
Topic:

Syntactic Analysis

1 / 55

Syntactic Analysis

ParserToken-Stream Syntaxtree

Syntactic analysis tries to integrate Tokens into larger program units.

Such units may possibly be:

→ Expressions;

→ Statements;

→ Conditional branches;

→ loops; ...

2 / 55

Syntactic Analysis

ParserToken-Stream Syntaxtree

Syntactic analysis tries to integrate Tokens into larger program units.

Such units may possibly be:

→ Expressions;

→ Statements;

→ Conditional branches;

→ loops; ...

2 / 55

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

ParserSpecification Generator

Specification of the hierarchical structure: contextfree grammars
Generated implementation: Pushdown automata + X

3 / 55

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

E→E{op}E Generator

Specification of the hierarchical structure: contextfree grammars
Generated implementation: Pushdown automata + X

3 / 55

Chapter 1:

Basics of Contextfree Grammars

4 / 55

Syntactic Analysis

Basics: Context-free Grammars

Programs of programming languages can have arbitrary numbers of tokens, but only
finitely many Token-classes.
This is why we choose the set of Token-classes to be the finite alphabet of terminals T .
The nested structure of program components can be described elegantly via
context-free grammars...

Definition: Context-Free Grammar
A context-free grammar (CFG) is a
4-tuple G = (N,T , P , S) with:

N the set of nonterminals,
T the set of terminals,
P the set of productions or rules, and
S ∈ N the start symbol

5 / 55

Basics: Context-free Grammars

Programs of programming languages can have arbitrary numbers of tokens, but only
finitely many Token-classes.
This is why we choose the set of Token-classes to be the finite alphabet of terminals T .
The nested structure of program components can be described elegantly via
context-free grammars...

Definition: Context-Free Grammar
A context-free grammar (CFG) is a
4-tuple G = (N,T , P , S) with:

N the set of nonterminals,
T the set of terminals,
P the set of productions or rules, and
S ∈ N the start symbol

5 / 55

Noam Chomsky John Backus

Conventions

The rules of context-free grammars take the following form:

A→ α with A ∈ N , α ∈ (N ∪ T)∗

... for example:
S → aS b
S → ε

Specified language: {anbn | n ≥ 0}

Conventions:
In examples, we specify nonterminals and terminals in general implicitely:

nonterminals are: A,B,C, ..., 〈exp〉, 〈stmt〉, ...;
terminals are: a, b, c, ..., int, name, ...;

6 / 55

Conventions

The rules of context-free grammars take the following form:

A→ α with A ∈ N , α ∈ (N ∪ T)∗

... for example:
S → aS b
S → ε

Specified language: {anbn | n ≥ 0}

Conventions:
In examples, we specify nonterminals and terminals in general implicitely:

nonterminals are: A,B,C, ..., 〈exp〉, 〈stmt〉, ...;
terminals are: a, b, c, ..., int, name, ...;

6 / 55

Conventions

The rules of context-free grammars take the following form:

A→ α with A ∈ N , α ∈ (N ∪ T)∗

... for example:
S → aS b
S → ε

Specified language: {anbn | n ≥ 0}

Conventions:
In examples, we specify nonterminals and terminals in general implicitely:

nonterminals are: A,B,C, ..., 〈exp〉, 〈stmt〉, ...;
terminals are: a, b, c, ..., int, name, ...;

6 / 55

... a practical example:

S → 〈stmt〉
〈stmt〉 → 〈if〉 | 〈while〉 | 〈rexp〉;
〈if〉 → if (〈rexp〉) 〈stmt〉 else 〈stmt〉
〈while〉 → while (〈rexp〉) 〈stmt〉
〈rexp〉 → int | 〈lexp〉 | 〈lexp〉 = 〈rexp〉 | ...
〈lexp〉 → name | ...

More conventions:
For every nonterminal, we collect the right hand sides of rules and list them together.
The j-th rule for A can be identified via the pair (A, j)
(with j ≥ 0).

7 / 55

... a practical example:

S → 〈stmt〉
〈stmt〉 → 〈if〉 | 〈while〉 | 〈rexp〉;
〈if〉 → if (〈rexp〉) 〈stmt〉 else 〈stmt〉
〈while〉 → while (〈rexp〉) 〈stmt〉
〈rexp〉 → int | 〈lexp〉 | 〈lexp〉 = 〈rexp〉 | ...
〈lexp〉 → name | ...

More conventions:
For every nonterminal, we collect the right hand sides of rules and list them together.
The j-th rule for A can be identified via the pair (A, j)
(with j ≥ 0).

7 / 55

Pair of grammars:

E → E+E 0 | E∗E 1 | (E) 2 | name 3 | int 4

E → E+T 0 | T 1

T → T∗F 0 | F 1

F → (E) 0 | name 1 | int 2

Both grammars describe the same language

8 / 55

Pair of grammars:

E → E+E 0 | E∗E 1 | (E) 2 | name 3 | int 4

E → E+T 0 | T 1

T → T∗F 0 | F 1

F → (E) 0 | name 1 | int 2

Both grammars describe the same language

8 / 55

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E

→ E + T
→ T + T
→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T

→ T + T
→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T

→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T
→ T ∗ F + T

→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T
→ T ∗ F + T
→ T ∗ int + T

→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T
→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T

→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T
→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T

→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T
→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F

→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T
→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T
→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗

9 / 55

... for example:

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps α0 → . . . → αm is called derivation.

E → E + T
→ T + T
→ T ∗ F + T
→ T ∗ int + T
→ F ∗ int + T
→ name ∗ int + T
→ name ∗ int + F
→ name ∗ int + int

Definition
The rewriting relation→ is a relation on words over N ∪ T , with

α→ α′ iff α = α1 A α2 ∧ α′ = α1 β α2 for an A→ β ∈ P

The reflexive and transitive closure of → is denoted as: →∗
9 / 55

... for example:

Derivation

Remarks:
The relation → depends on the grammar
In each step of a derivation, we may choose:

∗ a spot, determining where we will rewrite.

∗ a rule, determining how we will rewrite.

The language, specified by G is:

L(G) = {w ∈ T ∗ | S →∗ w}

Attention:
The order, in which disjunct fragments are rewritten is not relevant.

10 / 55

Derivation

Remarks:
The relation → depends on the grammar
In each step of a derivation, we may choose:

∗ a spot, determining where we will rewrite.

∗ a rule, determining how we will rewrite.

The language, specified by G is:

L(G) = {w ∈ T ∗ | S →∗ w}

Attention:
The order, in which disjunct fragments are rewritten is not relevant.

10 / 55

Derivation Tree

Derivations of a symbol are represented as derivation trees:

... for example:

E → 0 E + T
→ 1 T + T
→ 0 T ∗ F + T
→ 2 T ∗ int + T
→ 1 F ∗ int + T
→ 1 name ∗ int + T
→ 1 name ∗ int + F
→ 2 name ∗ int + int

A derivation tree for A ∈ N :
inner nodes: rule applications

root: rule application for A
leaves: terminals or ε

The successors of (B, i) correspond to right hand sides of the rule
11 / 55

E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

Special Derivations

Attention:
In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or
rather rightmost) occurance of a nonterminal.

These are called leftmost (or rather rightmost) derivations and are denoted with the
index L (or R respectively).
Leftmost (or rightmost) derivations correspondt to a left-to-right (or right-to-left)
preorder-DFS-traversal of the derivation tree.
Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of
the derivation tree

12 / 55

Special Derivations

... for example:
E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

Leftmost derivation: (E, 0) (E, 1) (T , 0) (T , 1) (F , 1) (F , 2) (T , 1) (F , 2)
Rightmost derivation: (E, 0) (T , 1) (F , 2) (E, 1) (T , 0) (F , 2) (T , 1) (F , 1)
Reverse rightmost derivation: (F , 1) (T , 1) (F , 2) (T , 0) (E, 1) (F , 2) (T , 1) (E, 0)

13 / 55

Special Derivations

... for example:
E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

Leftmost derivation: (E, 0) (E, 1) (T , 0) (T , 1) (F , 1) (F , 2) (T , 1) (F , 2)

Rightmost derivation: (E, 0) (T , 1) (F , 2) (E, 1) (T , 0) (F , 2) (T , 1) (F , 1)
Reverse rightmost derivation: (F , 1) (T , 1) (F , 2) (T , 0) (E, 1) (F , 2) (T , 1) (E, 0)

13 / 55

Special Derivations

... for example:
E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

Leftmost derivation: (E, 0) (E, 1) (T , 0) (T , 1) (F , 1) (F , 2) (T , 1) (F , 2)
Rightmost derivation: (E, 0) (T , 1) (F , 2) (E, 1) (T , 0) (F , 2) (T , 1) (F , 1)

Reverse rightmost derivation: (F , 1) (T , 1) (F , 2) (T , 0) (E, 1) (F , 2) (T , 1) (E, 0)

13 / 55

Special Derivations

... for example:
E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

Leftmost derivation: (E, 0) (E, 1) (T , 0) (T , 1) (F , 1) (F , 2) (T , 1) (F , 2)
Rightmost derivation: (E, 0) (T , 1) (F , 2) (E, 1) (T , 0) (F , 2) (T , 1) (F , 1)
Reverse rightmost derivation: (F , 1) (T , 1) (F , 2) (T , 0) (E, 1) (F , 2) (T , 1) (E, 0)

13 / 55

Unique Grammars

The concatenation of leaves of a derivation tree t are often called yield(t) .

... for example:
E 0

+E 1

T 0

T 1

F 1

F 2

F 2

T 1

name

int

int∗

gives rise to the concatenation: name ∗ int + int .
14 / 55

Unique Grammars

Definition:
Grammar G is called unique, if for every w ∈ T ∗ there is maximally one derivation
tree t of S with yield(t) = w.

... in our example:

E → E+E 0 | E∗E 1 | (E) 2 | name 3 | int 4

E → E+T 0 | T 1

T → T∗F 0 | F 1

F → (E) 0 | name 1 | int 2

The first one is ambiguous, the second one is unique

15 / 55

Conclusion:

A derivation tree represents a possible hierarchical structure of a word.
For programming languages, only those grammars with a unique structure are of
interest.
Derivation trees are one-to-one corresponding with leftmost derivations as well as
(reverse) rightmost derivations.

Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax
tree.

16 / 55

Conclusion:

A derivation tree represents a possible hierarchical structure of a word.
For programming languages, only those grammars with a unique structure are of
interest.
Derivation trees are one-to-one corresponding with leftmost derivations as well as
(reverse) rightmost derivations.

Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax
tree.

16 / 55

Chapter 2:

Basics of Pushdown Automata

17 / 55

Syntactic Analysis

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

18 / 55

Example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

Conventions:
We do not differentiate between pushdown symbols and states
The rightmost / upper pushdown symbol represents the state
Every transition consumes / modifies the upper part of the pushdown

19 / 55

Example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

Conventions:
We do not differentiate between pushdown symbols and states
The rightmost / upper pushdown symbol represents the state
Every transition consumes / modifies the upper part of the pushdown

19 / 55

Definition: Pushdown Automaton
A pushdown automaton (PDA) is a tuple
M = (Q,T , δ, q0, F) with:

Q a finite set of states;
T an input alphabet;
q0 ∈ Q the start state;
F ⊆ Q the set of final states and
δ ⊆ Q+ × (T ∪ {ε})×Q∗ a finite set of transitions

We define computations of pushdown automata with the help of transitions; a particular
computation state (the current configuration) is a pair:

(γ,w) ∈ Q∗ × T ∗

consisting of the pushdown content and the remaining input.

20 / 55

Friedrich Bauer Klaus Samelson

Definition: Pushdown Automaton
A pushdown automaton (PDA) is a tuple
M = (Q,T , δ, q0, F) with:

Q a finite set of states;
T an input alphabet;
q0 ∈ Q the start state;
F ⊆ Q the set of final states and
δ ⊆ Q+ × (T ∪ {ε})×Q∗ a finite set of transitions

We define computations of pushdown automata with the help of transitions; a particular
computation state (the current configuration) is a pair:

(γ,w) ∈ Q∗ × T ∗

consisting of the pushdown content and the remaining input.

20 / 55

Friedrich Bauer Klaus Samelson

... for example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

(0 , a a a b b b) ` (1 1 , a a b b b)
` (1 1 1 , a b b b)
` (1 1 1 1 , b b b)
` (1 1 2 , b b)
` (1 2 , b)
` (2 , ε)

21 / 55

... for example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

(0 , a a a b b b)

` (1 1 , a a b b b)
` (1 1 1 , a b b b)
` (1 1 1 1 , b b b)
` (1 1 2 , b b)
` (1 2 , b)
` (2 , ε)

21 / 55

... for example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

(0 , a a a b b b) ` (1 1 , a a b b b)

` (1 1 1 , a b b b)
` (1 1 1 1 , b b b)
` (1 1 2 , b b)
` (1 2 , b)
` (2 , ε)

21 / 55

... for example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

(0 , a a a b b b) ` (1 1 , a a b b b)
` (1 1 1 , a b b b)

` (1 1 1 1 , b b b)
` (1 1 2 , b b)
` (1 2 , b)
` (2 , ε)

21 / 55

... for example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

(0 , a a a b b b) ` (1 1 , a a b b b)
` (1 1 1 , a b b b)
` (1 1 1 1 , b b b)

` (1 1 2 , b b)
` (1 2 , b)
` (2 , ε)

21 / 55

... for example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

(0 , a a a b b b) ` (1 1 , a a b b b)
` (1 1 1 , a b b b)
` (1 1 1 1 , b b b)
` (1 1 2 , b b)

` (1 2 , b)
` (2 , ε)

21 / 55

... for example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

(0 , a a a b b b) ` (1 1 , a a b b b)
` (1 1 1 , a b b b)
` (1 1 1 1 , b b b)
` (1 1 2 , b b)
` (1 2 , b)

` (2 , ε)

21 / 55

... for example:

States: 0, 1, 2
Start state: 0
Final states: 0, 2

0 a 11
1 a 11
11 b 2
12 b 2

(0 , a a a b b b) ` (1 1 , a a b b b)
` (1 1 1 , a b b b)
` (1 1 1 1 , b b b)
` (1 1 2 , b b)
` (1 2 , b)
` (2 , ε)

21 / 55

A computation step is characterized by the relation ` ⊆ (Q∗ × T ∗)2 with

(αγ, xw) ` (αγ′, w) for (γ, x, γ′) ∈ δ

Remarks:

The relation ` depends on the pushdown automaton M
The reflexive and transitive closure of ` is denoted by `∗

Then, the language accepted by M is

L(M) = {w ∈ T ∗ | ∃ f ∈ F : (q0, w)`∗ (f, ε)}

We accept with a final state together with empty input.

22 / 55

A computation step is characterized by the relation ` ⊆ (Q∗ × T ∗)2 with

(αγ, xw) ` (αγ′, w) for (γ, x, γ′) ∈ δ

Remarks:

The relation ` depends on the pushdown automaton M
The reflexive and transitive closure of ` is denoted by `∗

Then, the language accepted by M is

L(M) = {w ∈ T ∗ | ∃ f ∈ F : (q0, w)`∗ (f, ε)}

We accept with a final state together with empty input.

22 / 55

A computation step is characterized by the relation ` ⊆ (Q∗ × T ∗)2 with

(αγ, xw) ` (αγ′, w) for (γ, x, γ′) ∈ δ

Remarks:

The relation ` depends on the pushdown automaton M
The reflexive and transitive closure of ` is denoted by `∗

Then, the language accepted by M is

L(M) = {w ∈ T ∗ | ∃ f ∈ F : (q0, w)`∗ (f, ε)}

We accept with a final state together with empty input.

22 / 55

Definition: Deterministic Pushdown Automaton
The pushdown automaton M is deterministic, if every configuration has maximally one
successor configuration.

This is exactly the case if for distinct transitions (γ1, x, γ2) , (γ
′
1, x
′, γ′2) ∈ δ we can

assume:
Is γ1 a suffix of γ′1, then x 6= x′ ∧ x 6= ε 6= x′ is valid.

... for example:

0 a 11
1 a 11
11 b 2
12 b 2

... this obviously holds

23 / 55

Definition: Deterministic Pushdown Automaton
The pushdown automaton M is deterministic, if every configuration has maximally one
successor configuration.

This is exactly the case if for distinct transitions (γ1, x, γ2) , (γ
′
1, x
′, γ′2) ∈ δ we can

assume:
Is γ1 a suffix of γ′1, then x 6= x′ ∧ x 6= ε 6= x′ is valid.

... for example:

0 a 11
1 a 11
11 b 2
12 b 2

... this obviously holds

23 / 55

Pushdown Automata

Theorem:
For each context free grammar G = (N,T , P , S)
a pushdown automaton M with L(G) = L(M) can be built.

The theorem is so important for us, that we take a look at two constructions for automata,
motivated by both of the special derivations:

ML
G to build Leftmost derivations

MR
G to build reverse Rightmost derivations

24 / 55

M. Schützenberger A. Öttinger

Chapter 3:

Top-down Parsing

25 / 55

Syntactic Analysis

Item Pushdown Automaton

Construction: Item Pushdown Automaton ML
G

Reconstruct a Leftmost derivation.
Expand nonterminals using a rule.
Verify successively, that the chosen rule matches the input.

==⇒ The states are now Items (= rules with a bullet):

[A→α • β] , A→ αβ ∈ P

The bullet marks the spot, how far the rule is already processed

26 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

S

A B0 0

0

27 / 55

Item Pushdown Automaton – Example

Our example:

S → AB0 A → a0 B → b0

a b

0S

A B0 0

27 / 55

Item Pushdown Automaton – Example

We add another rule S′ → S $ for initialising the construction:

Start state: [S′→ • S $]
End state: [S′→S • $]
Transition relations:

[S′→ • S $] ε [S′→ • S $] [S→ • AB]
[S→ • AB] ε [S→ • AB] [A→ • a]
[A→ • a] a [A→ a •]
[S→ • AB] [A→ a •] ε [S→A • B]
[S→A • B] ε [S→A • B] [B→ • b]
[B→ • b] b [B→ b •]
[S→A • B] [B→ b •] ε [S→AB •]
[S′→ • S $] [S→AB •] ε [S′→S • $]

28 / 55

Item Pushdown Automaton

The item pushdown automaton ML
G has three kinds of transitions:

Expansions: ([A→α •B β], ε, [A→α •B β] [B→ • γ]) for
A → αB β, B→ γ ∈ P

Shifts: ([A→α • a β], a, [A→αa • β]) for A→αaβ ∈ P
Reduces: ([A→α •B β] [B→ γ•], ε, [A→αB • β]) for

A→αB β, B→ γ ∈ P

Items of the form: [A→α •] are also called complete
The item pushdown automaton shifts the bullet around the derivation tree ...

29 / 55

Item Pushdown Automaton

Discussion:

The expansions of a computation form a leftmost derivation
Unfortunately, the expansions are chosen nondeterministically

For proving correctness of the construction, we show that for every Item [A→α •B β]
the following holds:

([A→α •B β], w) `∗ ([A→αB • β], ε) iff B →∗ w

LL-Parsing is based on the item pushdown automaton and tries to make the
expansions deterministic ...

30 / 55

Item Pushdown Automaton

Example: S′ → S $ S → ε | aS b

The transitions of the according Item Pushdown Automaton:

0 [S′→ • S $] ε [S′→ • S $] [S→•]
1 [S′→ • S $] ε [S′→ • S $] [S→ • aS b]
2 [S→ • aS b] a [S→ a • S b]
3 [S→ a • S b] ε [S→ a • S b] [S→•]
4 [S→ a • S b] ε [S→ a • S b] [S→ • aS b]
5 [S→ a • S b] [S→•] ε [S→ aS • b]
6 [S→ a • S b] [S→ aS b•] ε [S→ aS • b]
7 [S→ aS • b] b [S→ aS b•]
8 [S′→ • S $] [S→•] ε [S′→S • $]
9 [S′→ • S $] [S→ aS b•] ε [S′→S • $]

Conflicts arise between the transitions (0, 1) and (3, 4), resp..

31 / 55

Item Pushdown Automaton

Example: S′ → S $ S → ε | aS b

The transitions of the according Item Pushdown Automaton:

0 [S′→ • S $] ε [S′→ • S $] [S→•]
1 [S′→ • S $] ε [S′→ • S $] [S→ • aS b]
2 [S→ • aS b] a [S→ a • S b]
3 [S→ a • S b] ε [S→ a • S b] [S→•]
4 [S→ a • S b] ε [S→ a • S b] [S→ • aS b]
5 [S→ a • S b] [S→•] ε [S→ aS • b]
6 [S→ a • S b] [S→ aS b•] ε [S→ aS • b]
7 [S→ aS • b] b [S→ aS b•]
8 [S′→ • S $] [S→•] ε [S′→S • $]
9 [S′→ • S $] [S→ aS b•] ε [S′→S • $]

Conflicts arise between the transitions (0, 1) and (3, 4), resp..

31 / 55

Topdown Parsing

Problem:
Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing
For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a lookup of the next input symbols.

32 / 55

Topdown Parsing

Problem:
Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing
For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a lookup of the next input symbols.

32 / 55

Topdown Parsing

Problem:
Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing
For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a lookup of the next input symbols.

32 / 55

Topdown Parsing

Problem:
Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing
For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a lookup of the next input symbols.

32 / 55

Structure of the LL(1)-Parser:

δ

M
Output

The parser accesses a frame of length 1 of the input;
it corresponds to an item pushdown automaton, essentially;
table M [q, w] contains the rule of choice.

33 / 55

Topdown Parsing

Idea:
Emanate from the item pushdown automaton
Consider the next input symbol to determine the appropriate rule for the next expansion
A grammar is called LL(1) if a unique choice is always possible

Definition:
A reduced grammar is called LL(1), if for each two distinct
rules A→α , A→α′ ∈ P and each derivation
S →∗L uAβ with u ∈ T ∗ the following is valid:

First1(αβ) ∩ First1(α
′ β) = ∅

34 / 55

Topdown Parsing

Idea:
Emanate from the item pushdown automaton
Consider the next input symbol to determine the appropriate rule for the next expansion
A grammar is called LL(1) if a unique choice is always possible

Definition:
A reduced grammar is called LL(1), if for each two distinct
rules A→α , A→α′ ∈ P and each derivation
S →∗L uAβ with u ∈ T ∗ the following is valid:

First1(αβ) ∩ First1(α
′ β) = ∅

34 / 55

Philip Lewis Richard Stearns

Topdown Parsing

Example 1:

S → if (E) S else S |
while (E) S |
E ;

E → id

is LL(1), since First1(E) = {id}

Example 2:

S → if (E) S else S |
if (E) S |
while (E) S |
E ;

E → id

... is not LL(k) for any k > 0.

35 / 55

Topdown Parsing

Example 1:

S → if (E) S else S |
while (E) S |
E ;

E → id

is LL(1), since First1(E) = {id}
Example 2:

S → if (E) S else S |
if (E) S |
while (E) S |
E ;

E → id

... is not LL(k) for any k > 0.
35 / 55

Lookahead Sets

Definition: First1-Sets
For a set L ⊆ T ∗ we define:

First1(L) = {ε | ε ∈ L} ∪ {u ∈ T | ∃ v ∈ T ∗ : uv ∈ L}

Example: S → ε | aS b
First1([[S]])
ε
a b
a a b b
a a a b b b
. . .

≡ the yield’s prefix of length 1

36 / 55

Lookahead Sets

Definition: First1-Sets
For a set L ⊆ T ∗ we define:

First1(L) = {ε | ε ∈ L} ∪ {u ∈ T | ∃ v ∈ T ∗ : uv ∈ L}

Example: S → ε | aS b
First1([[S]])
ε
a b
a a b b
a a a b b b
. . .

≡ the yield’s prefix of length 1
36 / 55

Lookahead Sets

Arithmetics:
First1(_) is distributive with union and concatenation:

First1(∅) = ∅
First1(L1 ∪ L2) = First1(L1) ∪ First1(L2)
First1(L1 · L2) = First1(First1(L1) · First1(L2))

:= First1(L1) �1 First1(L2)

�1 being 1− concatenation

Definition: 1-concatenation
Let L1, L2 ⊆ T ∪ {ε} with L1 6= ∅ 6= L2. Then:

L1 �1 L2 =

{
L1 if ε 6∈ L1

(L1\{ε}) ∪ L2 otherwise

If all rules of G are productive, then all sets First1(A) are non-empty.

37 / 55

Lookahead Sets

Arithmetics:
First1(_) is distributive with union and concatenation:

First1(∅) = ∅
First1(L1 ∪ L2) = First1(L1) ∪ First1(L2)
First1(L1 · L2) = First1(First1(L1) · First1(L2))

:= First1(L1) �1 First1(L2)

�1 being 1− concatenation

Definition: 1-concatenation
Let L1, L2 ⊆ T ∪ {ε} with L1 6= ∅ 6= L2. Then:

L1 �1 L2 =

{
L1 if ε 6∈ L1

(L1\{ε}) ∪ L2 otherwise

If all rules of G are productive, then all sets First1(A) are non-empty.
37 / 55

Lookahead Sets

For α ∈ (N ∪ T)∗ we are interested in the set:

First1(α) = First1({w ∈ T ∗ | α→∗ w})

Idea: Treat ε separately: First1(A) = F ε(A) ∪ {ε | A→∗ε}
Let empty(X) = true iff X→∗ ε .

We characterize the ε-free First1-sets with an inequality system:

F ε(a) = {a} if a ∈ T
F ε(A) ⊇ F ε(Xj) if A→X1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xj−1)

38 / 55

Lookahead Sets

For α ∈ (N ∪ T)∗ we are interested in the set:

First1(α) = First1({w ∈ T ∗ | α→∗ w})

Idea: Treat ε separately: First1(A) = F ε(A) ∪ {ε | A→∗ε}
Let empty(X) = true iff X→∗ ε .

F ε(X1 . . . Xm) = F ε(X1) ∪ . . . ∪ F ε(Xj) if ¬empty(Xj) ∧
∧j−1
i=1 empty(Xi)

We characterize the ε-free First1-sets with an inequality system:

F ε(a) = {a} if a ∈ T
F ε(A) ⊇ F ε(Xj) if A→X1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xj−1)

38 / 55

Lookahead Sets

For α ∈ (N ∪ T)∗ we are interested in the set:

First1(α) = First1({w ∈ T ∗ | α→∗ w})

Idea: Treat ε separately: First1(A) = F ε(A) ∪ {ε | A→∗ε}
Let empty(X) = true iff X→∗ ε .

F ε(X1 . . . Xm) =
⋃j
i=1 F ε(Xi) if ¬empty(Xj) ∧

∧j−1
i=1 empty(Xi)

We characterize the ε-free First1-sets with an inequality system:

F ε(a) = {a} if a ∈ T
F ε(A) ⊇ F ε(Xj) if A→X1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xj−1)

38 / 55

Lookahead Sets

For α ∈ (N ∪ T)∗ we are interested in the set:

First1(α) = First1({w ∈ T ∗ | α→∗ w})

Idea: Treat ε separately: First1(A) = F ε(A) ∪ {ε | A→∗ε}
Let empty(X) = true iff X→∗ ε .

F ε(X1 . . . Xm) =
⋃j
i=1 F ε(Xi) if ¬empty(Xj) ∧

∧j−1
i=1 empty(Xi)

We characterize the ε-free First1-sets with an inequality system:

F ε(a) = {a} if a ∈ T
F ε(A) ⊇ F ε(Xj) if A→X1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xj−1)

38 / 55

Lookahead Sets

for example...

E → E+T 0 | T 1

T → T ∗F 0 | F 1

F → (E) 0 | name 1 | int 2

with empty(E) = empty(T) = empty(F) = false

... we obtain:

F ε(S
′) ⊇ F ε(E) F ε(E) ⊇ F ε(E)

F ε(E) ⊇ F ε(T) F ε(T) ⊇ F ε(T)
F ε(T) ⊇ F ε(F) F ε(F) ⊇ { (, name, int}

39 / 55

Lookahead Sets

for example...

E → E+T 0 | T 1

T → T ∗F 0 | F 1

F → (E) 0 | name 1 | int 2

with empty(E) = empty(T) = empty(F) = false

... we obtain:

F ε(S
′) ⊇ F ε(E) F ε(E) ⊇ F ε(E)

F ε(E) ⊇ F ε(T) F ε(T) ⊇ F ε(T)
F ε(T) ⊇ F ε(F) F ε(F) ⊇ { (, name, int}

39 / 55

Fast Computation of Lookahead Sets

Observation:
The form of each inequality of these systems is:

x w y resp. x w d

for variables x, y und d ∈ D.
Such systems are called pure unification problems
Such problems can be solved in linear space/time.

for example: D = 2{a,b,c}

x0 ⊇ {a}
x1 ⊇ {b} x1 ⊇ x0 x1 ⊇ x3

x2 ⊇ {c} x2 ⊇ x1

x3 ⊇ {c} x3 ⊇ x2 x3 ⊇ x3

a b

c

c

0 1

3

2

40 / 55

Fast Computation of Lookahead Sets

a b

c

c

0 1

3

2

Proceeding:
Create the Variable Dependency Graph for the inequality system.

Whithin a Strongly Connected Component (→ Tarjan) all variables have the same value
Is there no ingoing edge for an SCC, its value is computed via the smallest upper
bound of all values within the SCC
In case of ingoing edges, their values are also to be considered for the upper bound

41 / 55

Frank DeRemer
& Tom Pennello

Fast Computation of Lookahead Sets

a b

c

c

0 1

3

2

Proceeding:
Create the Variable Dependency Graph for the inequality system.
Whithin a Strongly Connected Component (→ Tarjan) all variables have the same value

Is there no ingoing edge for an SCC, its value is computed via the smallest upper
bound of all values within the SCC
In case of ingoing edges, their values are also to be considered for the upper bound

41 / 55

Frank DeRemer
& Tom Pennello

Fast Computation of Lookahead Sets

a

b c

0 1

3

2

Proceeding:
Create the Variable Dependency Graph for the inequality system.
Whithin a Strongly Connected Component (→ Tarjan) all variables have the same value
Is there no ingoing edge for an SCC, its value is computed via the smallest upper
bound of all values within the SCC

In case of ingoing edges, their values are also to be considered for the upper bound

41 / 55

Frank DeRemer
& Tom Pennello

Fast Computation of Lookahead Sets

a

a b c

0 1

3

2

Proceeding:
Create the Variable Dependency Graph for the inequality system.
Whithin a Strongly Connected Component (→ Tarjan) all variables have the same value
Is there no ingoing edge for an SCC, its value is computed via the smallest upper
bound of all values within the SCC
In case of ingoing edges, their values are also to be considered for the upper bound

41 / 55

Frank DeRemer
& Tom Pennello

Fast Computation of Lookahead Sets

... for our example grammar:

First1 :

E T FS’

(, int, name

42 / 55

Item Pushdown Automaton as LL(1)-Parser

context is relevant too: S′ → S $ S → ε 0 | aS b 1

First1(input) $ a b

S ? ? ?

43 / 55

S′i0

A1i1

in

β

β1

β0

w ∈ First1()

S

?

Item Pushdown Automaton as LL(1)-Parser

context is relevant too: S′ → S $ S → ε 0 | aS b 1

First1(input) $ a b

S ? ? ?

43 / 55

γ

S′i0

A1i1

in

β

β1

β0

w ∈ First1()

S

aBb1

S′i0

A1i1

in

β

β0

w ∈ First1()

S

0 ε

β1

Item Pushdown Automaton as LL(1)-Parser

Inequality system for Follow1(B) = First1(β)�1 . . .�1 First1(β0)

Follow1(S) ⊇ {$}
Follow1(B) ⊇ F ε(Xj) if A→αBX1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xj−1)
Follow1(B) ⊇ Follow1(A) if A→αBX1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xm)

44 / 55

γ

S′i0

A1i1

in

Bi β

β1

β0

An

)w ∈ First1(

w ∈ First1(First1(γ)�1 First1(β)�1 . . .�1 First1(β0))
w ∈ First1(γ)�1 Follow1(B)

Item Pushdown Automaton as LL(1)-Parser

Inequality system for Follow1(B) = First1(β)�1 . . .�1 First1(β0)

Follow1(S) ⊇ {$}
Follow1(B) ⊇ F ε(Xj) if A→αBX1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xj−1)
Follow1(B) ⊇ Follow1(A) if A→αBX1 . . . Xm ∈ P , empty(X1) ∧ . . . ∧ empty(Xm)

44 / 55

γ

S′i0

A1i1

in

Bi β

β1

β0

An

)w ∈ First1(

w ∈ First1(First1(γ)�1 First1(β)�1 . . .�1 First1(β0))
w ∈ First1(γ)�1 Follow1(B)

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M [B, w] = i with B→ γ i if w ∈ First1(γ) �1 Follow1(B)

... for example: S′ → S $ S → ε 0 | aS b 1

First1(S) = {ε, a} Follow1(S) = {b, $}

S-rule 0 : First1(ε) �1 Follow1(S) = {b, $}
S-rule 1 : First1(aSb) �1 Follow1(S) = {a}

$ a b

S 0 1 0

45 / 55

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M [B, w] = i with B→ γ i if w ∈ First1(γ) �1 Follow1(B)

... for example: S′ → S $ S → ε 0 | aS b 1

First1(S) = {ε, a}

Follow1(S) = {b, $}

S-rule 0 : First1(ε) �1 Follow1(S) = {b, $}
S-rule 1 : First1(aSb) �1 Follow1(S) = {a}

$ a b

S 0 1 0

45 / 55

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M [B, w] = i with B→ γ i if w ∈ First1(γ) �1 Follow1(B)

... for example: S′ → S $ S → ε 0 | aS b 1

First1(S) = {ε, a} Follow1(S) = {b, $}

S-rule 0 : First1(ε) �1 Follow1(S) = {b, $}
S-rule 1 : First1(aSb) �1 Follow1(S) = {a}

$ a b

S 0 1 0

45 / 55

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M [B, w] = i with B→ γ i if w ∈ First1(γ) �1 Follow1(B)

... for example: S′ → S $ S → ε 0 | aS b 1

First1(S) = {ε, a} Follow1(S) = {b, $}

S-rule 0 : First1(ε) �1 Follow1(S) = {b, $}
S-rule 1 : First1(aSb) �1 Follow1(S) = {a}

$ a b

S 0 1 0

45 / 55

Item Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M [B, w] = i with B→ γ i if w ∈ First1(γ) �1 Follow1(B)

... for example: S′ → S $ S → ε 0 | aS b 1

First1(S) = {ε, a} Follow1(S) = {b, $}

S-rule 0 : First1(ε) �1 Follow1(S) = {b, $}
S-rule 1 : First1(aSb) �1 Follow1(S) = {a}

$ a b

S 0 1 0

45 / 55

Item Pushdown Automaton as LL(1)-Parser

For example: S′ → S $ S → ε 0 | aS b 1

The transitions of the according Item Pushdown Automaton:

0 [S′→ • S $] ε [S′→ • S $] [S→•]
1 [S′→ • S $] ε [S′→ • S $] [S→ • aS b]
2 [S→ • aS b] a [S→ a • S b]
3 [S→ a • S b] ε [S→ a • S b] [S→•]
4 [S→ a • S b] ε [S→ a • S b] [S→ • aS b]
5 [S→ a • S b] [S→•] ε [S→ aS • b]
6 [S→ a • S b] [S→ aS b•] ε [S→ aS • b]
7 [S→ aS • b] b [S→ aS b•]
8 [S′→ • S $] [S→•] ε [S′→S • $]
9 [S′→ • S $] [S→ aS b•] ε [S′→S • $]

Lookahead table:
$ a b

S 0 1 0

46 / 55

Left Recursion

Attention:
Many grammars are not LL(k) !

A reason for that is:

Definition
Grammar G is called left-recursive, if

A→+Aβ for an A ∈ N , β ∈ (T ∪N)∗

Example:
E → E+T 0 | T 1

T → T ∗F 0 | F 1

F → (E) 0 | name 1 | int 2

... is left-recursive

47 / 55

Left Recursion

Attention:
Many grammars are not LL(k) !

A reason for that is:

Definition
Grammar G is called left-recursive, if

A→+Aβ for an A ∈ N , β ∈ (T ∪N)∗

Example:
E → E+T 0 | T 1

T → T ∗F 0 | F 1

F → (E) 0 | name 1 | int 2

... is left-recursive
47 / 55

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:
Let wlog. A→Aβ |α ∈ P
and A be reachable from S

Assumption: G is LL(k)

⇒Firstk(αβ
n γ) ∩

Firstk(αβ
n+1 γ) = ∅

Case 1: β→∗ ε — Contradiction !!!
Case 2: β→∗ w 6= ε ==⇒ Firstk(αw

k γ) ∩ Firstk(αw
k+1 γ) 6= ∅

48 / 55

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:
Let wlog. A→Aβ |α ∈ P
and A be reachable from S

Assumption: G is LL(k)

⇒Firstk(αβ
n γ) ∩

Firstk(αβ
n+1 γ) = ∅

Case 1: β→∗ ε — Contradiction !!!
Case 2: β→∗ w 6= ε ==⇒ Firstk(αw

k γ) ∩ Firstk(αw
k+1 γ) 6= ∅

48 / 55

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:
Let wlog. A→Aβ |α ∈ P
and A be reachable from S

Assumption: G is LL(k)

⇒Firstk(αβ
n γ) ∩

Firstk(αβ
n+1 γ) = ∅

Case 1: β→∗ ε — Contradiction !!!
Case 2: β→∗ w 6= ε ==⇒ Firstk(αw

k γ) ∩ Firstk(αw
k+1 γ) 6= ∅

48 / 55

S

A

A

A β

n

Firstk(

βn γ

)

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:
Let wlog. A→Aβ |α ∈ P
and A be reachable from S

Assumption: G is LL(k)

⇒Firstk(αβ
n γ) ∩

Firstk(αβ
n+1 γ) = ∅

Case 1: β→∗ ε — Contradiction !!!
Case 2: β→∗ w 6= ε ==⇒ Firstk(αw

k γ) ∩ Firstk(αw
k+1 γ) 6= ∅

48 / 55

α

S

A

A

A β

n

Firstk(

βn γ

)

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:
Let wlog. A→Aβ |α ∈ P
and A be reachable from S

Assumption: G is LL(k)

⇒Firstk(αβ
n γ) ∩

Firstk(αβ
n+1 γ) = ∅

Case 1: β→∗ ε — Contradiction !!!
Case 2: β→∗ w 6= ε ==⇒ Firstk(αw

k γ) ∩ Firstk(αw
k+1 γ) 6= ∅

48 / 55

α

A

S

A

n

βn

A

βA

β

Firstk(

γ

)

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k.

Proof:
Let wlog. A→Aβ |α ∈ P
and A be reachable from S

Assumption: G is LL(k)

⇒Firstk(αβ
n γ) ∩

Firstk(αβ
n+1 γ) = ∅

Case 1: β→∗ ε — Contradiction !!!
Case 2: β→∗ w 6= ε ==⇒ Firstk(αw

k γ) ∩ Firstk(αw
k+1 γ) 6= ∅

48 / 55

Right-Regular Context-Free Parsing
Recurring scheme in programming languages: Lists of sth...
S → b | S a b
Alternative idea: Regular Expressions
S → (b a)∗ b

Definition: Right-Regular Context-Free Grammar
A right-regular context-free grammar (RR-CFG) is a
4-tuple G = (N,T , P , S) with:

N the set of nonterminals,
T the set of terminals,
P the set of rules with regular expressions of symbols as rhs,
S ∈ N the start symbol

Example: Arithmetic Expressions
S → E
E → T (+T)∗

T → F (∗F)∗

F → (E) | name | int

49 / 55

Right-Regular Context-Free Parsing
Recurring scheme in programming languages: Lists of sth...
S → b | S a b
Alternative idea: Regular Expressions
S → (b a)∗ b

Definition: Right-Regular Context-Free Grammar
A right-regular context-free grammar (RR-CFG) is a
4-tuple G = (N,T , P , S) with:

N the set of nonterminals,
T the set of terminals,
P the set of rules with regular expressions of symbols as rhs,
S ∈ N the start symbol

Example: Arithmetic Expressions
S → E
E → T (+T)∗

T → F (∗F)∗

F → (E) | name | int

49 / 55

Right-Regular Context-Free Parsing
Recurring scheme in programming languages: Lists of sth...
S → b | S a b
Alternative idea: Regular Expressions
S → (b a)∗ b

Definition: Right-Regular Context-Free Grammar
A right-regular context-free grammar (RR-CFG) is a
4-tuple G = (N,T , P , S) with:

N the set of nonterminals,
T the set of terminals,
P the set of rules with regular expressions of symbols as rhs,
S ∈ N the start symbol

Example: Arithmetic Expressions
S → E
E → T (+T)∗

T → F (∗F)∗

F → (E) | name | int
49 / 55

Idea 1: Rewrite the rules from G to 〈G〉:

A → 〈α〉 if A→ α ∈ P
〈α〉 → α if α ∈ N ∪ T
〈ε〉 → ε
〈α∗〉 → ε | 〈α〉〈α∗〉 if α ∈ RegexT,N
〈α1 . . . αn〉 → 〈α1〉 . . . 〈αn〉 if αi ∈ RegexT,N
〈α1 | . . . | αn〉 → 〈α1〉 | . . . | 〈αn〉 if αi ∈ RegexT,N

. . . and generate the according LL(k)-Parser ML
〈G〉

Example: Arithmetic Expressions cont’d
S → E
E →
T → F (∗F)∗

F → (E) | name | int
〈T (+T)∗〉 → T 〈(+T)∗〉
〈(+T)∗〉 → ε | 〈 +T 〉〈(+T)∗〉
〈 +T 〉 → +T
〈F (∗F)∗〉 → F 〈(∗F)∗〉
〈(∗F)∗〉 → ε | 〈∗F 〉 〈(∗F)∗〉
〈 ∗F 〉 → ∗F

50 / 55

Idea 1: Rewrite the rules from G to 〈G〉:

A → 〈α〉 if A→ α ∈ P
〈α〉 → α if α ∈ N ∪ T
〈ε〉 → ε
〈α∗〉 → ε | 〈α〉〈α∗〉 if α ∈ RegexT,N
〈α1 . . . αn〉 → 〈α1〉 . . . 〈αn〉 if αi ∈ RegexT,N
〈α1 | . . . | αn〉 → 〈α1〉 | . . . | 〈αn〉 if αi ∈ RegexT,N

. . . and generate the according LL(k)-Parser ML
〈G〉

Example: Arithmetic Expressions cont’d
S → E
E → T (+T)∗

T → F (∗F)∗

F → (E) | name | int

〈T (+T)∗〉 → T 〈(+T)∗〉
〈(+T)∗〉 → ε | 〈 +T 〉〈(+T)∗〉
〈 +T 〉 → +T
〈F (∗F)∗〉 → F 〈(∗F)∗〉
〈(∗F)∗〉 → ε | 〈∗F 〉 〈(∗F)∗〉
〈 ∗F 〉 → ∗F

50 / 55

Idea 1: Rewrite the rules from G to 〈G〉:

A → 〈α〉 if A→ α ∈ P
〈α〉 → α if α ∈ N ∪ T
〈ε〉 → ε
〈α∗〉 → ε | 〈α〉〈α∗〉 if α ∈ RegexT,N
〈α1 . . . αn〉 → 〈α1〉 . . . 〈αn〉 if αi ∈ RegexT,N
〈α1 | . . . | αn〉 → 〈α1〉 | . . . | 〈αn〉 if αi ∈ RegexT,N

. . . and generate the according LL(k)-Parser ML
〈G〉

Example: Arithmetic Expressions cont’d
S → E
E → 〈T (+T)∗〉
T → F (∗F)∗

F → (E) | name | int
〈T (+T)∗〉 → T 〈(+T)∗〉

〈(+T)∗〉 → ε | 〈 +T 〉〈(+T)∗〉
〈 +T 〉 → +T
〈F (∗F)∗〉 → F 〈(∗F)∗〉
〈(∗F)∗〉 → ε | 〈∗F 〉 〈(∗F)∗〉
〈 ∗F 〉 → ∗F

50 / 55

Idea 1: Rewrite the rules from G to 〈G〉:

A → 〈α〉 if A→ α ∈ P
〈α〉 → α if α ∈ N ∪ T
〈ε〉 → ε
〈α∗〉 → ε | 〈α〉〈α∗〉 if α ∈ RegexT,N
〈α1 . . . αn〉 → 〈α1〉 . . . 〈αn〉 if αi ∈ RegexT,N
〈α1 | . . . | αn〉 → 〈α1〉 | . . . | 〈αn〉 if αi ∈ RegexT,N

. . . and generate the according LL(k)-Parser ML
〈G〉

Example: Arithmetic Expressions cont’d
S → E
E → 〈T (+T)∗〉
T → F (∗F)∗

F → (E) | name | int
〈T (+T)∗〉 → T 〈(+T)∗〉
〈(+T)∗〉 → ε | 〈 +T 〉〈(+T)∗〉

〈 +T 〉 → +T
〈F (∗F)∗〉 → F 〈(∗F)∗〉
〈(∗F)∗〉 → ε | 〈∗F 〉 〈(∗F)∗〉
〈 ∗F 〉 → ∗F

50 / 55

Idea 1: Rewrite the rules from G to 〈G〉:

A → 〈α〉 if A→ α ∈ P
〈α〉 → α if α ∈ N ∪ T
〈ε〉 → ε
〈α∗〉 → ε | 〈α〉〈α∗〉 if α ∈ RegexT,N
〈α1 . . . αn〉 → 〈α1〉 . . . 〈αn〉 if αi ∈ RegexT,N
〈α1 | . . . | αn〉 → 〈α1〉 | . . . | 〈αn〉 if αi ∈ RegexT,N

. . . and generate the according LL(k)-Parser ML
〈G〉

Example: Arithmetic Expressions cont’d
S → E
E → 〈T (+T)∗〉
T → F (∗F)∗

F → (E) | name | int
〈T (+T)∗〉 → T 〈(+T)∗〉
〈(+T)∗〉 → ε | 〈 +T 〉〈(+T)∗〉
〈 +T 〉 → +T

〈F (∗F)∗〉 → F 〈(∗F)∗〉
〈(∗F)∗〉 → ε | 〈∗F 〉 〈(∗F)∗〉
〈 ∗F 〉 → ∗F

50 / 55

Idea 1: Rewrite the rules from G to 〈G〉:

A → 〈α〉 if A→ α ∈ P
〈α〉 → α if α ∈ N ∪ T
〈ε〉 → ε
〈α∗〉 → ε | 〈α〉〈α∗〉 if α ∈ RegexT,N
〈α1 . . . αn〉 → 〈α1〉 . . . 〈αn〉 if αi ∈ RegexT,N
〈α1 | . . . | αn〉 → 〈α1〉 | . . . | 〈αn〉 if αi ∈ RegexT,N

. . . and generate the according LL(k)-Parser ML
〈G〉

Example: Arithmetic Expressions cont’d
S → E
E → 〈T (+T)∗〉
T → 〈F (∗F)∗〉
F → (E) | name | int
〈T (+T)∗〉 → T 〈(+T)∗〉
〈(+T)∗〉 → ε | 〈 +T 〉〈(+T)∗〉
〈 +T 〉 → +T

〈F (∗F)∗〉 → F 〈(∗F)∗〉
〈(∗F)∗〉 → ε | 〈∗F 〉 〈(∗F)∗〉
〈 ∗F 〉 → ∗F

50 / 55

Idea 1: Rewrite the rules from G to 〈G〉:

A → 〈α〉 if A→ α ∈ P
〈α〉 → α if α ∈ N ∪ T
〈ε〉 → ε
〈α∗〉 → ε | 〈α〉〈α∗〉 if α ∈ RegexT,N
〈α1 . . . αn〉 → 〈α1〉 . . . 〈αn〉 if αi ∈ RegexT,N
〈α1 | . . . | αn〉 → 〈α1〉 | . . . | 〈αn〉 if αi ∈ RegexT,N

. . . and generate the according LL(k)-Parser ML
〈G〉

Example: Arithmetic Expressions cont’d
S → E
E → 〈T (+T)∗〉
T → 〈F (∗F)∗〉
F → (E) | name | int
〈T (+T)∗〉 → T 〈(+T)∗〉
〈(+T)∗〉 → ε | 〈 +T 〉〈(+T)∗〉
〈 +T 〉 → +T
〈F (∗F)∗〉 → F 〈(∗F)∗〉
〈(∗F)∗〉 → ε | 〈∗F 〉 〈(∗F)∗〉
〈 ∗F 〉 → ∗F 50 / 55

Definition:
An RR−CFG G is called RLL(1),
if the corresponding CFG 〈G〉 is an LL(1) grammar.

Discussion
directly yields the table driven parser ML

〈G〉 for RLL(1) grammars
however: mapping regular expressions to recursive productions unnessessarily strains
the stack
→ instead directly construct automaton in the style of Berry-Sethi

51 / 55

Reinhold Heckmann

Idea 2: Recursive Descent RLL Parsers:

Recursive descent RLL(1)-parsers are an alternative to table-driven parsers; apart from
the usual function scan(), we generate a program frame with the lookahead function
expect()and the main parsing method parse():

int next;
void expect(Set E){

if ({ε, next} ∩ E = ∅){
cerr << ”Expected” << E << ”found” << next;
exit(0);

}
return ;

}
void parse(){

next = scan();
expect(First1(S)) ;
S();
expect({EOF}) ;

}
52 / 55

Idea 2: Recursive Descent RLL Parsers:

For each A→ α ∈ P , we introduce:

void A(){
generate(α)

}

with the meta-program generate being defined by structural decomposition of α:

generate(r1 . . . rk) = generate(r1)
expect(First1(r2)) ;
generate(r2)
...
expect(First1(rk)) ;
generate(rk)

generate(ε) = ;
generate(a) = next = scan();
generate(A) = A();

53 / 55

Idea 2: Recursive Descent RLL Parsers:

generate(r∗) = while (next ∈ Fε(r)) {
generate(r)
}

generate(r1 | . . . | rk) = switch(next) {
labels(First1(r1)) generate(r1) break ;
...
labels(First1(rk)) generate(rk) break ;
}

labels({α1, . . . , αm}) = label(α1): . . . label(αm):
label(α) = case α
label(ε) = default

54 / 55

Topdown-Parsing

Discussion
A practical implementation of an RLL(1)-parser via recursive descent is a
straight-forward idea
However, only a subset of the deterministic contextfree languages can be parsed this
way.
As soon as First1(_) sets are not disjoint any more,

Solution 1: For many accessibly written grammars, the alternation between right hand sides happens
too early. Keeping the common prefixes of right hand sides joined and introducing a new production
for the actual diverging sentence forms often helps.
Solution 2: Introduce ranked grammars, and decide conflicting lookahead always in favour of the
higher ranked alternative
→ relation to LL parsing not so clear any more
→ not so clear for _∗ operator how to decide
Solution 3: Going from LL(1) to LL(k)
The size of the occuring sets is rapidly increasing with larger k
Unfortunately, even LL(k) parsers are not sufficient to accept all deterministic contextfree
languages. (regular lookahead→ LL(∗))

In practical systems, this often motivates the implementation of k = 1 only ...

55 / 55

Topdown-Parsing

Discussion
A practical implementation of an RLL(1)-parser via recursive descent is a
straight-forward idea
However, only a subset of the deterministic contextfree languages can be parsed this
way.
As soon as First1(_) sets are not disjoint any more,

Solution 1: For many accessibly written grammars, the alternation between right hand sides happens
too early. Keeping the common prefixes of right hand sides joined and introducing a new production
for the actual diverging sentence forms often helps.
Solution 2: Introduce ranked grammars, and decide conflicting lookahead always in favour of the
higher ranked alternative
→ relation to LL parsing not so clear any more
→ not so clear for _∗ operator how to decide
Solution 3: Going from LL(1) to LL(k)
The size of the occuring sets is rapidly increasing with larger k
Unfortunately, even LL(k) parsers are not sufficient to accept all deterministic contextfree
languages. (regular lookahead→ LL(∗))

In practical systems, this often motivates the implementation of k = 1 only ...
55 / 55

	Syntactic Analysis
	Basics of Contextfree Grammars
	Basics of Pushdown Automata
	Top-down Parsing
	Item Pushdown Automaton
	LL(1) Parser
	Lookahead
	Right-Regular Context-Free Grammars

