Topic:

Syntactic Analysis - Part Il

Chapter 1:
Bottom-up Analysis

Shift-Reduce Parser

Idea:

We delay the decision whether to reduce until we
know, whether the input matches the right-hand-side of a rule!

Donald Knuth

Construction: Shift-Reduce parser 115

@ The input is shifted successively to the pushdown.

@ Is there a complete right-hand side (a handle) atop the pushdown, it is replaced
(reduced) by the corresponding left-hand side

Shift-Reduce Parser

Example:

T = W0
L il
SN

&

The pushdown automaton:

q |a|qa

States: , f,a, b, A, B, S; R

A [b| Ab

Start state: (o b |e| B
End state: 7

d state: AB|e| S

@S |e|l f

a4t s
Shift-Reduce Parser Shift-Reduce Parser
Construction:
In general, we create an automaton M5 = (Q, T, 6, qo, F) with: o
°Q=TUNU{q, f} (0, fresh); Observation:
o F={f} @ The sequence of reductions corresponds to a reverse rightmost-derivation for the input
o Transitions:) » @ To prove correctnes, we have to prove:
0 = {(¢.z,qx)|qeQ,zeT} U // Shift-transitions
{(a,e,A) | A—~a € P} U // Reduce-transitions (e, w) " (A, €) iff A="w
{(q0 S,)} //finish
. - R oo ’ -
Example-computation: @ The shift-reduce pushdown automaton A/ is in general also non-deterministic
@ For a deterministic parsing-algorithm, we have to identify computation-states for
(q0, ab) - (g a, b) + (g0 A, b) reduction
F (oAb, € F (g0 AB, ¢ —— LR-Parsing
F (908, € F (f, o
sias oras
The Pushdown During an RR-Derivation Viable Prefixes and Admissable ltems
Idea: Observe a successful run of 11! Formalism: use Items as representations of prefixes of righthandsides
Input:
counter * 2 + 40 Generic Agreement
Pushdown: In a sequence of configurations of 17/
q
() (o7, v) - (@aB, v)F" (90, €
we call a~ aviable prefix for the complete item [B — ~e] .
Reformulating the Shift-Reduce-Parsers main problem:
E —» E+T° | T! Find the items, for which the content of 1//"’s stack is the viable prefix....
T — TxF° | F!
F — (E)° | name' | int? — Admissable ltems)
Result: 7184 8144

Admissible ltems

Theitem [B-—~ep] iscalledadmissible for oy iff S—LaBuv:

With a=a1 ... am

9/44

Characteristic Automaton
o

An automaton...

@ consuming pushdown symbols, i.e.
) prefixes of righthandsides of

("~ (Be)——((F = ()] productions expanding from S

@ tracing admissible items in its states

10144

Characteristic Automaton

Observation:

One can now consume theshift-reduce parser’s pushdown with the characteristic
automaton: If the input (VU T')* for the characteristic automaton corresponds to a viable
prefix, its state contains the admissible items.

States: Iltems
Start state: [S" — e 5]
Final states: {[B —~e] | B—~ € P}
Transitions:
(1) (A—=aeXflLX[A—-aXef]), X € (NUT),A—aXpB € P;
(2) ([A—aeBple, [B— o9]), A—>aBB, By € P;

The automaton ¢((7) is called characteristic automaton for G

11148

Canonical LR(0)-Automaton

The canonical .R(0)-automaton LR(() is created from ¢(G) by:

@ performing arbitrarily many e-transitions after every consuming transition

@ performing the powerset construction

@ Idea: or rather apply characteristic automaton construction to powersets directly?

... for example:

12144

Canonical LR(0)-Automaton — Example:@

F—e(
F—seint

E—E+Te
* T—TexF

S = E

E - E+T | T
T — T+F | F
F — (E) | int

18144

Canonical LR(0)-Automaton

Observation:

The canonical L (0)-automaton can be created directly from the grammar.
For this we need a helper function 6; (e-closure)

0c(@) =qU{[B— 9 | By € P,

[AsaeB' B €q,
B'—* BB}

We define:

States: Sets of items;

Start state: 57 {[S" — e 5]}

Final states: {¢ | [A —as] € ¢}

Transitions: (¢, X) =6; {{[A>aX e 8] |[A~>aeXf] € ¢}

14144

LR(0)-Parser

Idea for a parser:

@ The parser manages a viable prefix @ = X ... X, on the pushdown and uses LR(G)
to identify reduction spots.

@ It can reduce with A — v , if [A — v] is admissible for

Optimization:

We push the states instead of the X; in order not to process the pushdown’s content with
the automaton anew all the time.

Reduction with A — ~ leads to popping the uppermost || states and continue with the
state on top of the stack and input A.

Attention:

This parser is only deterministic, if each final state of the canonical .. /2(0)-automaton is
conflict free.

15144

LR(0)-Parser — Example:

16144

LR(0)-Parser

... we observe:

@

S'—>Ee
E—FEe+T

@)
E—Te
D
F=(B)s)

The final states ¢1, g2, go contain more than one admissible item

E—E+Te
T—TexF

q

&)
9U@

F—inte

I@

= non-deterministic!
17144

LR(0)-Parser

The construction of the LR(0)-parser:

States: QU {f} (f fresh)
Start state: ¢o
Final state: f
Transitions:
Shift: (pya,pq) i q=0(p,a) #0
Reduce: (Pqr- qmiepq) i [A=Xi... Xme] € gm, q=0d(p,A)
Finish: (qop,e,f) if [S"—>5e] €p

with the canonical automaton LR(G) = (Q,T,d,q0, F) .

18144

LR(0)-Parser

Correctness:

we show:

The accepting computations of an L2(0)-parser are one-to-one related to those of a
shift-reduce parser M4,

we conclude:

@ The accepted language is exactly £(G)

@ The sequence of reductions of an accepting computation for a word w € 7 yields a
reverse rightmost derivation of G for w

1944

LR(0)-Parser

Attention:
Unfortunately, the Z.2(0)-parser is in general non-deterministic.

We identify two reasons for astate ¢ € Q:

Reduce-Reduce-Conflict: Shift-Reduce-Conflict:

with A# A vy #4 with aeT

Those states are called 1. R(0)-unsuited.

Reuvisiting the Conflicts of the LR(0)-Automaton

What differenciates the particular Reductions and Shifts?

LR(k)-Grammars

Idea: Consider /-lookahead in conflict situations.

Input: —
* 2+ 40 Definition:
The reduced contextfree grammar G is called LR (k)-grammar, if
Push?own: aBwljasin=a B w| s with:
(qT)
S =k aAw — afw ' _ o _ gt
5 =% odAw - ofu follows:a=a' A =8 A A=A
Strategy for testing Grammars for L 2(k)-property
@ Focus iteratively on all rightmost derivations S —7 a X w— a Sw
o . Q lterate over k > 0
E — E+T | T @ Foreach v = a Bw| .51, (handle with k-lookahead) check if there exists a differently
T — Tx*F | F right-derivable a’8’w’ for which v = o’ 8'w’| . 5+ k
F y (E) int @ if there is none, we have found no objection against % being enough lookahead to disambiguate o3w
from other rightmost derivations
214t 2200
LR(k)-Grammars LR(k)-Grammars
for example:
(1) S—A|B A—aAb|0 B-aBbb|1 for example:
- isnot LL(k) for any k — but L1(0): (8) S—aAdc A—bbA | b .. is not LR(0), but LR(1):
Let S—»raXw—aBw. Then «p isofone of these forms: Let S—haXw—afw with {y}=First,(w) then «apfy isofone of
- these forms:
A, B,a%aAb, a"aBbb, a"0,a"1 (n>0) ab®™be, ab®™bbAc, aAc
4 S—aAc A—bAb | b ... is not LR(k) for any k > 0:
(2) S—adc A— Abb | b Consider the rightmost derivations:
... is also not LL(k) for any k — but again L1(0): e moaam S—
. S—rab" Ab"c—ab"bb" c
Let S—raXw—aBw. Then af isofone of these forms:
ab, aAbb, aAc
20/ 20104
LR(1)-Parsing Admissible LR(1)-ltems
The LR(1)-ltem [B — e 8, x| is admissable for a. if:
S—raBw with {z} = First1 (w)
Idea: Let's equip items with 1-lookahead
Definition LR(1)-ltem
An LR(1)-item is a pair [B — a e 3, x] with
€ Follows(B) = | [{First:(v) | S—=" u Bv}
254t 2500
The Characteristic LR(1)-Automaton The Canonical LR(1)-Automaton
o L . " . . . The canonical LR(1)-automaton LR(G, 1) is created from ¢(G, 1), by performing arbitrarily
i ,S?t cladpissible LR;,(U’“emS fogiablelplsfiteslslagainicomplitediwithitbelbelplot many e-transitions and then making the resulting automaton deterministic ...
the finite automaton ¢(G, 1).
The automaton ¢(G, 1): But again, it can be constructed directly from the grammar; analoguously to L2(0), we
need the e-closure §; as a helper function:
States: LR(1)-items . ., s ,
Start state: [S' — e S, §] 62(q) = qU{[C— e, 1] | E‘:Fio:st. fg‘%,‘)zo] e{;,}} B5708, Oov ek,
1
Final states: {[B—~s, 2] | B—~ € P,z € Follow:(B)} !
(1) ([A—aeXp, x| X,[A-aXep z]), X € (NUT) Then, we define:
Transitions: (2) ([A—>aeBpj, z|e [B— ev,2']), A»aBB, By € P, States: Sets of LR(1)-items;
; .
a' € First1(6) ©1 {z} Start state: 67 {[S' — 5, §]}
This automaton works like ¢(G) — but additionally manages a 1-prefix from Follow; of the Final states: {q | [A—~ae, 2] € ¢}
left-hand sides. Transitions: 5(¢, X) = 6. {[A >aXe B, 2] |[AsaeXp, o] €q}
210 210

The Canonical LR(1)-Automaton — for example:
O rre)

T — T+ oF {$,+,%}
F = o(E) {8, +.+}
[F eint 5, +, 4}

F = (oE) {), +.%}

E— oB+T {),+}

Al
v A
S —- E S 1) ‘
E — E+T | T (Zorsfs+]
T — T+F | F @ i e .
. . BRG] F— (B) {5, .+
F — (E) | int E - oE+T {8,+} E—eE+T{),+} E— E+oT (5,4}
E - oT {8,+} s E = oT {),+} T oF {8, +,+}

—| T > oF {8,+,4}
T~ oT+F {8, +,%}

T — oF {), +,+}

T — oT s F {8, +,+}
T = oT % F {),+,%} s

F— o(E) {8
F - eint {8,

4,0}
i)

F— o(E) {$.+,%
L F < eint {$, +, %}

C=ron)

CeET)
TErnl.]
T — TexF {), +,%}

F — o(E) {), +,#}
F > eint {).+,%)

F — (Ee) {$,+,%}]
E - Ee4+T{),+

o))

[£ = aint), 4,4}

20144

The Canonical LR(1)-Automaton

Discussion:
@ In the example, the number of states was almost doubled
... and it can become even worse

@ The conflicts in states ¢1, g2, g9 are now resolved !
e.g. we have:

with:

{8,+3 N (Firsta(+ F) 01 {8, +,5}) = {$,4} N {x} =0

30/44

The Action Table:

During practical parsing, we want to represent states just via an integer id. However, when
the canonical L (1)-automaton reaches a final state, we want to know how to reduce/shift.
Thus we introduce...

The construction of the action table:
Type: action : Q x T — LR(0)-ltems U {s, error}

Reduce: action[g, w] = [A— S e] if [A—Be,w] € g
Shift: action[g,w] ='s if [A— B e by,a] € ¢, w € First1(by) ®1 {a}
Error: action[q, w] = error else

31148

The LR(1)-Parser:

—=L11]

Output

@ The goto-table encodes the transitions:
gotolg, X] = (¢, X) € @Q

@ The action-table describes for every state ¢ and possible lookahead w the necessary
action.

The LR(1)-Parser:

The construction of the LR(1)-parser:

The LR(1)-Parser:

Possible actions are:

shift // Shift-operation
reduce (A —~) // Reduction with callback/output
States: QU {f} (f fresh) error // Error
Start state: qo ... for example: 20O N S i ()
: . in =
Final sl.alle. f. s 5 E o .0 S
Transitions: 7 = mEm? (| a2 B, E,1 s
. 0 1 b E,1 E,1 s
Shift: (pa,pq) i a=uw, ro= T*F“ | F B o | T 71 o1
s = action|[p, a], Fo= (EB)° | int a3 T,1 T,1 T,1
q = goto[p,] @ | et 2 n o
Reduce: (pqr ... qps6pq) if qp € F, g; . F,1 Zé 1-;1
[A— B o] = action[g g/, w], 4 E,0 E0 s
q = goto[p, 4] @0 | 7,0 7,0 T,0
Finish: (qopse, f) it [S'—Se,8] € p dio 7,0 T,0 T,0
q F,0 F,0 F,0
q F,0 F,0 F,0
with LR(G,1) = (Q,T,5,q, F) and the lookahead w. 40 440
/4 P
The Canonical LR(1)-Automaton Precedences

In general: We identify two conflicts for a state ¢ € Q :

Reduce-Reduce-Conflict:

with A# A vy #+
Shift-Reduce-Conflict:
@

with a € T'und = € {a} O Firstx(8) Ok {y} .
Such states are now called Z2(1k)-unsuited

Theorem:

A reduced contextfree grammar ¢ is called L 12(k) iff the canonical L z(k)-automaton
LR(G, k) has no LR(k)-unsuited states.

35144

Many parser generators give the chance to fix Shift-/Reduce-Conflicts by patching the
action table either by hand or with token precedences.

... for example:

S — E°

E — E+E°
| ExE! /
| (8)? ~
| int?
Shift-/Reduce Conflict in state 8: \

[E — Ee+E°] \
[E - E+Ee¢" ,+] \
<YE+E,+w> = Asso \>

Shift-/Reduce Conflict in state 7:
[E — EexE' |
[E — ExEe!

2]

ShiftyHedudé Contictin states A SSOCIawvity

ﬂﬂgﬁtﬁ‘? g %\@ 1] 36144

What if precedences are not enough?
Example (very simplified lambda expressions):
E — (E)°|ident!|L?
L — (args) = E°
(args) = ((idlist))°|ident!
{ y =) ident” | ident’
E rightmost-derives these forms among others:

(ident), (ident) = ident, ... = atleast LR(2)

Naive Idea:
poor man’s L12(2) by combining the tokens) and = during lexical analysis into a single
token)=-.

/N in this case obvious solution, but in general not so simple

7144

What if precedences are not enough?

In practice, L R(k)-parser generators working with the lookahead sets of sizes larger then
k =1 are not common, since computing lookahead sets with & > 1 blows up exponentially.
However,

@ there exist several practical LR(k) grammars of k& > 1,
e.g. Java 1.6+ (LR(2)), ANSI C, etc.

@ often, more lookahead is only exhausted locally
@ should we really give up, whenever we are confronted with a Shift-/Reduce-Conflict?

Theorem: LR(k)-to-LR(1)
Vitor Schneider Dennis Mickunas
Any LR(k) grammar can be directly transformed into an equivalent L /2(1) grammar.

38144

LR(2) to LR(1)

... Example:

S — Abb’|Bbe'
A — aA%at
B — aB°|d!
S rightmost-derives one of these forms:
a™abb ,a™abc ,a"a Abb ,a"a Bbe, Abb ,Bbc = LR(2)

in LR(1), you will have Reduce-/Reduce-Conflicts between the productions A, 1 and B, 1
under lookahead b

39/44

LR(2) to LR(1)
Basic Idea:

1} Right-context-extraction ||
| Right-context-propagation ||

in the example:
Right-context is already extracted, so we only perform Right-context-propagation:

S = (A8 |(Bb)ct
S = AbY|Bbe! () = e@ifiels
A — aA®|at = (Bb) — a(“)l\ab
B — aB°|d A = ed|e

B — aB%|a!

unreachable

40144

LR(2) to LR(1)

Example cont'd:
S = AW | B
A = aA|abt
B' — aB"|ab
S rightmost-derives one of these forms:

a™abb,a"abe ,a"aA'b ,a"aB'c, A'b ,B'c = LR(1)

41744

LR(2) to LR(1)

Example 2:
S — bSS°
| o'
| aac?
S rightmost-derives these forms among others:

bSS,bSa,bSaac, baa, baaca, baaac, baacaac, ... = min. LR(2)
in LR(1), you will have (at least) Shift-/Reduce-Contflicts between the items [S-—+a e, a] and [S—a e ac]

[S—a]'s right context is a nonterminal = perform Right-context-extraction

S — bSa(a/S)°|bSb(b/S)”

S — bSSs° | a'laac®
| a' B (a/S) — € lac!)
| aac (b/S) — S§8°Sa(a/S)°]Sb (b))

LR(2) to LR(1)

Example 2 cont'd:
[S—a]'s right context is now terminal a = perform Right-context-propagation

S — b(Sa)(a/S)°
| bSb(b/5)”
/SN0 | a'laac?
8 T ::Zé// \>>0, (a/S) — |act :
| allaac? = (b/S) = (Sa)(a/S)°|Sb{b/5)°
@/S) = &|act (Sa) = b(Sa){a/S)afa s>,3°
/) — Sala/S)°|Sb(b/S)” } Zz?faa*‘z;g S) ay
{a/Sya) — a°|aca’
{b/Sya) — (Sa)(a/S)ala/S)a)®|Sb(b/S)a{b/S)a

LR(2) to LR(1)

Example 2 finished:

With fresh nonterminals we get the final grammar

bC AL |bSHB, |a?|aac?
lact

CA°|SbB!

bCD|bSbE |aa?|aaca®
a’laca’

cD°|SbE

S — bSS°

2
mYQWE®
A O

44144

