

• Syntactic analysis tries to integrate Tokens into larger program units.

- Syntactic analysis tries to integrate Tokens into larger program units.
- Such units may possibly be:
 - \rightarrow Expressions;
 - \rightarrow Statements;
 - \rightarrow Conditional branches;
 - \rightarrow loops; ...

In general, parsers are not developed by hand, but generated from a specification:

In general, parsers are not developed by hand, but generated from a specification:

Specification of the hierarchical structure: contextfree grammars Generated implementation: Pushdown automata + X

Chapter 1: Basics of Contextfree Grammars

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Basics: Context-free Grammars

- Programs of programming languages can have arbitrary numbers of tokens, but only finitely many Token-classes.
- This is why we choose the set of Token-classes to be the finite alphabet of terminals T.
- The nested structure of program components can be described elegantly via context-free grammars...

Definition: Context-Free Grammar A context-free grammar (CFG) is a 4-tuple G = (N, T, P, S) with:

- N the set of nonterminals,
- T the set of terminals,
- P the set of productions or rules, and
- $S \in N$ the start symbol

Noam Chomsky

John Backus

Conventions

The rules of context-free grammars take the following form:

 $A \to \alpha$ with $A \in N$, $\alpha \in (N \cup T)^*$

Conventions

The rules of context-free grammars take the following form:

```
A \to \alpha with A \in N, \alpha \in (N \cup T)^*
```

... for example:

 $S o a \, S \, b$ $S o \epsilon$ Specified language: $\{a^n b^n \mid n \geq 0\}$

Conventions

The rules of context-free grammars take the following form:

```
A \to \alpha with A \in N, \alpha \in (N \cup T)^*
```

 $\begin{array}{rrr} S & \to & a \, S \, b \\ S & \to & \epsilon \end{array}$

... for example:

Specified language: $\{a^nb^n \mid n \ge 0\}$

Conventions:

In examples, we specify nonterminals and terminals in general implicitely:

- nonterminals are: $A, B, C, ..., \langle exp \rangle, \langle stmt \rangle, ...;$
- terminals are: *a*, *b*, *c*, ..., int, name, ...;

... a practical example:

... a practical example:

More conventions:

- For every nonterminal, we collect the right hand sides of rules and list them together.
- The *j*-th rule for A can be identified via the pair (A, j) (with $j \ge 0$).

Pair of grammars:

E	\rightarrow	E + E	E * E	(E)	name	int
E	\rightarrow	E+T	T			
T	\rightarrow	T*F	F			
F	\rightarrow	(E)	name	int		

Both grammars describe the same language

Pair of grammars:

Both grammars describe the same language

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

 \underline{E}

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

$$\underline{\underline{E}} \rightarrow \underline{\underline{E}} + T$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

... for example:
$$\begin{array}{ccc} \underline{E} & \rightarrow & \underline{E} + T \\ \rightarrow & \underline{T} + T \end{array}$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

... for example: $\begin{array}{ccc} \underline{E} & \rightarrow & \underline{E} + T \\ \rightarrow & \underline{T} + T \\ \rightarrow & T * \underline{F} + T \end{array}$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

$$\begin{array}{cccc} \underline{E} & \rightarrow & \underline{E} + T \\ & \rightarrow & \underline{T} + T \\ & \rightarrow & T * \underline{F} + T \\ & \rightarrow & \underline{T} * \operatorname{int} + T \end{array}$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

$$\begin{array}{cccc} \underline{E} & \rightarrow & \underline{E} + T \\ & \rightarrow & \underline{T} + T \\ & \rightarrow & T * \underline{F} + T \\ & \rightarrow & \underline{T} * \operatorname{int} + T \\ & \rightarrow & \underline{F} * \operatorname{int} + T \end{array}$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

$$\begin{array}{cccc} \underline{E} & \rightarrow & \underline{E} + T \\ & \rightarrow & \underline{T} + T \\ & \rightarrow & T * \underline{F} + T \\ & \rightarrow & \underline{T} * \mathsf{int} + T \\ & \rightarrow & \underline{F} * \mathsf{int} + T \\ & \rightarrow & \mathsf{name} * \mathsf{int} + \underline{T} \end{array}$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

$$\begin{array}{cccc} \underline{E} & \rightarrow & \underline{E} + T \\ \rightarrow & \underline{T} + T \\ \rightarrow & T * \underline{F} + T \\ \rightarrow & \underline{T} * \operatorname{int} + T \\ \rightarrow & \underline{F} * \operatorname{int} + T \\ \rightarrow & \operatorname{name} * \operatorname{int} + \underline{T} \\ \rightarrow & \operatorname{name} * \operatorname{int} + \underline{F} \end{array}$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

$$\begin{array}{cccc} \underline{E} & \rightarrow & \underline{E} + T \\ & \rightarrow & \underline{T} + T \\ & \rightarrow & T * \underline{F} + T \\ & \rightarrow & \underline{T} * \operatorname{int} + T \\ & \rightarrow & \underline{F} * \operatorname{int} + T \\ & \rightarrow & \operatorname{name} * \operatorname{int} + \underline{T} \\ & \rightarrow & \operatorname{name} * \operatorname{int} + \underline{F} \\ & \rightarrow & \operatorname{name} * \operatorname{int} + \operatorname{int} \end{array}$$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

... for example:

$$\begin{array}{cccc} \underline{E} & \rightarrow & \underline{E} + T \\ & \rightarrow & \underline{T} + T \\ & \rightarrow & T * \underline{F} + T \\ & \rightarrow & \underline{T} * \operatorname{int} + T \\ & \rightarrow & \underline{F} * \operatorname{int} + T \\ & \rightarrow & \operatorname{name} * \operatorname{int} + \underline{T} \\ & \rightarrow & \operatorname{name} * \operatorname{int} + \underline{F} \\ & \rightarrow & \operatorname{name} * \operatorname{int} + \operatorname{int} \end{array}$$

Definition

The rewriting relation \rightarrow is a relation on words over $N \cup T$, with

 $\alpha \to \alpha'$ iff $\alpha = \alpha_1 A \alpha_2 \land \alpha' = \alpha_1 \beta \alpha_2$ for an $A \to \beta \in P$

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence of such rewriting steps $\alpha_0 \rightarrow \ldots \rightarrow \alpha_m$ is called derivation.

... for example:

$$\begin{array}{cccc} \underline{E} & \rightarrow & \underline{E} + T \\ \rightarrow & \underline{T} + T \\ \rightarrow & T * \underline{F} + T \\ \rightarrow & \underline{T} * \operatorname{int} + T \\ \rightarrow & \underline{F} * \operatorname{int} + T \\ \rightarrow & \operatorname{name} * \operatorname{int} + \underline{T} \\ \rightarrow & \operatorname{name} * \operatorname{int} + \underline{F} \\ \rightarrow & \operatorname{name} * \operatorname{int} + \operatorname{int} \end{array}$$

Definition

The rewriting relation \rightarrow is a relation on words over $N \cup T$, with

$$\alpha \to \alpha'$$
 iff $\alpha = \alpha_1 A \alpha_2 \land \alpha' = \alpha_1 \beta \alpha_2$ for an $A \to \beta \in P$

The reflexive and transitive closure of \rightarrow is denoted as: \rightarrow^*

Remarks:

- ullet The relation $\ o \$ depends on the grammar
- In each step of a derivation, we may choose:
 - * a spot, determining where we will rewrite.
 - * a rule, determining how we will rewrite.
- The language, specified by G is:

 $\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$

Remarks:

- The relation \rightarrow depends on the grammar
- In each step of a derivation, we may choose:
 - * a spot, determining where we will rewrite.
 - * a rule, determining how we will rewrite.
- The language, specified by G is:

$$\mathcal{L}(G) = \{ w \in T^* \mid S \to^* w \}$$

Attention:

The order, in which disjunct fragments are rewritten is not relevant.

Derivation Tree

Derivations of a symbol are represented as derivation trees:

... for example:

$$\underline{E} \rightarrow \stackrel{0}{\longrightarrow} \underbrace{\underline{E}} + T \\ \rightarrow \stackrel{1}{\longrightarrow} \frac{T}{T} + T \\ \rightarrow \stackrel{0}{\longrightarrow} T * \underbrace{\underline{F}} + T \\ \rightarrow \stackrel{2}{\longrightarrow} \frac{T}{T} * \operatorname{int} + T \\ \rightarrow \stackrel{1}{\longrightarrow} \underbrace{\underline{F}} * \operatorname{int} + T \\ \rightarrow \stackrel{1}{\longrightarrow} \operatorname{name} * \operatorname{int} + \underbrace{\underline{T}} \\ \rightarrow \stackrel{1}{\longrightarrow} \operatorname{name} * \operatorname{int} + \underbrace{\underline{F}} \\ \rightarrow \stackrel{2}{\longrightarrow} \operatorname{name} * \operatorname{int} + \operatorname{int}$$

A derivation tree for $A \in N$:

inner nodes: rule applications root: rule application for Aleaves: terminals or ϵ The successors of (B, i) correspond to right hand sides of the rule

Attention:

In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or rather rightmost) occurance of a nonterminal.

- These are called leftmost (or rather rightmost) derivations and are denoted with the index *L* (or *R* respectively).
- Leftmost (or rightmost) derivations correspondt to a left-to-right (or right-to-left) preorder-DFS-traversal of the derivation tree.
- Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of the derivation tree

... for example:

Leftmost derivation:

(E, 0) (E, 1) (T, 0) (T, 1) (F, 1) (F, 2) (T, 1) (F, 2)

... for example:

Leftmost derivation: Rightmost derivation: (E, 0) (E, 1) (T, 0) (T, 1) (F, 1) (F, 2) (T, 1) (F, 2)(E, 0) (T, 1) (F, 2) (E, 1) (T, 0) (F, 2) (T, 1) (F, 1)

... for example:

Leftmost derivation: Rightmost derivation: Reverse rightmost derivation:

$\begin{array}{l} (E,0) \ (E,1) \ (T,0) \ (T,1) \ (F,1) \ (F,2) \ (T,1) \ (F,2) \\ (E,0) \ (T,1) \ (F,2) \ (E,1) \ (T,0) \ (F,2) \ (T,1) \ (F,1) \\ (F,1) \ (T,1) \ (F,2) \ (T,0) \ (E,1) \ (F,2) \ (T,1) \ (E,0) \end{array}$

Unique Grammars

The concatenation of leaves of a derivation tree t are often called yield(t). ... for example:

gives rise to the concatenation:

name * int + int .

Unique Grammars

Definition:

Grammar *G* is called unique, if for every $w \in T^*$ there is maximally one derivation tree *t* of *S* with yield(*t*) = *w*.

... in our example:

E	\rightarrow	$E + E^{0}$	$ E * E^1$	$(E)^{2}$	name ³	int ⁴
E	\rightarrow	$E+T^{0}$	$ T^1$			
T	\rightarrow	$T * F^{0}$	$ F^1$			
F	\rightarrow	(E) ⁰	name ¹	int ²		

The first one is ambiguous, the second one is unique
Conclusion:

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of interest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.

Conclusion:

- A derivation tree represents a possible hierarchical structure of a word.
- For programming languages, only those grammars with a unique structure are of interest.
- Derivation trees are one-to-one corresponding with leftmost derivations as well as (reverse) rightmost derivations.
- Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
- Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax tree.

Syntactic Analysis

Chapter 2: Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

Example:

States:	0, 1, 2
Start state:	0
Final states:	0,2

0	a	11
1	a	11
11	b	2
12	b	2

Example:

 States:
 0, 1, 2

 Start state:
 0

 Final states:
 0, 2

0	a	11
1	a	11
11	b	2
12	b	2

Conventions:

- We do not differentiate between pushdown symbols and states
- The rightmost / upper pushdown symbol represents the state
- Every transition consumes / modifies the upper part of the pushdown

Definition: Pushdown Automaton A pushdown automaton (PDA) is a tuple $M = (Q, T, \delta, q_0, F)$ with:

- Q a finite set of states;
- T an input alphabet;
- $q_0 \in Q$ the start state;
- $F \subseteq Q$ the set of final states and
- $\delta \subseteq Q^+ \times (T \cup \{\epsilon\}) \times Q^*$ a finite set of transitions

Friedrich Bauer

Klaus Samelson

We define computations of pushdown automata with the help of transitions; a particular computation state (the current configuration) is a pair:

 $(\gamma, w) \in Q^* \times T^*$

consisting of the pushdown content and the remaining input.

States:	0, 1, 2
Start state:	0
Final states:	0,2

0	a	11
1	a	11
11	b	2
12	b	2

0	a	11
1	a	11
11	b	2
12	b	2

 $(0, \quad a \, a \, a \, b \, b \, b)$

0	a	11
1	a	11
11	b	2
12	b	2

$$(0, a a a b b b) \vdash (11, a a b b b)$$

States:	0, 1, 2
Start state:	0
Final states:	0,2

0	a	11
1	a	11
11	b	2
12	b	2

 States:
 0, 1, 2

 Start state:
 0

 Final states:
 0, 2

0	a	11
1	a	11
11	b	2
12	b	2

$$egin{array}{rcl} (0\,, & a\,a\,a\,b\,b\,b) ‐ & (1\,1\,, & a\,a\,b\,b\,b) \ ‐ & (1\,1\,1\,, & a\,b\,b\,b) \ ‐ & (1\,1\,1\,1\,, & b\,b\,b) \end{array}$$

 States:
 0, 1, 2

 Start state:
 0

 Final states:
 0, 2

0	a	11
1	a	11
11	b	2
12	b	2

$$egin{array}{rcl} (0\,, & a\,a\,a\,b\,b\,b) ‐ ‐ &(1\,1\,, & a\,a\,b\,b\,b) \ dash & ‐ &(1\,1\,1\,, & a\,b\,b\,b) \ dash & ‐ &(1\,1\,1\,1\,, & b\,b\,b) \ dash & ‐ &(1\,1\,2\,, & b\,b) \end{array}$$

 States:
 0, 1, 2

 Start state:
 0

 Final states:
 0, 2

0	a	11
1	a	11
11	b	2
12	b	2

$$egin{array}{rcl} (0\,, & a\,a\,a\,b\,b\,b) ‐ & (1\,1\,, & a\,a\,b\,b\,b) \ ‐ & (1\,1\,1\,, & a\,b\,b\,b) \ ‐ & (1\,1\,1\,1\,, & b\,b\,b) \ ‐ & (1\,1\,2\,, & b\,b) \ ‐ & (1\,2\,, & b\,b) \ ‐ & (1\,2\,, & b\,b) \end{array}$$

0	a	11	
1	a	11	
11	b	2	
12	b	2	

$$egin{array}{rcl} (0\,, & a\,a\,a\,b\,b\,b) ‐ ‐ &(1\,1\,, & a\,a\,b\,b\,b) \ dash & & (1\,1\,1\,, & a\,b\,b\,b) \ dash & & (1\,1\,1\,, & b\,b\,b) \ dash & & (1\,1\,2\,, & b\,b) \ dash & & (1\,1\,2\,, & b\,b) \ dash & & (1\,2\,, & b) \ dash & & (2\,, & \epsilon) \end{array}$$

A computation step is characterized by the relation $\vdash \subseteq (Q^* \times T^*)^2$ with

$$(lpha\,\gamma,\,x\,w)dash(lpha\,\gamma',\,w) \quad ext{for} \quad (\gamma,\,x,\,\gamma')\,\in\,\delta$$

A computation step is characterized by the relation $\vdash \subseteq (Q^* \times T^*)^2$ with

$$(\alpha \, \gamma, \, x \, w) dash (lpha \, \gamma', \, w) \quad ext{for} \quad (\gamma, \, x, \, \gamma') \, \in \, \delta$$

Remarks:

- The relation \vdash depends on the pushdown automaton M
- The reflexive and transitive closure of \vdash is denoted by \vdash^*
- Then, the language accepted by M is

$$\mathcal{L}(M) = \{w \in T^* \mid \exists f \in F : (q_0, w) \vdash^* (f, \epsilon)\}$$

A computation step is characterized by the relation $\vdash \subseteq (Q^* \times T^*)^2$ with

$$(\alpha \, \gamma, \, x \, w) dash (lpha \, \gamma', \, w) \quad ext{for} \quad (\gamma, \, x, \, \gamma') \, \in \, \delta$$

Remarks:

- The relation ⊢ depends on the pushdown automaton M
- The reflexive and transitive closure of \vdash is denoted by \vdash^*
- Then, the language accepted by *M* is

$$\mathcal{L}(M) \,=\, \{w\in T^*\mid \exists\, f\in F:\; (q_0,w)\vdash^* (f,\epsilon)\}$$

We accept with a final state together with empty input.

Definition: Deterministic Pushdown Automaton

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions (γ_1, x, γ_2) , $(\gamma'_1, x', \gamma'_2) \in \delta$ we can assume: Is γ_1 a suffix of γ'_1 , then $x \neq x' \land x \neq \epsilon \neq x'$ is valid.

Definition: Deterministic Pushdown Automaton

The pushdown automaton M is deterministic, if every configuration has maximally one successor configuration.

This is exactly the case if for distinct transitions (γ_1, x, γ_2) , $(\gamma'_1, x', \gamma'_2) \in \delta$ we can assume:

```
Is \gamma_1 a suffix of \gamma'_1, then x \neq x' \land x \neq \epsilon \neq x' is valid.
```

... for example:

0	a	11
1	a	11
11	b	2
12	b	2

... this obviously holds

Pushdown Automata

Theorem:

For each context free grammar G = (N, T, P, S)a pushdown automaton M with $\mathcal{L}(G) = \mathcal{L}(M)$ can be built.

The theorem is so important for us, that we take a look at two constructions for automata, motivated by both of the special derivations:

- M_G^L to build Leftmost derivations
- M_G^R to build reverse Rightmost derivations

Syntactic Analysis

Chapter 3: Top-down Parsing Construction: Item Pushdown Automaton M_G^L

- Reconstruct a Leftmost derivation.
- Expand nonterminals using a rule.
- Verify successively, that the chosen rule matches the input.
- → The states are now Items (= rules with a bullet):

 $[A \to \alpha \bullet \beta] \;, \qquad A \to \alpha \,\beta \; \in \; {\pmb P}$

The bullet marks the spot, how far the rule is already processed

Our example:

 $S \rightarrow AB^{0} \qquad A \rightarrow a^{0} \qquad B \rightarrow b^{0}$

27/55

Our example:

 $S \rightarrow AB^{0} \qquad A \rightarrow a^{0} \qquad B \rightarrow b^{0}$ $A \bullet 0 \qquad B \qquad b$

Our example:

 $S \rightarrow AB^{0} \qquad A \rightarrow a^{0} \qquad B \rightarrow b^{0}$

Our example:

 $S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$ **S0** В 0 b a

Our example:

 $S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$ **S0** В 0 b a

Our example:

 $S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$ В 0 b a

Our example:

 $S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$ $\mathbf{B} \bullet \mathbf{0}$ b a

Our example:

 $S \rightarrow AB^{\mathbf{0}} \quad A \rightarrow a^{\mathbf{0}} \quad B \rightarrow b^{\mathbf{0}}$ B • 0 a b

Our example:

 $S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$ B • 0 a b

27/55

Our example:

 $S \rightarrow AB^{0} \quad A \rightarrow a^{0} \quad B \rightarrow b^{0}$ B **b** () (a b

Our example:

$$S \rightarrow AB^{\mathbf{0}} \quad A \rightarrow a^{\mathbf{0}} \quad B \rightarrow b^{\mathbf{0}}$$

We add another rule $S' \rightarrow S$ for initialising the construction:

Start state: $[S' \rightarrow \bullet S \ \$]$ End state: $[S' \rightarrow S \bullet \ \$]$ Transition relations:

$$\begin{array}{c|c} [S' \rightarrow \bullet S \$] & \epsilon & [S' \rightarrow \bullet S \$] [S \rightarrow \bullet A B] \\ \hline [S \rightarrow \bullet A B] & \epsilon & [S \rightarrow \bullet A B] [A \rightarrow \bullet a] \\ \hline [A \rightarrow \bullet a] & a & [A \rightarrow a \bullet] \\ \hline [S \rightarrow \bullet A B] [A \rightarrow a \bullet] & \epsilon & [S \rightarrow A \bullet B] \\ \hline [S \rightarrow A \bullet B] & \epsilon & [S \rightarrow A \bullet B] [B \rightarrow \bullet b] \\ \hline [B \rightarrow \bullet b] & b & [B \rightarrow b \bullet] \\ \hline [S \rightarrow A \bullet B] [B \rightarrow b \bullet] & \epsilon & [S \rightarrow A B \bullet] \\ \hline [S' \rightarrow \bullet S \$] [S \rightarrow A B \bullet] & \epsilon & [S' \rightarrow S \bullet \$] \end{array}$$
The item pushdown automaton M_G^L has three kinds of transitions:

Expansions:	$([A \to \alpha \bullet B \ \beta], \epsilon, [A \to \alpha \bullet B \ \beta] [B \to \bullet \gamma])$ for
	$A \to \alpha B \beta, \ B \to \gamma \in P$
Shifts:	$([A \to \alpha \bullet a \beta], a, [A \to \alpha a \bullet \beta]) \text{ for } A \to \alpha a \beta \in P$
Reduces:	$([A \to \alpha \bullet B \ \beta] \ [B \to \gamma \bullet], \epsilon, [A \to \alpha B \bullet \beta])$ for
	$A \rightarrow \alpha B \beta, \ B \rightarrow \gamma \in P$

Items of the form: $[A \rightarrow \alpha \bullet]$ are also called complete The item pushdown automaton shifts the bullet around the derivation tree ...

Discussion:

- The expansions of a computation form a leftmost derivation
- Unfortunately, the expansions are chosen nondeterministically
- For proving correctness of the construction, we show that for every Item $[A \rightarrow \alpha \bullet B \beta]$ the following holds:

 $([A \to \alpha \bullet B \beta], w) \vdash^* ([A \to \alpha B \bullet \beta], \epsilon) \quad \text{iff} \quad B \to^* w$

 LL-Parsing is based on the item pushdown automaton and tries to make the expansions deterministic ... **Example:** $S' \rightarrow S$ \$ $S \rightarrow \epsilon \mid a S b$

The transitions of the according Item Pushdown Automaton:

0	$[S' \to \bullet S \$]$	ϵ	$[S' \to \bullet S \ \$] [S \to \bullet]$
1	$[S' \to \bullet S \$]$	ϵ	$[S' \to \bullet S \ \$] [S \to \bullet a S b]$
2	$[S \rightarrow \bullet a S b]$	a	$[S \rightarrow a \bullet S b]$
3	$[S \to a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet]$
4	$[S \to a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet a S b]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \to a \ S \bullet b]$
6	$[S \to a \bullet S b] [S \to a S b \bullet]$	ϵ	$[S \to a \ S \bullet b]$
7	$[S \rightarrow a \ S \bullet b]$	b	$[S \to a \ S \ b \bullet]$
8	$[S' \to \bullet S \$] [S \to \bullet]$	ϵ	$[S' \to S \bullet \$]$
9	$[S' \to \bullet S \$] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet \$]$

Example: $S' \rightarrow S$ \$ $S \rightarrow \epsilon \mid a S b$

The transitions of the according Item Pushdown Automaton:

Conflicts arise between the transitions (0, 1) and (3, 4), resp.

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue computing in parallel.

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue computing in parallel.

Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue computing in parallel.

Idea 2: Recursive Descent & Backtracking

Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead

Conflicts are resolved by considering a lookup of the next input symbols.

Structure of the LL(1)-Parser:

- The parser accesses a frame of length 1 of the input;
- it corresponds to an item pushdown automaton, essentially;
- table M[q, w] contains the rule of choice.

Idea:

- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- A grammar is called LL(1) if a unique choice is always possible

Idea:

- Emanate from the item pushdown automaton
- Consider the next input symbol to determine the appropriate rule for the next expansion
- A grammar is called LL(1) if a unique choice is always possible

Definition:

A reduced grammar is called LL(1), if for each two distinct rules $A \rightarrow \alpha$, $A \rightarrow \alpha' \in P$ and each derivation $S \rightarrow_L^* u A \beta$ with $u \in T^*$ the following is valid:

Richard Stearns

Example 1:

$$\begin{array}{rcl} S & \rightarrow & \text{if} (E) S \text{ else } S & | \\ & & \text{while} (E) S & | \\ & & E; \\ E & \rightarrow & \text{id} \end{array}$$

is LL(1), since $First_1(E) = {id}$

Example 1:

$$\begin{array}{rcl} S & \rightarrow & \text{if} (E) S \text{ else } S & | \\ & & \text{while} (E) S & | \\ & & E; \\ E & \rightarrow & \text{id} \end{array}$$

is LL(1), since $\mathsf{First}_1(E) = {\mathsf{id}}$

Example 2:

$$\begin{array}{rrrr} S & \rightarrow & \text{if } (E) \ S \ \text{else} \ S & | \\ & & \text{if } (E) \ S & | \\ & & & \text{while} (E) \ S & | \\ & & & E \ ; \\ E & \rightarrow & \text{id} \end{array}$$

... is not LL(k) for any k > 0.

Definition: First₁-Sets

For a set $L \subseteq T^*$ we define:

 $\mathsf{First}_1(L) = \{ \epsilon \mid \epsilon \in L \} \cup \{ u \in T \mid \exists v \in T^* : uv \in L \}$

Example: $S \rightarrow \epsilon \mid a S b$

$First_1(\llbracket S \rrbracket)$
ϵ
a b
aabb
a a a b b b

Definition: First₁-Sets

For a set $L \subseteq T^*$ we define:

 $\mathsf{First}_1(L) = \{ \epsilon \mid \epsilon \in L \} \cup \{ u \in T \mid \exists v \in T^* : uv \in L \}$

Example: $S \rightarrow \epsilon \mid a S b$

$First_1(\llbracket S \rrbracket)$
ϵ
a b
aabb
aaabbb

 \equiv the yield's prefix of length 1

Arithmetics: First₁(_) is distributive with union and concatenation:

 \odot_1 being 1- concatenation

Arithmetics: First₁(_) is distributive with union and concatenation:

 \odot_1 being 1 - concatenation

Definition: 1-concatenation Let $L_1, L_2 \subseteq T \cup \{\epsilon\}$ with $L_1 \neq \emptyset \neq L_2$. Then: $L_1 \odot_1 L_2 = \begin{cases} L_1 & \text{if } \epsilon \notin L_1 \\ (L_1 \setminus \{\epsilon\}) \cup L_2 & \text{otherwise} \end{cases}$

If all rules of G are productive, then all sets $First_1(A)$ are non-empty.

For $\alpha \in (N \cup T)^*$ we are interested in the set:

 $\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: First₁(A) = $F_{\epsilon}(A) \cup \{\epsilon \mid A \rightarrow^* \epsilon\}$ • Let empty(X) = true iff $X \rightarrow^* \epsilon$.

• $F_{\epsilon}(X_1 \dots X_m) = F_{\epsilon}(X_1) \cup \dots \cup F_{\epsilon}(X_j)$ if $\neg \text{empty}(X_j) \land \bigwedge_{i=1}^{j-1} \text{empty}(X_i)$

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: First₁(A) = $F_{\epsilon}(A) \cup \{\epsilon \mid A \rightarrow^* \epsilon\}$ • Let empty(X) = true iff $X \rightarrow^* \epsilon$.

• $F_{\epsilon}(X_1 \dots X_m) = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$ if $\neg empty(X_j) \land \bigwedge_{i=1}^{j-1} empty(X_i)$

For $\alpha \in (N \cup T)^*$ we are interested in the set:

$$\mathsf{First}_1(\alpha) = \mathsf{First}_1(\{w \in T^* \mid \alpha \to^* w\})$$

Idea: Treat ϵ separately: First₁(A) = $F_{\epsilon}(A) \cup \{\epsilon \mid A \rightarrow^* \epsilon\}$ • Let empty(X) = true iff $X \rightarrow^* \epsilon$.

•
$$F_{\epsilon}(X_1 \dots X_m) = \bigcup_{i=1}^{j} F_{\epsilon}(X_i)$$
 if $\neg \text{empty}(X_j) \land \bigwedge_{i=1}^{j-1} \text{empty}(X_i)$

We characterize the ϵ -free First₁-sets with an inequality system:

$$\begin{array}{lll} F_{\epsilon}(a) &=& \{a\} & \text{ if } & a \in T \\ F_{\epsilon}(A) &\supseteq & F_{\epsilon}(X_{j}) & \text{ if } & A \to X_{1} \dots X_{m} \in P, & \operatorname{empty}(X_{1}) \land \dots \land \operatorname{empty}(X_{j-1}) \end{array}$$

for example...

with empty(E) = empty(T) = empty(F) = false

for example...

with empty(E) = empty(T) = empty(F) = false... we obtain:

Observation:

• The form of each inequality of these systems is:

 $x \sqsupseteq y$ resp. $x \sqsupseteq d$

for variables x, y und $d \in D$.

• Such systems are called pure unification problems

• Such problems can be solved in linear space/time. for example: $D = 2^{\{a,b,c\}}$

$$\begin{array}{l} x_0 \supseteq \{a\} \\ x_1 \supseteq \{b\} \\ x_2 \supseteq \{c\} \\ x_3 \supset \{c\} \\ x_3 \supset x_2 \end{array} \xrightarrow{ x_1 \supseteq x_0 } x_1 \supseteq x_3 \\ x_2 \supseteq x_1 \\ x_3 \supset x_2 \\ x_3 \supset x_2 \end{array}$$

Frank DeRemer & Tom Pennello

Proceeding:

• Create the Variable Dependency Graph for the inequality system.

Frank DeRemer & Tom Pennello

Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- Whithin a Strongly Connected Component (\rightarrow Tarjan) all variables have the same value

Frank DeRemer & Tom Pennello

Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- Whithin a Strongly Connected Component (\rightarrow Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC

Frank DeRemer & Tom Pennello

Proceeding:

- Create the Variable Dependency Graph for the inequality system.
- Whithin a Strongly Connected Component (→ Tarjan) all variables have the same value
- Is there no ingoing edge for an SCC, its value is computed via the smallest upper bound of all values within the SCC
- In case of ingoing edges, their values are also to be considered for the upper bound

... for our example grammar:

 First_1 :

context is relevant too:

$$S' \to S \$$
 $S \to \epsilon^0 \mid a S b^1$

$First_1(input)$	\$	a	b
S	?	?	?

context is relevant too:

$$S' \rightarrow S \$$
 $S \rightarrow \epsilon^0 \mid a S b^1$

$First_1(input)$	\$	a	b
S	?	?	?

Inequality system for $\mathsf{Follow}_1(B) = \mathsf{First}_1(\beta) \odot_1 \ldots \odot_1 \mathsf{First}_1(\beta_0)$

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \to \gamma^i$ if $w \in \text{First}_1(\gamma) \odot_1 \text{Follow}_1(B)$

... for example: $S' \to S$ \$ $S \to \epsilon^0 \mid a S b^1$

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \to \gamma^i$ if $w \in \text{First}_1(\gamma) \odot_1 \text{Follow}_1(B)$

... for example: $S' \to S$ \$ $S \to \epsilon^0 \mid a S b^1$

 $\mathsf{First}_1(S) = \{\epsilon, a\}$

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \to \gamma^i$ if $w \in \text{First}_1(\gamma) \odot_1 \text{Follow}_1(B)$

... for example: $S' \to S$ \$ $S \to \epsilon^0 \mid a S b^1$

 $\mathsf{First}_1(S) = \{\epsilon, a\} \quad \mathsf{Follow}_1(S) = \{b, \$\}$
Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \to \gamma^i$ if $w \in \text{First}_1(\gamma) \odot_1 \text{Follow}_1(B)$

... for example: $S' \to S$ \$ $S \to \epsilon^0 \mid a S b^1$

$$\mathsf{First}_1(S) = \{\epsilon, a\}$$
 $\mathsf{Follow}_1(S) = \{b, \$\}$

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table

We set M[B, w] = i with $B \to \gamma^i$ if $w \in \text{First}_1(\gamma) \odot_1 \text{Follow}_1(B)$

... for example: $S' \to S$ \$ $S \to \epsilon^0 \mid a S b^1$

$$\mathsf{First}_1(S) = \{\epsilon, a\}$$
 $\mathsf{Follow}_1(S) = \{b, \$\}$

S-rule 0 :	$First_1(\epsilon)$	\odot_1	$Follow_1(S) = \{b, \$\}$
S-rule 1 :	$First_1(aSb)$	\odot_1	$Follow_1(S) = \{a\}$

	\$	a	b
S	0	1	0

Item Pushdown Automaton as LL(1)-Parser

For example: $S' \to S$ \$ $S \to \epsilon^0 \mid a S b^1$ The transitions of the according Item Pushdown Automaton:

0	$[S' \to \bullet S \$]$	ϵ	$[S' \to \bullet S \$] [S \to \bullet]$
1	$[S' \to \bullet S \$]$	ϵ	$[S' \to \bullet S \$] [S \to \bullet a S b]$
2	$[S \rightarrow \bullet a S b]$	a	$[S \to a \bullet S b]$
3	$[S \rightarrow a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet]$
4	$[S \rightarrow a \bullet S b]$	ϵ	$[S \to a \bullet S b] [S \to \bullet a S b]$
5	$[S \to a \bullet S b] [S \to \bullet]$	ϵ	$[S \to a \ S \bullet b]$
6	$[S \to a \bullet S b] [S \to a S b \bullet]$	ϵ	$[S \to a \ S \bullet b]$
7	$[S \rightarrow a \ S \bullet b]$	b	$[S \to a \ S \ b \bullet]$
8	$[S' \to \bullet S \$] [S \to \bullet]$	ϵ	$[S' \to S \bullet \$]$
9	$[S' \to \bullet S \$] [S \to a S b \bullet]$	ϵ	$[S' \to S \bullet \$]$

Lookahead table:

	\$	a	b
S	0	1	0

Attention:

```
Many grammars are not LL(k) !
```

A reason for that is:

Definition

```
Grammar G is called left-recursive, if
```

$$A \rightarrow^+ A \beta$$
 for an $A \in N, \beta \in (T \cup N)^*$

Attention:

Many grammars are not LL(k) !

A reason for that is:

Definition

Grammar G is called left-recursive, if

 $A \rightarrow^+ A \beta$ for an $A \in N, \beta \in (T \cup N)^*$

Example:

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

 $\Rightarrow \mathsf{First}_k(\alpha \,\beta^n \,\gamma) \cap \\ \mathsf{First}_k(\alpha \,\beta^{n+1} \,\gamma) = \emptyset$

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Theorem:

Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:

Let wlog. $A \rightarrow A \beta \mid \alpha \in P$ and A be reachable from S

Assumption: G is LL(k)

 $\Rightarrow \mathsf{First}_k(\alpha \,\beta^n \,\gamma) \cap \\ \mathsf{First}_k(\alpha \,\beta^{n+1} \,\gamma) = \emptyset$

Case 1: $\beta \to^* \epsilon$ — Contradiction !!! **Case 2:** $\beta \to^* w \neq \epsilon \Longrightarrow$ First_k $(\alpha w^k \gamma) \cap$ First_k $(\alpha w^{k+1} \gamma) \neq \emptyset$

Right-Regular Context-Free Parsing

Recurring scheme in programming languages: Lists of sth...

 $S \rightarrow b \mid S a b$

Alternative idea: Regular Expressions

 $S \rightarrow (b a)^* b$

Right-Regular Context-Free Parsing

Recurring scheme in programming languages: Lists of sth... $S \rightarrow b \mid S a b$ Alternative idea: Regular Expressions $S \rightarrow (b a)^* b$

Definition: Right-Regular Context-Free Grammar

A right-regular context-free grammar (RR-CFG) is a 4-tuple G = (N, T, P, S) with:

- N the set of nonterminals,
- T the set of terminals,
- P the set of rules with regular expressions of symbols as rhs,
- $S \in N$ the start symbol

Right-Regular Context-Free Parsing

Recurring scheme in programming languages: Lists of sth... $S \rightarrow b \mid S a b$ Alternative idea: Regular Expressions $S \rightarrow (b a)^* b$

Definition: Right-Regular Context-Free Grammar

A right-regular context-free grammar (RR-CFG) is a 4-tuple G = (N, T, P, S) with:

- N the set of nonterminals,
- T the set of terminals,
- P the set of rules with regular expressions of symbols as rhs,
- $S \in N$ the start symbol

Example: Arithmetic Expressions

$$\begin{array}{rcl} S & \rightarrow & E \\ E & \rightarrow & T \left(+T \right)^{*} \\ T & \rightarrow & F \left(*F \right)^{*} \\ F & \rightarrow & \left(\ E \ \right) \mid \text{name} \mid \text{int} \end{array}$$

... and generate the according LL(k)-Parser $M_{(G)}^L$

F

 $\begin{array}{cccccc} A & \to & \langle \alpha \rangle & \text{if} & A \to \alpha \in P \\ \langle \alpha \rangle & \to & \alpha & \text{if} & \alpha \in N \cup T \\ \langle \epsilon \rangle & \to & \epsilon \\ \langle \alpha^* \rangle & \to & \epsilon \mid \langle \alpha \rangle \langle \alpha^* \rangle & \text{if} & \alpha \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \dots \alpha_n \rangle & \to & \langle \alpha_1 \rangle \dots \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \mid \dots \mid \alpha_n \rangle & \to & \langle \alpha_1 \rangle \mid \dots \mid \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \end{array}$... and generate the according LL(k)-Parser $M_{(G)}^L$ Example: Arithmetic Expressions cont'd S $\rightarrow E$ $\begin{array}{ccc} E & \rightarrow & T (+T)^* \\ T & \rightarrow & F (*F)^* \end{array}$

 \rightarrow (E) | name | int

 $\begin{array}{ccccccc} A & \to & \langle \alpha \rangle & \text{if} & A \to \alpha \in P \\ \langle \alpha \rangle & \to & \alpha & \text{if} & \alpha \in N \cup T \\ \langle \epsilon \rangle & \to & \epsilon \\ \langle \alpha^* \rangle & \to & \epsilon \mid \langle \alpha \rangle \langle \alpha^* \rangle & \text{if} & \alpha \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \dots \alpha_n \rangle & \to & \langle \alpha_1 \rangle \dots \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \mid \dots \mid \alpha_n \rangle & \to & \langle \alpha_1 \rangle \mid \dots \mid \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \end{array}$

... and generate the according LL(k)-Parser $M^{L}_{\langle G \rangle}$

Example: Arithmetic Expressions cont'd

 $\begin{array}{cccc} S & \rightarrow & E \\ E & \rightarrow & \langle T \, (+T)^* \rangle \\ T & \rightarrow & F \, (*F)^* \\ F & \rightarrow & (E) \mid \mathsf{name} \mid \mathsf{int} \\ \langle T \, (+T)^* \rangle & \rightarrow & T \, \langle (+T)^* \rangle \end{array}$

 $\begin{array}{ccccccccc} A & \to & \langle \alpha \rangle & \text{if} & A \to \alpha \in P \\ \langle \alpha \rangle & \to & \alpha & \text{if} & \alpha \in N \cup T \\ \langle \epsilon \rangle & \to & \epsilon \\ \langle \alpha^* \rangle & \to & \epsilon \mid \langle \alpha \rangle \langle \alpha^* \rangle & \text{if} & \alpha \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \dots \alpha_n \rangle & \to & \langle \alpha_1 \rangle \dots \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \mid \dots \mid \alpha_n \rangle & \to & \langle \alpha_1 \rangle \mid \dots \mid \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \end{array}$

... and generate the according LL(k)-Parser $M^{L}_{\langle G \rangle}$

$$\begin{array}{cccc} S & \to & E \\ E & \to & \langle T \, (+T)^* \rangle \\ T & \to & F \, (*F)^* \\ F & \to & (E) \mid \text{name} \mid \text{int} \\ \langle T \, (+T)^* \rangle & \to & T \, \langle (+T)^* \rangle \\ \langle (+T)^* \rangle & \to & \epsilon \mid \langle +T \rangle \langle (+T)^* \end{array}$$

 $\begin{array}{cccccccc} A & \to & \langle \alpha \rangle & \text{if} & A \to \alpha \in P \\ \langle \alpha \rangle & \to & \alpha & \text{if} & \alpha \in N \cup T \\ \langle \epsilon \rangle & \to & \epsilon \\ \langle \alpha^* \rangle & \to & \epsilon \mid \langle \alpha \rangle \langle \alpha^* \rangle & \text{if} & \alpha \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \dots \alpha_n \rangle & \to & \langle \alpha_1 \rangle \dots \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \mid \dots \mid \alpha_n \rangle & \to & \langle \alpha_1 \rangle \mid \dots \mid \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \end{array}$

... and generate the according LL(k)-Parser $M^{L}_{\langle G \rangle}$

$$\begin{array}{cccc} S & \rightarrow & E \\ E & \rightarrow & \langle T \, (+T)^* \rangle \\ T & \rightarrow & F \, (*F)^* \\ F & \rightarrow & (E) \mid \text{name} \mid \text{int} \\ \langle T \, (+T)^* \rangle & \rightarrow & T \, \langle (+T)^* \rangle \\ \langle (+T)^* \rangle & \rightarrow & \epsilon \mid \langle +T \rangle \langle (+T)^* \\ \langle +T \rangle & \rightarrow & +T \end{array}$$

 $\begin{array}{cccccccc} A & \to & \langle \alpha \rangle & \text{if} & A \to \alpha \in P \\ \langle \alpha \rangle & \to & \alpha & \text{if} & \alpha \in N \cup T \\ \langle \epsilon \rangle & \to & \epsilon \\ \langle \alpha^* \rangle & \to & \epsilon \mid \langle \alpha \rangle \langle \alpha^* \rangle & \text{if} & \alpha \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \dots \alpha_n \rangle & \to & \langle \alpha_1 \rangle \dots \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \mid \dots \mid \alpha_n \rangle & \to & \langle \alpha_1 \rangle \mid \dots \mid \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \end{array}$

... and generate the according LL(k)-Parser $M^{L}_{\langle G \rangle}$

$$S \rightarrow E$$

$$E \rightarrow \langle T(+T)^* \rangle$$

$$T \rightarrow \langle F(*F)^* \rangle$$

$$F \rightarrow (E) \mid \text{name} \mid \text{int}$$

$$\langle T(+T)^* \rangle \rightarrow T \langle (+T)^* \rangle$$

$$\langle (+T)^* \rangle \rightarrow \epsilon \mid \langle +T \rangle \langle (+T)^* \rangle$$

$$\langle +T \rangle \rightarrow +T$$

 $\begin{array}{ccccccc} A & \to & \langle \alpha \rangle & \text{if} & A \to \alpha \in P \\ \langle \alpha \rangle & \to & \alpha & \text{if} & \alpha \in N \cup T \\ \langle \epsilon \rangle & \to & \epsilon \\ \langle \alpha^* \rangle & \to & \epsilon \mid \langle \alpha \rangle \langle \alpha^* \rangle & \text{if} & \alpha \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \dots \alpha_n \rangle & \to & \langle \alpha_1 \rangle \dots \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \\ \langle \alpha_1 \mid \dots \mid \alpha_n \rangle & \to & \langle \alpha_1 \rangle \mid \dots \mid \langle \alpha_n \rangle & \text{if} & \alpha_i \in \operatorname{Regex_{T,N}} \end{array}$

... and generate the according LL(k)-Parser $M^{L}_{\langle G \rangle}$

$$S \longrightarrow E$$

$$E \longrightarrow \langle T(+T)^* \rangle$$

$$T \longrightarrow \langle F(*F)^* \rangle$$

$$F \longrightarrow (E) | name | int$$

$$\langle T(+T)^* \rangle \longrightarrow T \langle (+T)^* \rangle$$

$$\langle (+T)^* \rangle \longrightarrow \epsilon | \langle +T \rangle \langle (+T)^* \rangle$$

$$\langle +T \rangle \longrightarrow +T$$

$$\langle F(*F)^* \rangle \longrightarrow F \langle (*F)^* \rangle$$

$$\langle (*F)^* \rangle \longrightarrow \epsilon | \langle *F \rangle \langle (*F)^* \rangle$$

$$\langle *F \rangle \longrightarrow *F$$

Definition:

An RR-CFG G is called RLL(1), if the corresponding CFG $\langle G \rangle$ is an LL(1) grammar.

Discussion

- directly yields the table driven parser $M_{\langle G \rangle}^{L}$ for RLL(1) grammars
- however: mapping regular expressions to recursive productions unnessessarily strains the stack

ightarrow instead directly construct automaton in the style of Berry-Sethi

Idea 2: Recursive Descent RLL Parsers:

Recursive descent RLL(1)-parsers are an alternative to table-driven parsers; apart from the usual function scan(), we generate a program frame with the lookahead function expect() and the main parsing method parse():

```
int next:
void expect(Set E){
     if (\{\epsilon, \texttt{next}\} \cap \texttt{E} = \emptyset)
          cerr << "Expected" << E << "found" << next:
          exit(0);
     return ;
void parse(){
     next = scan();
     expect(First_1(S));
     S();
     expect({EOF});
```

Idea 2: Recursive Descent RLL Parsers:

```
For each A \rightarrow \alpha \in P, we introduce:
```

```
void A(){
generate(\alpha)
}
```

with the meta-program generate being defined by structural decomposition of α :

```
generate(r_1 \dots r_k) = generate(r_1)

expect(First_1(r_2));

generate(r_2)

\vdots

expect(First_1(r_k));

generate(r_k)

generate(a) = next = scan();

generate(A) = A();
```

Idea 2: Recursive Descent RLL Parsers:

$$generate(r^*) = while (next \in F_{\epsilon}(r)) \{ generate(r) \}$$

$$generate(r_1 | \dots | r_k) = switch(next) \{ labels(First_1(r_1)) generate(r_1) break; \\ \vdots \\ labels(First_1(r_k)) generate(r_k) break; \\ \}$$

$$labels(\{\alpha_1, \dots, \alpha_m\}) = label(\alpha_1): \dots label(\alpha_m): label(\alpha) = case \alpha$$

$$label(\epsilon) = default$$

Topdown-Parsing

Discussion

- A practical implementation of an *RLL*(1)-parser via recursive descent is a straight-forward idea
- However, only a subset of the deterministic contextfree languages can be parsed this way.
- As soon as First₁(_) sets are not disjoint any more,

Topdown-Parsing

Discussion

- A practical implementation of an *RLL*(1)-parser via recursive descent is a straight-forward idea
- However, only a subset of the deterministic contextfree languages can be parsed this way.
- As soon as First₁(_) sets are not disjoint any more,
 - Solution 1: For many accessibly written grammars, the alternation between right hand sides happens too early. Keeping the common prefixes of right hand sides joined and introducing a new production for the actual diverging sentence forms often helps.
 - Solution 2: Introduce *ranked* grammars, and decide conflicting lookahead always in favour of the higher ranked alternative
 - \rightarrow relation to $\underline{L}\underline{L}$ parsing not so clear any more
 - \rightarrow not so clear for $_^*$ operator how to decide
 - Solution 3: Going from LL(1) to LL(k)

The size of the occuring sets is rapidly increasing with larger k

Unfortunately, even LL(k) parsers are not sufficient to accept all deterministic contextfree languages. (regular lookahead $\rightarrow LL(*)$)

• In practical systems, this often motivates the implementation of k = 1 only ...