Topic:

Syntactic Analysis

Syntactic Analysis

Token-Stream ——>| Parser |—> Syntaxtree

@ Syntactic analysis tries to integrate Tokens into larger program units.

2/55

Syntactic Analysis

Token-Stream ——>| Parser |—> Syntaxtree

@ Syntactic analysis tries to integrate Tokens into larger program units.

@ Such units may possibly be:

— Expressions;
Statements;
Conditional branches;
loops; ...

AN

2/55

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

Specification

Generator

Parser

3/55

Discussion:

In general, parsers are not developed by hand, but generated from a specification:

E—E{op}E Generator

Specification of the hierarchical structure: contextfree grammars
Generated implementation: Pushdown automata + X

3/55

Syntactic Analysis

Chapter 1:

Basics of Contextfree Grammars

4/55

Basics: Context-free Grammars

@ Programs of programming languages can have arbitrary numbers of tokens, but only
finitely many Token-classes.

@ This is why we choose the set of Token-classes to be the finite alphabet of terminals 7.

@ The nested structure of program components can be described elegantly via
context-free grammars...

5/55

Basics: Context-free Grammars

@ Programs of programming languages can have arbitrary numbers of tokens, but only
finitely many Token-classes.

@ This is why we choose the set of Token-classes to be the finite alphabet of terminals 7.

@ The nested structure of program components can be described elegantly via
context-free grammars...

Definition: Context-Free Grammar
A context-free grammar (CFG) is a
4-tuple G = (N, T, P, S) with:

@ N the set of nonterminals, Noam Chomsky John Backus

@ T the set of terminals,

@ P the set of productions or rules, and

@ S € N the start symbol

5/55

Conventions

The rules of context-free grammars take the following form:

A—a with AeN, ae (NUT)"

6/55

Conventions

The rules of context-free grammars take the following form:
A—a with AeN, ae (NUT)"
... for example:

S — aSb
S — €

Specified language: {a™b™ | n >0}

6/55

Conventions

The rules of context-free grammars take the following form:

A—a with AeN, ae (NUT)"

... for example:
S — aSb
S — €

Specified language: {a™b™ | n >0}

Conventions:

In examples, we specify nonterminals and terminals in general implicitely:
@ nonterminals are: A, B,C, ..., (exp), (stmt), ...;
@ terminals are: a,b,c,...,int,name, ...;

6/55

... a practical example:

— (stmt)
(stmt) — (if) | (while) | (rexp);
(if) — if ((rexp)) (stmt) else (stmt)
(while) — while ((rexp)) (stmt)
(rexp) — int | (lexp) | (lexp) = (rexp) | ...
(lexp) — name | ..

7/55

.. a practical example:

— (stmt)
(stmt> — (if) | (while) | (rexp);
(if) — if ((rexp)) (stmt) else (stmt)
(while) — while ((rexp)) (stmt)
(rexp) — int | (lexp) | (lexp) = (rexp) |
(lexp) — name |

More conventions:
@ For every nonterminal, we collect the right hand sides of rules and list them together.

@ The j-thrulefor A can be identified via the pair (A4, /)
(with j > 0).

7/55

Pair of grammars:

|E — E+E | ExE | (E) | name [int
E — E4T | T
T = T«xF | F
F — (E) | name | int

Both grammars describe the same language

8/55

Pair of grammars:

| — E+E" | ExE' | (E)” | name’ | int®
E — EBE+TY | T

T — T+F° | F!

F — (E)% | name' | int?

Both grammars describe the same language

8/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — an, is called derivation.

E
... for example:

9/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — an, is called derivation.

E — E+4+T
... for example:

9/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — an, is called derivation.

E —

... for example: —

elles

+T
+T

9/55

Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — an, is called derivation.

E
... for example:

L1
NN |

+ T
+ T
* '+ T

9/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ao — ...

... for example:

E

—
—
—
_>

— aun is called derivation.

E+T
Tr+T
TxF+T
Txint+ T

9/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — an, is called derivation.

E — E+4+T
... for example: - T'+T
— T*xF+T
— T xint+ T
— Fxint+ T

9/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — an, is called derivation.

E E+T
T+T
TxF+T
Txint+ T
Fxint4+ T
name % int + 7’

... for example:

A A AN

9/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — an, is called derivation.

E E+T
Tr+T
TxF+T
Txint+ T
Fxint4+ T
name % int + 7’
name * int + /'

... for example:

L4l ldidd

9/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — an, is called derivation.

E E+T
T+T
TxF+T
Txint+ T
Fxint4+ T
name % int + 7’
name * int + /'
name * int + int

... for example:

A A A A

9/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ag — ... — a,y, is called derivation.

E E+T
T+T
TxEF+T
Txint+ T
Fxint4+ T
name % int + 7’
name * int + /'
name * int + int

... for example:

A A A A

Definition
The rewriting relation — is a relation on words over N U T, with

a—ad iff a=a1Aaz AN o =a1Baz foran A - BeEP

9/55

Derivation

Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — an, is called derivation.

E E+T
T+T
TxF+T
Txint+ T
Fxint4+ T
name % int + 7’
name * int + /'
name * int + int

... for example:

A A A A

Definition
The rewriting relation — is a relation on words over N U T, with

a—ad iff a=a1Aaz AN o =01 Baz foran A - BeEP

The reflexive and transitive closure of — is denoted as: —*
9/55

Derivation

Remarks:
@ Therelation — depends on the grammar
@ In each step of a derivation, we may choose:
* aspot, determining where we will rewrite.
x arule, determining how we will rewrite.
@ The language, specified by G is:

LG)={weT"|S—=" w}

10/55

Derivation

Remarks:
@ Therelation — depends on the grammar
@ In each step of a derivation, we may choose:
* aspot, determining where we will rewrite.
x arule, determining how we will rewrite.
@ The language, specified by G is:

LG)={weT"|S—=" w}

Attention:

The order, in which disjunct fragments are rewritten is not relevant.

10/55

Derivation Tree

Derivations of a symbol are represented as derivation trees:

... for example: E|0

L LE+T

T+T

T+« F+T

T xint+ T
Fxint+ T
name x int + 71’
name * int + F

name * int + int E

N = = =N O = O

R A A

A derivation tree for A € N: @
inner nodes: rule applications
root: rule application for A
leaves: terminals or e
The successors of (B,i) correspond to right hand sides of the rule

11/55

Special Derivations

Attention:

In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or
rather rightmost) occurance of a nonterminal.

@ These are called leftmost (or rather rightmost) derivations and are denoted with the
index L (or R respectively).

@ Leftmost (or rightmost) derivations correspondt to a left-to-right (or right-to-left)
preorder-DFS-traversal of the derivation tree.

@ Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of
the derivation tree

12/55

Special Derivations

... for example: =0
B[] [9 [T

13/55

Special Derivations

... for example:

Leftmost derivation:

(E,0) (E,1)(T,0) (T,1)(F,1) (F,2) (T,1) (F,2)

13/55

Special Derivations

... for example:

Leftmost derivation:
Rightmost derivation:

13/55

Special Derivations

... for example:

Leftmost derivation:
Rightmost derivation:

Reverse rightmost derivation:

(£,0) (£,1) (T,0) (T, 1) (£, 1) (F,2) (T, 1) (£, 2)
(E,0) (T, 1) (F,2) (E,1) (T,0) (F,2) (T, 1) (F, 1)
(£, 1) (7, 1) (£,2) (T,0) (£, 1) (F,2) (T, 1) (£, 0)

13/55

Unique Grammars

The concatenation of leaves of a derivation tree ¢ are often called vyield(t) .

... for example:

i

gives rise to the concatenation: name * int + int.

14/55

Unique Grammars

Definition:

Grammar G s called unique, if for every w € T* there is maximally one derivation
tree ¢ of S with yield(t) = w.

... in our example:

|E — E+E" | ExE' | (E)? | name’ [int® |
E — E+TY | T'

T — T+F° | F!

F — (E)Y | name' | int?

The first one is ambiguous, the second one is unique

15/55

Conclusion:

@ A derivation tree represents a possible hierarchical structure of a word.

@ For programming languages, only those grammars with a unique structure are of
interest.

@ Derivation trees are one-to-one corresponding with leftmost derivations as well as
(reverse) rightmost derivations.

16/55

Conclusion:

@ A derivation tree represents a possible hierarchical structure of a word.

@ For programming languages, only those grammars with a unique structure are of
interest.

@ Derivation trees are one-to-one corresponding with leftmost derivations as well as
(reverse) rightmost derivations.

@ Leftmost derivations correspond to a top-down reconstruction of the syntax tree.

@ Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax
tree.

16/55

Syntactic Analysis

Chapter 2:
Basics of Pushdown Automata

17/55

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

18/55

Example:

States: 0,1,2 T a ﬁ
Start state: 0 = ‘; 5
Final states: 0,2

1216 | 2

19/55

Example:

States: 0,1,2 a|ll
1 |a|ll

Start state: 0 11513

Final : 2

inal states: 0, AR

Conventions:
@ We do not differentiate between pushdown symbols and states
@ The rightmost / upper pushdown symbol represents the state
@ Every transition consumes / modifies the upper part of the pushdown

19/55

Definition: Pushdown Automaton

A pushdown automaton (PDA) is a tuple
M= (Q,T,0,qo, F) with: :
@) afinite set of states; e Kis Saoten
@ T an input alphabet;
@ qo € @ the start state;
@ F'C () the set of final states and
00 C Q" x(Tu{e}) x Q" afinite set of transitions

20/55

Definition: Pushdown Automaton
A pushdown automaton (PDA) is a tuple
M= (Q,T,0,qo, F) with: :
@) afinite set of states; e Kis Saoten
@ T an input alphabet;
@ qo € @ the start state;
@ F'C () the set of final states and
00 C Q" x(Tu{e}) x Q" afinite set of transitions

We define computations of pushdown automata with the help of transitions; a particular
computation state (the current configuration) is a pair:

(v,w) € Q" xT"

consisting of the pushdown content and the remaining input.

20/55

... for example:

States: 0,1,2 (1) ¢
Start state: 0 = Z 5
Final states: 0,2

12161 2

21/55

.. for example:

States: 0,1,2 (1) ¢
Start state: 0 = Z 5
Final states: 0,2

12161 2

(0, aaabbdbd)

21/55

.. for example:

States: 0,1,2 (1) ¢
Start state: 0 = Z 5
Final states: 0,2

12161 2

(0, aaabbd) F (11, aabbd)

21/55

.. for example:

States: 0,1,2 (1) ¢
Start state: 0 = Z 5
Final states: 0,2

121 b 2

(0, aaabbd) F (11, aabbd)
- (111, abbb)

21/55

.. for example:

States: 0,1,2 (1) e
Start state: 0 11 Z 5
Final states: 0,2
1210 2
(0, aaabbd) (11, aabbd)

F
- (111, abbb)
F (1111, bbb)

21/55

.. for example:

States: 0,1,2 (1) ¢

Start state: 0 a

Final states: 0,2 1162
121 b 2

(0, aaabbd) F (11, aabbd)

- (111, abbb)
- (1111, bbb)
(112, bb)

21/55

.. for example:

States: 0,1,2 (1) ¢

Start state: 0 a

Final states: 0,2 1162
121 b 2

(0, aaabbd) F (11, aabbd)

- (111, abbb)
- (1111, bbb)
(112, bb)
- (12, b)

21/55

.. for example:

States: 0,1,2 (1) ¢

Start state: 0 a

Final states: 0,2 1115 2
121 b 2

(0, aaabbd) F (11, aabbd)

- (111, abbb)
- (1111, bbb)
- (112, bb)
- (12, b)
- (2, €

21/55

A computation step is characterized by the relation - C (Q™ x T"‘)2 with

(v, zw) - (ay,w) for (v,2,79") €0

22/55

A computation step is characterized by the relation - C (Q™ x T”‘)2 with

(v, zw) - (ay,w) for (v,2,79") €0

Remarks:

@ The relation - depends on the pushdown automaton M
@ The reflexive and transitive closure of - is denoted by -~
@ Then, the language accepted by M is

LM)={weT" |IfeF: (q,w)-"(f,e)}

22/55

A computation step is characterized by the relation - C (Q™ x T”‘)2 with

(v, zw) - (ay,w) for (v,2,79") €0

Remarks:

@ The relation - depends on the pushdown automaton M
@ The reflexive and transitive closure of - is denoted by -~
@ Then, the language accepted by M is

LM)={weT" |IfeF: (q,w)-"(f,e)}

We accept with a final state together with empty input.

22/55

Definition: Deterministic Pushdown Automaton
The pushdown automaton A/ is deterministic, if every configuration has maximally one
successor configuration.

This is exactly the case if for distinct transitions (71, x,72), (71,2’,74) € & we can

assume:
Is v, a suffix of 41, then = # 2’ A x # e # 2’ is valid.

23/55

Definition: Deterministic Pushdown Automaton

The pushdown automaton A/ is deterministic, if every configuration has maximally one
successor configuration.

This is exactly the case if for distinct transitions (71, x,72), (71,2’,74) € & we can
assume:
Is v, a suffix of 41, then = # 2’ A x # e # 2’ is valid.

... for example:
a |11
1]alll
mlis] 2
2162

... this obviously holds

23/55

Pushdown Automata

Theorem:
For each context free grammar G = (N, T, P, S) J =
a pushdown automaton 1/ with £(G) = £()M) can be built. W Setizenperger A Stinaer

The theorem is so important for us, that we take a look at two constructions for automata,
motivated by both of the special derivations:

@ ME to build Leftmost derivations
@ MX to build reverse Rightmost derivations

24/55

Syntactic Analysis

Chapter 3:
Top-down Parsing

25/55

ltem Pushdown Automaton

Construction: Item Pushdown Automaton M &

@ Reconstruct a Leftmost derivation.

@ Expand nonterminals using a rule.

@ Verify successively, that the chosen rule matches the input.
—— The states are now ltems (= rules with a bullet):

[A—aef], A—aff € P

The bullet marks the spot, how far the rule is already processed

26/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

Our example:

27/55

ltem Pushdown Automaton — Example

We add anotherrule S — S $ for initialising the construction:

Start state: [S"— o S §]
End state: [S"—S e §
Transition relations:

[S"— e S §] €| [S"— o S$[S— e AB]
[S— e AB]| e|[S— o AB][A— e q]
[A— eaq] al|[A—ae

[S— e AB|[A—ase] €| [S— A e B

[S— A e B] €| [S—Ae B|[B— el
EEXY) b [B > bel

[S— A e B|[B—be] €| [S—ABe]

[S"— o S$][S—ABe] | e |[S =S e §

28/55

ltem Pushdown Automaton

The item pushdown automaton A/% has three kinds of transitions:

Expansions: ([A—aeBf,¢,[A—aeBf|[B— e]) for
A— aBfp, By € P

Shifts: ([A—-aeapfl,a,[A—aaep]) for A—aaB € P

Reduces: ([A—aeBpj][B—~e],6,|[A—aBef]) for
A—aBp, B—~v € P

Items of the form: [A— «ae] are also called complete
The item pushdown automaton shifts the bullet around the derivation tree ...

29/55

ltem Pushdown Automaton

Discussion:

@ The expansions of a computation form a leftmost derivation
@ Unfortunately, the expansions are chosen nondeterministically

@ For proving correctness of the construction, we show that for every ltem [A — «a e B]
the following holds:

([A—-aeBB]l, w) " ([A—~aBef],e¢) iff B —="w

@ LL-Parsing is based on the item pushdown automaton and tries to make the
expansions deterministic ...

30/55

ltem Pushdown Automaton

Example:

S —S$ S—elaSh

The transitions of the according ltem Pushdown Automaton:

0 [b—>ob$] e[S~ oS §|[S— e
1[[S"— S § € [S’%oS$][S%OaSb]
2| [S— eaSY] a|[S—aeSD

3| [S—aeSh €| [S—aeSb[S— e

41 [S—aeSb e[[S—aeSH[S— eaS]
5([S—aeSb[S— e €| [S—aSebd
6|[S—aeSb[S—aSbe]|e|[S—aSebd

7T [S—aSeb b | [S—asSbe]

8 [b—>oS$][o] e|[S"—>Se §

9115 $][S—aSbe] | e|[S—Se §

31/55

ltem Pushdown Automaton

Example: S —-S$ S—e|aSh

The transitions of the according ltem Pushdown Automaton:

0 [b—>ob$] e[S~ oS §|[S— e
1[[S"— S § € [S’%oS$][S%OaSb]
2| [S— eaSY] a|[S—aeSD

3| [S—aeSh €| [S—aeSb[S— e

41 [S—aeSb e[[S—aeSH[S— eaS]
5([S—aeSb[S— e €| [S—aSebd
6|[S—aeSb[S—aSbe]|e|[S—aSebd

7T [S—aSeb b | [S—asSbe]

8 [b—>oS$][o] e|[S"—>Se §

919"~ eSS§|[S—aSbe] | €| [—Se §

Conflicts arise between the transitions (0, 1) and (3,

4), resp..

31/55

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

32/55

Topdown Parsing

Problem:
Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

ldea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

32/55

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

ldea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

ldea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

32/55

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

ldea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

ldea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a lookup of the next input symbols.

32/55

Structure of the LL(1)-Parser:

0 —{1T]

Output

A
Y

M

@ The parser accesses a frame of length 1 of the input;
@ it corresponds to an item pushdown automaton, essentially;
@ table Mg, w] contains the rule of choice.

33/55

Topdown Parsing

ldea:
@ Emanate from the item pushdown automaton
@ Consider the next input symbol to determine the appropriate rule for the next expansion
@ A grammar is called LL(1) if a unique choice is always possible

34/55

Topdown Parsing

ldea:
@ Emanate from the item pushdown automaton
@ Consider the next input symbol to determine the appropriate rule for the next expansion

@ A grammar is called LL(1) if a unique choice is always possible

Definition:
A reduced grammar is called LL(1), if for each two distinct
rules A—~a, A—o € P andeach derivation i -

S —7 uApB with uw € T* the following is valid:

First1(ae8) N First1(a’ B) =0

34/55

Topdown Parsing

Example 1:
S — if(FE)SelseS |
while (E) S |
E;
EF — id

is LL(1), since First;(E) = {id}

35/55

Topdown Parsing

Example 1:

S — if(FE)SelseS |
while (E) S |
E;

E — id

is LL(1), since First;(E) = {id}
Example 2:

S — if(E)SelseS |
if (£)S |
while (E) S |
E;

E — id

...isnot LL(k) for any k > 0.

35/55

Lookahead Sets

Definition: First;-Sets
For a set L C T"* we define:

Firsti(L) = {e|lee L} U{ueT|IveT" : weL}

Example: S—e€ | aSb

First1 ([S])
€

ab

aabbd
aaabbb

36/55

Lookahead Sets

Definition: First;-Sets
For a set L C T"* we define:

Firsti(L) = {e|e€ L} U{ueT|IveT" : welL}

Example: S—e€ | aSb

First1 ([S])
€

ab

aabbd
aaabbb

= the yield’s prefix of length 1
36/55

Lookahead Sets

Arithmetics:

First:1(_) is distributive with union and concatenation:
First1 (0) =0
Firstl(Ll U LQ) = FirStl(Ll) U First1(L2)
Firstl(Ll . L2) = Firstl(Firstl(Ll) . Firstl(Lg))

Firsty (Ll) ®1 Firsty (Lz)

®1 being 1 — concatenation

37/55

Lookahead Sets

Arithmetics:

First:1(_) is distributive with union and concatenation:
First1 (0) =0
Firstl(Ll @] LQ) = FirStl(Ll) @] First1(L2)
FirStl(Ll . L2) = Firstl(Firstl(Ll) . Firstl(Lg))

Firsty (Ll) ®1 Firsty (Lz)

®1 being 1 — concatenation

Definition: 1-concatenation
Let Li,Ly CTU{e}withL; # 0 # Lo. Then:

L1 if egLy

Ll ®1 L2 = { (Ll\{e})ULz otherwise

If all rules of G are productive, then all sets First1 (A) are non-empty.

37/55

Lookahead Sets

Fora € (N UT)* we are interested in the set:

Firsti (o) = Firsti{w € T" | a—" w})

38/55

Lookahead Sets

Fora € (N UT)* we are interested in the set:

Firsti (o) = Firsti{w € T" | a—" w})

Idea: Treat e separately: First;(A) = F(A)U{e| A—="¢}
@ Let empty(X) =true iff X —"e.

@ Fe(X1... Xp) = Fe(X1)U...UFc(X;) if mempty(X;) A NZ] empty(X;)

38/55

Lookahead Sets

Fora € (N UT)* we are interested in the set:
Firsti (o) = Firsti{w € T" | a—" w})

Idea: Treat e separately: First;(A) = F(A)U{e| A—="¢}
@ Let empty(X) =true iff X —"e.

@ Fe(X1... Xpm) =, Fe(X;) if mempty(X;) A A empty(X;)

38/55

Lookahead Sets

Fora € (N UT)* we are interested in the set:
Firsti (o) = Firsti{w € T" | a—" w})
Idea: Treat e separately: First;(A) = F(A)U{e| A—="¢}
@ Let empty(X) =true iff X —"e.
© Fe(X1... Xm) =, Fe(Xi) it mempty(X;) A AIZ| empty(X:)
We characterize the e-free First;-sets with an inequality system:

Fe(a) {a} if aeT

F(A) D Fe(X;) if A=X1...Xpm € P, empty(X1) A...A empty(X;—1)

38/55

Lookahead Sets

for example...
E — E+T | T
T — TxF | F
F — (E) | name

with empty(E) = empty(7") = empty(F) = false

int

39/55

Lookahead Sets

for example...
E — E+T | T
T — TxF | F
F — (E) | name | int

with empty(E) = empty(7") = empty(F) = false

... We obtain:
Fe(S")y D Fe(E) Fe(E) 2 F(F)
F(E) 2 F(T) Fe(T) 2 F(T)
F(T) 2 F(F) F(F) 2 {(,name,int}

39/55

Fast Computation of Lookahead Sets

Observation:
@ The form of each inequality of these systems is:

r Jy resp. r Jd

for variables x,y und d € D.
@ Such systems are called pure unification problems
@ Such problems can be solved in linear space/time.
for example: D = 2{@be}

6
o 2 {a}

X1 2 {b} X1 D) o 1 2 xr3

@O
xz3 2 {c} r3 D T2 r3 D w3

40/55

Fast Computation of Lookahead Sets

o8

C
a b /
Frank DeRemer @%@
& Tom Pennello \
Proceeding:

@ Create the Variable Dependency Graph for the inequality system.

41/55

Fast Computation of Lookahead Sets

Frank DeRemer Q >@
& Tom Pennello

Proceeding:
@ Create the Variable Dependency Graph for the inequality system.
@ Whithin a Strongly Connected Component (— Tarjan) all variables have the same value

41/55

Fast Computation of Lookahead Sets

v
Frank DeRemer Q >@
& Tom Pennello

= J

Proceeding:
@ Create the Variable Dependency Graph for the inequality system.
@ Whithin a Strongly Connected Component (— Tarjan) all variables have the same value

@ Is there no ingoing edge for an SCC, its value is computed via the smallest upper
bound of all values within the SCC

41/55

Fast Computation of Lookahead Sets

Frank DeRemer Q >@
& Tom Pennello

= J

Proceeding:
@ Create the Variable Dependency Graph for the inequality system.
@ Whithin a Strongly Connected Component (— Tarjan) all variables have the same value

@ Is there no ingoing edge for an SCC, its value is computed via the smallest upper
bound of all values within the SCC

@ In case of ingoing edges, their values are also to be considered for the upper bound

41/55

Fast Computation of Lookahead Sets

... for our example grammar:

(, int, name
E=—E=~—D=—F

Firsty :

42/55

ltem Pushdown Automaton as LL(1)-Parser

contextisrelevanttoo: S’ —=S$ S—€° | aSh!

| Firsty(input) [[$ [a|b|

w € First (|)

43/55

ltem Pushdown Automaton as LL(1)-Parser

contextisrelevanttoo: S’ —=S$ S—€° | aSh!

| Firsty(input) [[$ [a|b|
LS [717]7]

w € Firsty (|) w € Firsty(|) 43/55

ltem Pushdown Automaton as LL(1)-Parser

w € Firsty (|)

w € Firsty (Firsty(y) ®1 First1(8) ®1 ... ®1 First1(Bo))
w € Firsty () ®1 Follow, (B)

44/55

ltem Pushdown Automaton as LL(1)-Parser

w € Firsty (|)

w € Firsty (Firsty(y) ®1 First1(8) ®1 ... ®1 First1(Bo))
w € First; () ®1 Follow, (B)

Inequality system for Follow;(B) = Firsti(8) ®1 ... ®1 Firsti(5o)

Follow:(S) 2 {$}
Followi(B) 2 F(X;) if AvaBX1...Xm € P, empty(X1) A... A empty(X,—1)
Follow(B) 2 Followi(A) if A-aBXi1...Xm € P, empty(X1) A... A empty(Xm)

44 /55

ltem Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M[B, w] = i with B—~"if w € Firsti(y) ®1 Follow:(B) J

... forexample: ' —-S$ S—e% | aSbh!

45/55

ltem Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M[B, w] = i with B—~"if w € Firsti(y) ®1 Follow:(B) J

... forexample: ' —-S$ S—e% | aSbh!

First1(S) = {e, a}

45/55

ltem Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M[B, w] = i with B—~"if w € Firsti(y) ®1 Follow:(B) J

... forexample: ' —-S$ S—e% | aSbh!

First1(S) = {¢,a} Follow(S) = {b,$}

45/55

ltem Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M[B, w] = i with B—~"if w € Firsti(y) ®1 Follow:(B) J

... forexample: ' —-S$ S—e% | aSbh!

First1(S) = {¢,a} Follow(S) = {b,$}

S-rule 0 : Firsti(e) ®1 Follow;(S) = {b,$}
S-rule 1 : First1(aSb) ®1 Follow1(S) = {a}

45/55

ltem Pushdown Automaton as LL(1)-Parser

Is G an LL(1)-grammar, we can index a lookahead-table with items and nonterminals:

LL(1)-Lookahead Table
We set M[B, w] = i with B—~"if w € Firsti(y) ®1 Follow:(B) J

.. forexample: S —-S$ S—e€° | aSb?

First1(S) = {¢,a} Follow(S) = {b,$}

S-rule 0 : Firsty (e)
S-rule 1 : Firsti(aSb)

1 FO||OW1 (S) = {b, $}
1 Follows(S) = {a}

| [[8]alb]
[STo]1]0]

©
©

45/55

ltem Pushdown Automaton as LL(1)-Parser

Forexample: S —+S$ S—e’|aSh!

The transitions of the according ltem Pushdown Automaton:

0[5~ e59] e[S~ eSS][S— e
1[5~ oS58 e[S — eS$][S— eaS]
2([S— eaSY) al|[S—aeSi]
3| [S—aeSh el [S—aeSH[S— e
41 [S—aeSh el [S—aeSH[S— eaSh
51[S—aeSb][S— e el[S—aSed]
6|[S—aeSb[S—aSbe]|e|[S—aSeb
7 [S—MLS b] b | [S—aSbe]
8 [S"— eSS|[S—e] e|[S"—Se§]
91 [S"— eSS$|[S—aSbe] | e|[S—Se§
Lookahead table:
| [[8]afb]
[SJoft]o]

46/55

Left Recursion

Attention:
Many grammars are not LL(k) !

A reason for that is:
Definition
Grammar G is called left-recursive, if

A—=TAB foran Ae N, B e (TUN)*

47/55

Left Recursion

Attention:
Many grammars are not LL(k) !

A reason for that is:
Definition
Grammar G is called left-recursive, if

A—=TAB foran Ae N, B e (TUN)*

Example:
E —- E+T | T
T — T+xF | F
F — (E) | name | int

... is left-recursive

47/55

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k. J

Proof:

Letwlog. A—AB|la € P
and A be reachable from S

Assumption: G'is LL(k)

48/55

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k. J

Proof:

Letwlog. A—AB|la € P
and A be reachable from S

Assumption: G'is LL(k)

=Firsty (™) N
Firsty(a 8" y) =0

48/55

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k. J

Proof: ,.

Letwlog. A—AB|la € P
and A be reachable from S

Assumption: G'is LL(k)

=Firsti(a " v) N
Firsty(a 8" y) =0

Firsty (‘

48/55

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k. J

Proof: ‘

Letwlog. A—AB|la € P
and A be reachable from S A

Assumption: G'is LL(k)

n

=Firsti(a " v) N
Firsty(a 8" y) =0

Firsts(|)

48/55

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k. J

Proof: ,‘

Letwlog. A—AB|la € P
and A be reachable from S

Assumption: G'is LL(k)

=Firsti(a " v) N
Firsty(a 8" y) =0

48/55

Left Recursion

Theorem:
Let a grammar G be reduced and left-recursive, then G is not LL(k) for any k. J

Proof:

Letwlog. A—AB|la € P
and A be reachable from S

Assumption: G'is LL(k)

=Firsti(a " v) N
Firsty(a 8" y) =0

Case1: 3—"¢ — Contradiction !l
Case2: [~ w # e —= First,(aw") N Firsty(aw™ ' v) #0

48/55

Right-Regular Context-Free Parsing

Recurring scheme in programming languages: Lists of sth...
S—b | Sab

Alternative idea: Regular Expressions

S—(ba)"b

49/55

Right-Regular Context-Free Parsing
Recurring scheme in programming languages: Lists of sth...
S—b | Sab
Alternative idea: Regular Expressions
S—(ba)"b
Definition: Right-Regular Context-Free Grammar
A right-regular context-free grammar (RR-CFQG) is a
4-tuple G = (N, T, P, S) with:
@ N the set of nonterminals,
@ T the set of terminals,
@ P the set of rules with regular expressions of symbols as rhs,
@ S € N the start symbol

49/55

Right-Regular Context-Free Parsing
Recurring scheme in programming languages: Lists of sth...
S—b | Sab
Alternative idea: Regular Expressions
S—(ba)"b
Definition: Right-Regular Context-Free Grammar
A right-regular context-free grammar (RR-CFQG) is a
4-tuple G = (N, T, P, S) with:
@ N the set of nonterminals,
@ T the set of terminals,
@ P the set of rules with regular expressions of symbols as rhs,
@ S € N the start symbol

Example: Arithmetic Expressions

E

T(+T)"
F(*xF)*

(E) | name | int

HNE®»
114

49/55

ldea 1: Rewrite the rules from G to (G):

A) if As>aeP
(av) - @ if aeNUT
(€) — e

(o) = €| {a)(a”) if o € Regext n
() = (1) ... {an) if a; € Regext
() = (o). | {an) if s € Regext

...and generate the according LL(k)-Parser 1/{;,

50/55

ldea 1: Rewrite the rules from G to (G):

A) if As>aeP
(av) - @ if aeNUT
(€) — e

(o) = €| {a)(a”) if o € Regext n
() = (1) ... {an) if a; € Regext
() = (o). | {an) if s € Regext

..and generate the according LL(k)-Parser J\[<C>
Example: Arithmetic Expressions cont'd

&

mNE®»
SN

T(+T)"
F(xF)”
(E)

| name | int

50/55

ldea 1: Rewrite the rules from G to (G):

A) if As>aeP
(av) - @ if aeNUT
(€) — e

(o) = €| {a)(a”) if o € Regext n
() = (1) ... {an) if a; € Regext
() = (o). | {an) if s € Regext

...and generate the according LL(k)-Parser M/ [,
Example: Arithmetic Expressions cont'd

S - B

E -)

T — F(*xF)"

F — (E)|name]|int
() = T

50/55

ldea 1: Rewrite the rules from G to (G):

L4l il

if A—>a€epP
if ae NUT

> if ac RegexT7N

. < > if «o; € RegexT,N

.| () if oy € Regext

...and generate the according LL(k)-Parser M/ [,

Example: Arithmetic Expressions cont'd

NI ®

A
m)ﬂ/—\

o

)
(xF)"
E)| name | int
(

| (+TN)

B!

50/55

ldea 1: Rewrite the rules from G to (G):

L4l il

if A—>a€epP
if ae NUT

> if ac RegexT7N

. < > if «o; € RegexT,N

.| () if oy € Regext

...and generate the according LL(k)-Parser M/ [,

Example: Arithmetic Expressions cont'd

TSNy

Lid Ll

E

()
F(xF)*

(E) | name | int
T

el (+7)N)
+T

50/55

ldea 1: Rewrite the rules from G to (G):

L4l il

if A—>a€epP
if ae NUT

> if ac RegexT7N

. < > if «o; € RegexT,N

.| () if oy € Regext

...and generate the according LL(k)-Parser M/ [,

Example: Arithmetic Expressions cont'd

TSNy

Lid Ll

E

()

()

(E) | name | int
T)

el (+7)N)
+7T

50/55

ldea 1: Rewrite the rules from G to (G):

L4l il

A—aeP
ace NUT

o € RegexT7N
a; € RegexT,N
o; € Regext N

L

...and generate the according LL(k)-Parser M/ [,

Example: Arithmetic Expressions cont'd

S —
E —
T —
F —
() =
() -
(+1) -
() —
() =
{ « F N

&

)

) | name | int
)
)

Fﬂ e
&

o+ O
o~

* O
hj N

50/55

Definition:
An RR—CFG G is called RLL(1),
if the corresponding CFG () is an LL(1) grammar.

Reinhold Heckmann

Discussion
@ directly yields the table driven parser M<LG> for RLL(1) grammars

@ however: mapping regular expressions to recursive productions unnessessarily strains
the stack
— instead directly construct automaton in the style of Berry-Sethi

51/55

Idea 2: Recursive Descent RLL Parsers:

Recursive descent RLL(1)-parsers are an alternative to table-driven parsers; apart from
the usual function scan (), we generate a program frame with the lookahead function
expect () and the main parsing method parse () :

int next;
void expect(Set E){
if ({e,next} NE = 0){
cerr << "Expected” << E << "found” << next;
exit(0);

}

return ;

void parse(){
next = scan();
expect(First1(9)) ;
S();

expect({EOF}) ;

52/55

Idea 2: Recursive Descent RLL Parsers:

For each A — o € P, we introduce:

void A(){
generate(a)
}

with the meta-program generate being defined by structural decomposition of a:

generate(ri...r;) = generate(ri)
expect(Firsti(r2)) ;
generate(r2)

expect(Firsti(r1)) ;
generate(ry)
generate(c) =
generate(a) next = scan();
generate(A) = A();

53/55

Idea 2: Recursive Descent RLL Parsers:

generate(r™)
generate(ry | ... | 71)
labels({ou, ..., am})
label(a)

label(e)

while (next € F.(r)) {
generate(r)

switch(next) {
labels(Firsti(r;)) generate(r1) break ;

labels(Firsti(r;)) generate(ry) break ;
}
label(an): ... label(am):
case «
default

54/55

Topdown-Parsing

Discussion

@ A practical implementation of an RLL(1)-parser via recursive descent is a
straight-forward idea

@ However, only a subset of the deterministic contextfree languages can be parsed this
way.

@ As soon as Firsti(_) sets are not disjoint any more,

55/55

Topdown-Parsing

Discussion

@ A practical implementation of an RLL(1)-parser via recursive descent is a
straight-forward idea

@ However, only a subset of the deterministic contextfree languages can be parsed this
way.
@ As soon as First;(_) sets are not disjoint any more,

@ Solution 1: For many accessibly written grammars, the alternation between right hand sides happens
too early. Keeping the common prefixes of right hand sides joined and introducing a new production
for the actual diverging sentence forms often helps.

@ Solution 2: Introduce ranked grammars, and decide conflicting lookahead always in favour of the
higher ranked alternative
— relation to L L parsing not so clear any more
— not so clear for _* operator how to decide

@ Solution 3: Going from LL(1) to LL(k)

The size of the occuring sets is rapidly increasing with larger &
Unfortunately, even LL(k) parsers are not sufficient to accept all deterministic contextfree
languages. (regular lookahead — L L(x))

@ In practical systems, this often motivates the implementation of £ = 1 only ...

55/55

	Syntactic Analysis
	Basics of Contextfree Grammars
	Basics of Pushdown Automata
	Top-down Parsing
	Item Pushdown Automaton
	LL(1) Parser
	Lookahead
	Right-Regular Context-Free Grammars

