ideas
1 Let the User specify the strategy
2 Determine the strategy dynamically
3 Automate subclasses only

15 / 67

Subclass: Strongly Acyclic Attribute Dependencies

Idea: For all nonterminals X compute a set R(X) of relations between its attributes, as an
overapproximation of the global dependencies between root attributes of every production
for X.

Describe R(X)s as sets of relations, similar to D(p) by
setting up each production X 7→ X1 . . . Xk’s effect on the relations of R(X)

compute effect on all so far accumulated evaluations of each rhs Xi’s R(Xi)

iterate until stable

16 / 67

Subclass: Strongly Acyclic Attribute Dependencies
The 2-ary operator L[i] re-decorates relations from L

L[i] = {(a[i], b[i]) | (a, b) ∈ L}

π0 projects only onto relations between root elements only

π0(S) = {(a, b) | (a[0], b[0]) ∈ S}

[[.]]]... root-projects the transitive closure of relations from the Lis and D

[[p]]](L1, . . . , Lk) = π0((D(p) ∪ L1[1] ∪ . . . ∪ Lk[k])+)

R maps symbols to relations (global attributes dependencies)

R(X) ⊇ (
⋃
{[[p]]](R(X1), . . . ,R(Xk)) | p : X → X1 . . . Xk})+ | p ∈ P

R(X) ⊇ ∅ | X ∈ (N ∪ T)

Li nef

L0

LnL1

L0 nef

LnL1 nef nef. . .

L0 nef

. . . LnL1 nef nef
Strongly Acyclic Grammars

The system of inequalitiesR(X)

characterizes the class of strongly acyclic Dependencies

has a unique least solutionR?(X) (as [[.]]] is monotonic)

17 / 67

Subclass: Strongly Acyclic Attribute Dependencies

Strongly Acyclic Grammars
If all D(p) ∪R?(X1)[1] ∪ . . . ∪R?(Xk)[k] are acyclic for all p ∈ G,
G is strongly acyclic.

Idea: we compute the least solution R?(X) of R(X) by a fixpoint computation, starting
from R(X) = ∅.

18 / 67

Example: Strong Acyclic Test

Given grammar S→L, L→a | b. Dependency graphs Dp:

S

L

j

j

k

k

i

i

h

h

L

a

j kih L

b

j kih

19 / 67

Example: Strong Acyclic Test

Start with computing R(L) = [[L→a]]]() t [[L→b]]]():

L

a

j kih L

b

j kih

1 terminal symbols do not contribute dependencies
2 transitive closure of all relations in (D(L→a))+

check for cycles!

and (D(L→b))+

3 apply π0

4 R(L) = {(k, j), (i, h)}

20 / 67

Example: Strong Acyclic Test

Continue with R(S) = [[S→L]]](R(L)):

S

L

jh

j kih

L j kih

1 re-decorate and embed R(L)[1]

2 transitive closure of all relations

check for cycles!

(D(S→L) ∪ {(k[1], j[1])} ∪ {(i[1], h[1])})+

3 apply π0

4 R(S) = {}

21 / 67

Strong Acyclic and Acyclic
The grammar S→L, L→a | b has only two derivation trees which are both acyclic:

S

L

b

jh

j kih

S

L

a

jh

j kih

It is not strongly acyclic since the over-approximated global dependence graph for the
non-terminal L contributes to a cycle when computing R(S):

S

L

jh

j kih

22 / 67

From Dependencies to Evaluation Strategies

Possible strategies:
1 let the user define the evaluation order
2 automatic strategy based on the dependencies
3 consider a fixed strategy and only allow an attribute system that can be evaluated using

this strategy

23 / 67

Linear Order from Dependency Partial Order

Possible automatic strategies:

1 demand-driven evaluation
start with the evaluation of any required attribute
if the equation for this attribute relies on as-of-yet unevaluated attributes, evaluate these recursively

2 evaluation in passes
for each pass, pre-compute a global strategy to visit the nodes together with a local strategy for
evaluation within each node type
; minimize the number of visits to each node

24 / 67

Example: Demand-Driven Evaluation
Compute next at leaves a2, a3 and b4 in the expression (a|b)∗a(a|b):

| : next[1] := next[0]

next[2] := next[0]

· : next[1] := first[2] ∪ (empty[2] ? next[0]: ∅)
next[2] := next[0]

*

.

.

||

0 1

2

3 4
b

a

aba

n

n

n

n n

*

.

.

||

0 1

2

3 4
b

a

aba

f

f f

n e

e e

n

n

n

n n

*

.

.

||

0 1

2

3 4
b

a

aba

25 / 67

Demand-Driven Evaluation

Observations

each node must contain a pointer to its parent
only required attributes are evaluated
the evaluation sequence depends – in general – on the actual syntax tree
the algorithm must track which attributes it has already evaluated
the algorithm may visit nodes more often than necessary

; the algorithm is not local
in principle:

evaluation strategy is dynamic: difficult to debug
usually all attributes in all nodes are required

; computation of all attributes is often cheaper
; perform evaluation in passes

26 / 67

Implementing State
Problem: In many cases some sort of state is required.
Example: numbering the leafs of a syntax tree

*

.

.

||

0 1

2

3 4
b

a

aba

27 / 67

Example: Implementing Numbering of Leafs

Idea:
use helper attributes pre and post

in pre we pass the value for the first leaf down (inherited attribute)
in post we pass the value of the last leaf up (synthesized attribute)

root: pre[0] := 0
pre[1] := pre[0]
post[0] := post[1]

node: pre[1] := pre[0]
pre[2] := post[1]
post[0] := post[2]

leaf: post[0] := pre[0] + 1

28 / 67

L-Attributation
post

post post

pre

pre pre

postpre

the attribute system is apparently strongly acyclic
each node computes

the inherited attributes before descending into a child node (corresponding to a pre-order traversal)
the synthesized attributes after returning from a child node (corresponding to post-order traversal)

Definition L-Attributed Grammars
An attribute system is L-attributed, if for all productions S→S1 . . . Sn every inherited
attribute of Sj where 1 ≤ j ≤ n only depends on

1 the attributes of S1, S2, . . .Sj−1 and
2 the inherited attributes of S.

29 / 67

L-Attributation

Background:
the attributes of an L-attributed grammar can be evaluated during parsing
important if no syntax tree is required or if error messages should be emitted while
parsing
example: pocket calculator

L-attributed grammars have a fixed evaluation strategy:
a single depth-first traversal

in general: partition all attributes into A = A1 ∪ . . .∪An such that for all attributes in Ai

the attribute system is L-attributed
perform a depth-first traversal for each attribute set Ai

; craft attribute system in a way that they can be partitioned into few L-attributed sets

30 / 67

Practical Applications

symbol tables, type checking/inference, and simple code generation can all be
specified using L-attributed grammars
most applications annotate syntax trees with additional information
the nodes in a syntax tree usually have different types that depend on the non-terminal
that the node represents

; the different types of non-terminals are characterized by the set of attributes with which
they are decorated

Example: Def-Use Analysis
a statement may have two attributes containing valid identifiers: one ingoing (inherited)
set and one outgoing (synthesised) set
an expression only has an ingoing set

31 / 67

Implementation of Attribute Systems via a Visitor
class with a method for every non-terminal in the grammar
public abstract class Regex {

public abstract void accept(Visitor v);
}
attribute-evaluation works via pre-order / post-order callbacks
public interface Visitor {

default void pre(OrEx re) {}
default void pre(AndEx re) {}
...
default void post(OrEx re) {}
default void post(AndEx re){}

}
we pre-define a depth-first traversal of the syntax tree
public class OrEx extends Regex {

Regex l,r;
public void accept(Visitor v) {

v.pre(this);l.accept(v);v.inter(this);
r.accept(v); v.post(this);

} }
32 / 67

Example: Leaf Numbering
public abstract class AbstractVisitor implements Visitor {

public void pre (OrEx re){ pr(re); }
public void pre (AndEx re){ pr(re); }
... /* redirecting to default handler for bin exprs */
public void post(OrEx re){ po(re); }
public void post(AndEx re){ po(re); }
abstract void po(BinEx re);
abstract void in(BinEx re);
abstract void pr(BinEx re);

}
public class LeafNum extends AbstractVisitor {

public Map<Regex,Integer> pre = new HashMap<>();
public Map<Regex,Integer> post = new HashMap<>();
public LeafNum (Regex r) { pre .put(r,0); r.accept(this); }
public void pre(Const r) { post.put(r, pre .get(r)+1); }
public void pr (BinEx r) { pre .put(r.l, pre .get(r)); }
public void in (BinEx r) { pre .put(r.r, post.get(r.l)); }
public void po (BinEx r) { post.put(r, post.get(r.r)); }

}
33 / 67

Chapter 2:

Decl-Use Analysis

34 / 67

Semantic Analysis

Symbol Bindings and Visibility

Consider the following Java code:
void foo() {
int a;
while(true) {
double a;
a = 0.5;
write(a);
break;

}
a = 2;
bar();
write(a);

}

each declaration of a variable v causes memory
allocation for v
using v requires knowledge about its memory
location
→ determine the declaration v is bound to

a binding is not visible when a local declaration of
the same name is in scope

in the example the definition of A is shadowed by
the local definition in the loop body

35 / 67

Scope of Identifiers

void foo() {

int A;
while (true) {

double A;
A = 0.5;
write(A);
break;

}
A = 2;
bar();
write(A);

}

scope of int A

 scope of

double A

administration of identifiers can be quite complicated...

36 / 67

Resolving Identifiers

Observation: each identifier in the AST must be translated into a memory access

Problem: for each identifier, find out what memory needs to be accessed by providing
rapid access to its declaration

Idea:

1 rapid access: replace every identifier by a unique integer
→ integers as keys: comparisons of integers is faster

2 link each usage of a variable to the declaration of that variable
→ for languages without explicit declarations, create declarations when a variable is first encountered

37 / 67

Rapid Access: Replace Strings with Integers

Idea for Algorithm:
Input: a sequence of strings

Output: 1 sequence of numbers
2 table that allows to retrieve the string that corresponds to a number

Apply this algorithm on each identifier during scanning.

Implementation approach:
count the number of new-found identifiers in int count
maintain a hashtable S : String→ int to remember numbers for known identifiers

We thus define the function:

int indexForIdentifier(String w) {
if (S (w) ≡ undefined) {

S = S ⊕ {w 7→ count};
return count++;

} else return S (w);
}

38 / 67

Implementation: Hashtables for Strings
1 allocate an array M of sufficient size m
2 choose a hash function H : String→ [0,m− 1] with:

H(w) is cheap to compute
H distributes the occurring words equally over [0,m− 1]

Possible generic choices for sequence types (~x = 〈x0, . . . xr−1〉):

H0(~x) = (x0 + xr−1) %m

H1(~x) = (
∑r−1

i=0 xi · p
i) %m

H1(~x) = (x0 + p · (x1 + p · (. . .+ p · xr−1 · · ·))) %m
for some prime number p (e.g. 31)

7 The hash value of w may not be unique!
→ Append (w, i) to a linked list located at M [H(w)]

Finding the index for w, we compare w with all x for which H(w) = H(x)

3 access on average:
insert: O(1)
lookup: O(1)

39 / 67

Example: Replacing Strings with Integers
Input:

Peter Piper picked a peck of pickled peppers

If Peter Piper picked a peck of pickled peppers

wheres the peck of pickled peppers Peter Piper picked

Output:
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6

7 9 10 4 5 6 7 0 1 2

and

0 Peter
1 Piper
2 picked
3 a
4 peck
5 of

6 pickled
7 peppers
8 If
9 wheres

10 the

Hashtable with m = 7 and H0:
0

1

2

3

6

4

If 8 the 10

1

peck6 4 2picked

a 3

of 5 9

5 Piper Peter 0

pickled

wheres peppers 7

40 / 67

Refer Uses to Declarations: Symbol Tables

Check for the correct usage of variables:
Traverse the syntax tree in a suitable sequence, such that

each declaration is visited before its use
the currently visible declaration is the last one visited

; perfect for an L-attributed grammar
equation system for basic block must add and remove identifiers

for each identifier, we manage a stack of declarations
1 if we visit a declaration, we push it onto the stack of its identifier
2 upon leaving the scope, we remove it from the stack

if we visit a usage of an identifier, we pick the top-most declaration from its stack
if the stack of the identifier is empty, we have found an undeclared identifier

41 / 67

Example: Decl-Use Analysis via Table of Stacks

1 void f()
2 { ⇐
3 int a, b;
4 b = 5; ⇐
5 if (b>3) {
6 int a, c;
7 a = 3; ⇐
8 c = a + 1;
9 b = c;

10 } else {
11 int c;
12 c = a + 1; ⇐
13 b = c;
14 }
15 b = a + b; ⇐
16 }

d declaration
b basic block
a assignment

d

int1

b

b

b

b

if

31

d

int0

d

int0

b

b51

d

int2

b

b

1 2

a

a

b

b

a

1 2

d

int2

>

=

=

=

42 / 67

Alternative Implementations for Symbol Tables

when using a list to store the symbol table, storing a marker indicating the old head of
the list is sufficient

a
b

in front of if-statement

a
c

a
b

then-branch

c

a
b

else-branch

instead of lists of symbols, it is possible to use a list of hash tables ; more efficient in
large, shallow programs
an even more elegant solution: persistent trees (updates return fresh trees with
references to the old tree where possible)
; a persistent tree t can be passed down into a basic block where new elements may be added, yielding

a t′; after examining the basic block, the analysis proceeds with the unchanged old t

43 / 67

Chapter 3:

Type Checking

44 / 67

Semantic Analysis

Goal of Type Checking

In most mainstream (imperative / object oriented / functional) programming languages,
variables and functions have a fixed type.
for example: int, void*, struct { int x; int y; }.

Types are useful to
manage memory
to avoid certain run-time errors

In imperative and object-oriented programming languages a declaration has to specify a
type. The compiler then checks for a type correct use of the declared entity.

45 / 67

Type Expressions

Types are given using type-expressions.
The set of type expressions T contains:

1 base types: int, char, float, void, ...
2 type constructors that can be applied to other types

example for type constructors in C:
structures: struct { t1 a1; . . . tk ak; }

pointers: t *
arrays: t []

the size of an array can be specified
the variable to be declared is written between t and [n]

functions: t (t1, . . . , tk)
the variable to be declared is written between t and (t1, . . . , tk)
in ML function types are written as: t1 ∗ . . . ∗ tk → t

46 / 67

Type Checking

Problem:
Given: A set of type declarations Γ = {t1 x1; . . . tm xm; }
Check: Can an expression e be given the type t?

Example:
struct list { int info; struct list* next; };
int f(struct list* l) { return 1; };
struct { struct list* c;}* b;
int* a[11];

Consider the expression:

*a[f(b->c)]+2;

47 / 67

Type Checking using the Syntax Tree
Check the expression *a[f(b->c)]+2:

2

a

f

c

b

+

∗

[]

()

.

∗

Idea:
traverse the syntax tree bottom-up
for each identifier, we lookup its type in Γ

constants such as 2 or 0.5 have a fixed type
the types of the inner nodes of the tree are deduced using typing rules

48 / 67

Type Systems

Formally: consider judgements of the form:

Γ ` e : t

// (in the type environment Γ the expression e has type t)

Axioms:

Const: Γ ` c : tc (tc type of constant c)
Var: Γ ` x : Γ(x) (x Variable)

Rules:
Ref:

Γ ` e : t
Γ ` & e : t ∗ Deref:

Γ ` e : t ∗
Γ ` ∗ e : t

49 / 67

Type Systems for C-like Languages
More rules for typing an expression: with subtyping relation ≤

Array:
Γ ` e1 : t ∗ Γ ` e2 : int

Γ ` e1[e2] : t

Array:
Γ ` e1 : t [] Γ ` e2 : int

Γ ` e1[e2] : t

Struct:
Γ ` e : struct {t1 a1; . . . tm am; }

Γ ` e.ai : ti

App:
Γ ` e : t (t1, . . . , tm) Γ ` e1 : t1 . . . Γ ` em : tm

Γ ` e(e1, . . . , em) : t

Op �:
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` e1�e2 : t1t t2

Op =:
Γ ` e1 : t1 Γ ` e2 : t2 t2 can be converted to≤ t1

Γ ` e1 = e2 : t1

Explicit Cast:
Γ ` e : t2 t2 can be converted to≤ t1

Γ ` (t1) e : t1

50 / 67

Example: Type Checking

Given expression *a[f(b->c)]+2 and
Γ = {

struct list { int info; struct list* next; };
int f(struct list* l);
struct { struct list* c;}* b;
int* a[11];
}

2

a

f

c

b

+

∗

[]

()

.

∗

51 / 67

Example: Type Checking – More formally:
Γ = {

struct list { int info; struct list* next; };
int f(struct list* l);
struct { struct list* c;}* b;
int* a[11];
}

STRUCT

DEREF

VAR
Γ ` b : struct{struct list *c;}∗

Γ ` ∗b : struct{struct list *c;}
Γ ` (∗b).c : struct list∗

ARRAY

VAR
Γ ` a : int∗[]

APP

VAR
Γ ` f : _(t)_(struct list∗)int(struct list*) 3 Γ ` (∗b).c : tstruct list∗

Γ ` f(b→ c) : int 3

Γ ` a[f(b→ c)] : int∗

OP

DEREF
Γ ` a[f(b→ c)] : int∗
Γ ` ∗a[f(b→ c)] : tint

CONST
Γ ` 2 : tint 3

Γ ` ∗a[f(b→ c)] + 2 : tint

but what do we do with ≤?
52 / 67

Equality of Types =

Summary of Type Checking
Choosing which rule to apply at an AST node is determined by the type of the child
nodes
determining the rule requires a check for ; equality of types

type equality in C:
struct A {} and struct B {} are considered to be different

; the compiler could re-order the fields of A and B independently (not allowed in C)
to extend an record A with more fields, it has to be embedded into another record:
struct B {

struct A;
int field_of_B;

} extension_of_A;

after issuing typedef int C; the types C and int are the same

53 / 67

Structural Type Equality
Alternative interpretation of type equality (does not hold in C):

semantically, two types t1, t2 can be considered as equal if they accept the same set of
access paths.

Example:
struct list {
int info;
struct list* next;

}

struct list1 {
int info;
struct {

int info;
struct list1* next;

}* next;
}

Consider declarations struct list* l and struct list1* l. Both allow

l->info l->next->info

but the two declarations of l have unequal types in C.

54 / 67

Algorithm for Testing Structural Equality

Idea:

track a set of equivalence queries of type expressions
if two types are syntactically equal, we stop and report success
otherwise, reduce the equivalence query to a several equivalence queries on
(hopefully) simpler type expressions

Suppose that recursive types were introduced using type definitions:

typedef A t

(we omit the Γ). Then define the following rules:

55 / 67

Rules for Well-Typedness
Bstruct{int info; A ∗ next; }

struct{int info; . . . ∗ next; }struct{int info; A ∗ next; }

A ∗

A struct{int info; B ∗ next; }

struct{int info; B ∗ next; }struct{int info; A ∗ next; }

int int

int int A ∗

struct{int info; A ∗ next; }

BA

B ∗

. . . ∗

B

56 / 67

Example:
typedef struct {int info; A ∗ next; } A
typedef struct {int info; struct {int info; B ∗ next; } ∗ next; } B

We ask, for instance, if the following equality holds:

struct {int info; A ∗ next; } = B

We construct the following deduction tree:

57 / 67

Proof for the Example:
typedef struct {int info; A ∗ next; } A

typedef struct {int info; struct {int info; B ∗ next; } ∗ next; } B

Bstruct{int info; A ∗ next; }

struct{int info; . . . ∗ next; }struct{int info; A ∗ next; }

A ∗

A struct{int info; B ∗ next; }

struct{int info; B ∗ next; }struct{int info; A ∗ next; }

int int

int int A ∗

struct{int info; A ∗ next; }

BA

B ∗

. . . ∗

B

58 / 67

Implementation

We implement a function that implements the equivalence query for two types by applying
the deduction rules:

if no deduction rule applies, then the two types are not equal
if the deduction rule for expanding a type definition applies, the function is called
recursively with a potentially larger type
in case an equivalence query appears a second time, the types are equal by definition

Termination
the set D of all declared types is finite
there are no more than |D|2 different equivalence queries
repeated queries for the same inputs are automatically satisfied

; termination is ensured

59 / 67

Subtyping ≤

On the arithmetic basic types char, int, long, etc. there exists a rich subtype hierarchy

Subtypes
t1 ≤ t2, means that the values of type t1

1 form a subset of the values of type t2;
2 can be converted into a value of type t2;
3 fulfill the requirements of type t2;
4 are assignable to variables of type t2.

Example:
assign smaller type (fewer values) to larger type (more values)

t1 int x;
t2 double y;
y = x;
t1 ≤ t2int ≤ double

60 / 67

Example: Subtyping

Extending the subtype relationship to more complex types, observe:
string extractInfo(struct { string info; } x) {

return x.info;
}

we want extractInfo to be applicable to all argument structures that return a
string typed field for accessor info
the idea of subtyping on values is related to subclasses
we use deduction rules to describe when t1 ≤ t2 should hold. . .

61 / 67

Rules for Well-Typedness of Subtyping

ss t

t ∗s ∗

struct {t1 a1; ... tk ak; }

t1s1 tksk

struct {s1 a1; ... sj aj ; }

A t

t

t t′

a1 ak

t ≤ t′ Atypedef s

j ≥ k

struct {int u, int v} x;
struct {int u} y;
y = x;

62 / 67

Rules and Examples for Subtyping

tm sm

t0 (t1, . . . , tm)s0 (s1, . . . , sm)

s0 t0 t1 s1

Examples:
struct {int a; int b; } ≤ struct {float a; }
int (int) 6≤ float (float)
int (float) ≤ float (int)

Definition
Given two function types in subtype relation s0(s1, . . . sn) ≤ t0(t1, . . . tn) then we have

co-variance of the return type s0 ≤ t0 and
contra-variance of the arguments si ≥ ti für 1 < i ≤ n

63 / 67

Subtypes: Application of Rules (I)
Check if S1 ≤ R1:

R1 = struct {int a; R1 (R1) f ; }
S1 = struct {int a; int b; S1 (S1) f ; }
R2 = struct {int a; R2 (S2) f ; }
S2 = struct {int a; int b; S2 (R2) f ; }

a f

ba f

S1 R1

intint R1 (R1)S1 (S1)

S1 R1 R1 S1

64 / 67

Subtypes: Application of Rules (II)
Check if S2 ≤ S1:

R1 = struct {int a; R1 (R1) f ; }
S1 = struct {int a; int b; S1 (S1) f ; }
R2 = struct {int a; R2 (S2) f ; }
S2 = struct {int a; int b; S2 (R2) f ; }

a

a, b f

f

S1 (S1)S2 (R2)

S2 S1 S1 R2

intint R2 (S2)S1 (S1)

S1 R2 S2 S1

S2 S1

intint

65 / 67

Subtypes: Application of Rules (III)
Check if S2 ≤ R1:

R1 = struct {int a; R1 (R1) f ; }
S1 = struct {int a; int b; S1 (S1) f ; }
R2 = struct {int a; R2 (S2) f ; }
S2 = struct {int a; int b; S2 (R2) f ; }

a

a

f

f

intint

intint

S2 R1

R1 (R1)S2 (R2)

S2 R1 R1 R2

R2 (S2)R1 (R1)

R1 R2 S2 R1

66 / 67

Discussion

for presentational purposes, proof trees are often abbreviated by omitting deductions
within the tree
structural sub-types are very powerful and can be quite intricate to understand
Java generalizes structs to objects/classes where a sub-class A inheriting form base
class O is a subtype A ≤ O
subtype relations between classes must be explicitly declared

67 / 67

	Semantic Analysis
	Attribute Grammars
	Decl-Use Analysis
	Type Checking

