Syntactic Analysis
Topic: Token-Stream —>| Parser |—> Syntaxiree
Syntactic Analysis
@ Syntactic analysis tries to integrate Tokens into larger program units.
@ Such units may possibly be:
— Expressions;
— Statements;
— Conditional branches;
— loops; ...
s 2155
Discussion:
In general, parsers are not developed by hand, but generated from a specification:
Chapter 1:
Basics of Contextfree Grammars
Specification Generator Parser E—E{op}E Ge
Specification of the hierarchical structure: contextfree grammars
Generated implementation: Pushdown automata + X
aiss ass
Basics: Context-free Grammars Conventions
@ Programs of programming languages can have arbitrary numbers of tokens, but only
finitely many Token-classes. The rules of context-free grammars take the following form:
@ This is why we choose the set of Token-classes to be the ferne alphabet of t‘ermlnals T. Asa with AeN, ae(NUT)
@ The nested structure of program components can be described elegantly via
context-free grammars...
... for example:
S — aSb
Definition: Context-Free Grammar § = ¢
A context-free grammar (CFG) is a Specified language: {a™b" | n >0}
4-tuple G = (N, T, P, 5) with:
@ N the set of nonterminals, Noam Chomsiy Jofn Backus .
- Conventions:
@ T the set of terminals, I ! i terminal d terminals i impliciiely:
O P {imEE e 6 s, 2T n exarrlp es', wle spef:n y1nol|; e;mma s an ermlna.s in general implicitely:
OlE N EESET e @ non ?rmlnas are: / oCham (exp), (stmt), ...;
o terminals are: a,b,c, ..., int,name, ...;
siss oiss
... a practical example: Pair of grammars:
S — (stmt)
(stmt) — (if) | (while) (rexp); E — E+E ExE | (E) | name | int
(if) — if ((rexp)) (stmt) else (stmt) E — 4T T
(while) — while ((rexp)) (stmt) T T«F | F
(’rexp‘; — int | (lexp) | (lexp) = (rexp) | F — (E) | name | int
(lexp) — name |
E — E+E° ExET | (E)Z | name® | int?
E — E+T° 7!
More conventions: T — TxFO | F'
@ For every nonterminal, we collect the right hand sides of rules and list them together. F = (@) | oewe | G
@ The j-thrulefor A can be identified via the pair (4, j)
(with j > 0).
Both grammars describe the same language
wiss ass
Derivation Derivation
Grammars are term rewriting systems. The rules offer feasible rewriting steps. A sequence
of such rewriting steps ap — ... — am is called derivation.
E - E+4T Remarks:
.. for example: s AT @ Therelaton — depends on the grammar
- T L +7 @ In each step of a derivation, we may choose:
: I Sl T = a spot, determining where we will rewrite.
— Fxint+17 - .)
5 namexint + T = arule, determining how we will rewrite.
— name * int + £ @ The language, specified by G is:
— name * int + int
LG)={weT"|S—"w}
Definition
The rewriting relation — is a relation on words over N U T, with Attention:
, , The order, in which disjunct fragments are rewritten is not relevant.
a—a iff a=arAas A o =a1 Ba foran A - BeP
The reflexive and transitive closure of — is denoted as: —*
arss 10155

Derivation Tree
Derivations of a symbol are represented as derivation trees:

... for example:

E E+T
T+T
TxF+T
Txint+ T
Fxint+T
name * int + 7'
name * int + F
name * int + int

LidLdidld

A derivation tree for A € N:
inner nodes: rule applications
root: rule application for A
leaves: terminals or e
The successors of (B,i) correspond to right hand sides of the rule

1155

Special Derivations

Attention:
In contrast to arbitrary derivations, we find special ones, always rewriting the leftmost (or
rather rightmost) occurance of a nonterminal.

@ These are called leftmost (or rather rightmost) derivations and are denoted with the
index L (or R respectively).

@ Leftmost (or rightmost) derivations correspondt to a left-to-right (or right-to-left)
preorder-DFS-traversal of the derivation tree.

@ Reverse rightmost derivations correspond to a left-to-right postorder-DFS-traversal of
the derivation tree

Special Derivations

... for example:

Leftmost derivation: (B,0) (B, 1) (T},0) (T, 1) (F, 1) (F, 2) (T, 1) (F,
Rightmost derivation: (E,0)(T,1) (F,2) (B,1) (T,0) (F,2) (T, 1) (F,
Reverse rightmost derivation: (F,1)(T,1) (F,2)(T,0) (E,1) (F,2)(T,1) (E,

13155

Unique Grammars

The concatenation of leaves of a derivation tree ¢ are often called yield(t) .

... for example:

gives rise to the concatenation: name * int + int.

Unique Grammars

Definition:
Grammar G s called unique, if for every w e T* there is maximally one derivation
tree ¢ of S with vyield(t) =w.
... In our example:
E — E+E" | B+E' | (E)? | name® | int”
E — B+T° ik
T — TxF° | F!
F — (E)° | name'! | int?

The first one is ambiguous, the second one is unique

15/55

Conclusion:

@ A derivation tree represents a possible hierarchical structure of a word.

@ For programming languages, only those grammars with a unique structure are of
interest.

@ Derivation trees are one-to-one corresponding with leftmost derivations as well as
(reverse) rightmost derivations.

@ Leftmost derivations correspond to a top-down reconstruction of the syntax tree.
@ Reverse rightmost derivations correspond to a bottom-up reconstruction of the syntax
tree.

Chapter 2:
Basics of Pushdown Automata

17155

Basics of Pushdown Automata

Languages, specified by context free grammars are accepted by Pushdown Automata:

The pushdown is used e.g. to verify correct nesting of braces.

Example:
States: 0,1,2 ? g ﬂ
Start state: 0 Kl Z >
Final states: 0,2
2[b] 2

Conventions:
@ We do not differentiate between pushdown symbols and states
@ The rightmost / upper pushdown symbol represents the state
@ Every transition consumes / modifies the upper part of the pushdown

19155

Definition: Pushdown Automaton
A pushdown automaton (PDA) is a tuple
M = (Q,T,6,qo, F) with:
e () afinite set of states;
@ 7' aninput alphabet;
@ qp € Q the start state;
@ ' C () the set of final states and
05 C Q" x(TU{e}) x Q" afinite set of transitions

Friecich Baver Klaus Samelson

We define computations of pushdown automata with the help of transitions; a particular
computation state (the current configuration) is a pair:

(v,w) € Q" xT*

consisting of the pushdown content and the remaining input.

... for example:

States: 01,2 SETARY

Start state: 0 o (Ij >

Final : 0,2

inal states: 0, AR

(0, aaabbb) + (11, aabbb)

(111, abbb)
F (1111, bbb)
(112, bb)
- (12, b
|= 2, ¢

21/55

A computation step is characterized by the relation - C (Q* x T*)? with

(a7, zw) - (@, w) for (y,z,7) € 6

Remarks:

@ The relation + depends on the pushdown automaton 1/
@ The reflexive and transitive closure of - is denoted by
@ Then, the language accepted by 1/ is

LM) ={weT"|Ife€F: (qo,w)-"(f,€)}

We accept with a final state together with empty input.

22/55

Definition: Deterministic Pushdown Automaton

The pushdown automaton A/ is deterministic, if every configuration has maximally one
successor configuration.

This is exactly the case if for distinct transitions (y1,z,72), (71 5) € 0 we can
assume:
Is 71 a suffix of 71, then = # 2’ A z # € # 2’ is valid.

... for example:
0 (a1l
1 |a|ll
1[b]2
12[b]2

... this obviously holds

23/55

Pushdown Automata

Theorem:

For each context free grammar & = (N, T, P, S)
a pushdown automaton M/ with £(G) = £(M) can be built.

A Otinger

M. Schitzenberger

The theorem is so important for us, that we take a look at two constructions for automata,
motivated by both of the special derivations:

@ ME to build Leftmost derivations

o MZ to build reverse Rightmost derivations

Chapter 3:
Top-down Parsing

25/55

Iltem Pushdown Automaton

Construction: Item Pushdown Automaton M7

@ Reconstruct a Leftmost derivation.
@ Expand nonterminals using a rule.
o Verify successively, that the chosen rule matches the input.

—— The states are now ltems (= rules with a bullet):
[A—aepf], A—af € P

The bullet marks the spot, how far the rule is already processed

26/55

Item Pushdown Automaton — Example

Our example:

21155

Iltem Pushdown Automaton — Example

We add another rule 5" — S'$ for initialising the construction:

Start state:
End state:
Transition relations:

[S'— e S8
[S"—=S e §

S"— e S§| e[[S"> e SH[S— o AB]
S e ADB] e|[[S= e AB][A= e q]
A— ed] a|[A—ad]

S e ABJ][A vae] |e|[S +AeB]

S A e B c[[S>AeBI[B > el
B— eb] b [[B b

S— A e B][B—be] c[[SoABe

S"— e SS|[S—ABe]|[e|[S—>S e 9§

Item Pushdown Automaton

The item pushdown automaton A7% has three kinds of transitions:

Expansions: ([A —~aeBfje[A—aeBf|[B— eq]) for
A — aBB, B—y € P
Shifts: ([A—aeafl,a,[A—>aaep]) for A—aaB € P
Reduces: ([A—aeBp][B—~e|,6,[A—aBepf]) for
A—aBB, B—y € P
ltems of the form: [A — ave] are also called complete

The item pushdown automaton shifts the bullet around the derivation tree ...

20/55

Iltem Pushdown Automaton

Discussion:

@ The expansions of a computation form a leftmost derivation
@ Unfortunately, the expansions are chosen nondeterministically

@ For proving correctness of the construction, we show that for every ltem [A — « e B 5]

the following holds:
([A—aeBf,w)F* (([A>aBefl,e) iff B—-"w

@ LL-Parsing is based on the item pushdown automaton and tries to make the
expansions deterministic ...

30/55

Item Pushdown Automaton

Example: S’ —»S$ S—e|aSh

The transitions of the according Item Pushdown Automaton:

0[[S = «59] AIEEEEIEED)

1[5 = eS8 c[[S— e58][S— eaSy
2[[S— ea S a|[S—aeSh

3| [S—aeSH €| [S—aeSH[S— e

T [S—>aedh < [[S>aeSH[S— eaSH
5 [S—asSH[S—e c[[S>aSeb
6|[S—aeSb[S—aSbe] | e|[S—aSebd]

T [S—aSeb b | [S—aShbe]

S|[S = «SS][S e e[[=53

9| [S"— eSS|[S—aSbe] | e[[S"—Se §

Conflicts arise between the transitions (0, 1) and (3, 4), resp..

Topdown Parsing

Problem:

Conflicts between the transitions prohibit an implementation of the item pushdown
automaton as deterministic pushdown automaton.

Idea 1: GLL Parsing

For each conflict, we create a virtual copy of the complete configuration and continue
computing in parallel.

Idea 2: Recursive Descent & Backtracking
Depth-first search for an appropriate derivation.

Idea 3: Recursive Descent & Lookahead
Conflicts are resolved by considering a lookup of the next input symbols.

et Gt Gt G

siiss a2ss
Structure of the LL(1)-Parser: Topdown Parsing
[— \dea:
@ Emanate from the item pushdown automaton
@ Consider the next input symbol to determine the appropriate rule for the next expansion
@ A grammar is called LL(1) if a unique choice is always possible
1) —{T1]
> Output
M Definition:
== A reduced grammar is called ZL(1), if for each two distinct
rules A—+a, A—a' € P andeach derivation el
@ The parser accesses a frame of length 1 of the input; S =7 uApBwith u € T the following is valid:
@ it corresponds to an item pushdown automaton, essentially; First: (@) N Firsta(a’ 8) = 0
@ table 1 [g, w] contains the rule of choice.
au/ss s
Topdown Parsing Lookahead Sets
E<ampioh Definition: First;-Sets
S — if(E)SelseS | For aset L C T* we define:
while (E) S |
E; Firsti(L) = {e|e€ LYU{ueT|IveT" : weL}
E — id
Example: S—e | aSb
is LL(1), since First1(E) = {id} First: ([S])
Example 2: e
, . . , ab
S - !f(E‘)b'eIseJa | wabb
if(E)S o
while (£) 5 | aaa
E;
E — id
- is not LL(k) for any k > 0. = the yield's prefix of length 1
5515 36155
Lookahead Sets Lookahead Sets
Arithmetics:
First;(_) is distributive with union and concatenation: . .
Fora € (N UT)" we are interested in the set:
First1 () =0
Firsti(L1 U L2) = Firsti(L1) U First1(L2) Firsti(a) = Firsti({w € T* | a—" w})
Firsti(L1 - L2) = Firsti(Firsty(L1) - Firsti(L2))
;= Firsti(L1) ©1 Firsti(L:
() @ 1(L2) Idea: Treat e separately: First; (A) = Fe(A)U{e| A—"¢}
©1 being 1 — concatenation o let empty(X)=true iff X—"e.
’ Fe(X1... Xm)=U_, F. if = iy ¢
Definition: 1-concatenation 0 Fe(X1... Xm) = UL, Fe(Xi) if mempty(X;) A AJZL empty(X:)
Let Ly, Ly CTU{e} with Ly # 0 # L». Then: We characterize the e-free First;-sets with an inequality system:
Li if e¢Ly Fe(a) = {a} if aeT
Ly @1 Ly = 0 G
L { (Li\{e)) ULz otherwise Fe(A) D Fo(X;) if A>Xi...Xm €P, empty(X1) A...A empty(X;_1)
If all rules of ¢ are productive, then all sets First; (A) are non-empty.
3155 auss

Lookahead Sets

for example...
E — E+T T
T — T+xF | F
F — (E) | name | int

with empty(E) = empty(T") = empty(F) = false

... We obtain:
Fe(S') D Fe(E) FeE) 2 F(E)
F(BE) 2 F(T) F(T) 2 Fe(T)
Fe(T) 2 Fe(F) Fe(F) 2 {(,name,int}

30/55

Fast Computation of Lookahead Sets

Observation:
@ The form of each inequality of these systems is:

z Jdy resp. x Jd

for variables z,y und d € D.
@ Such systems are called pure unification problems
@ Such problems can be solved in linear space/time.
for example: D = 2labct

Fast Computation of Lookahead Sets

Frank DeRemer
&Tom Pennelo

Proceeding:
@ Create the Variable Dependency Graph for the inequality system.
@ Whithin a Strongly Connected Component (— Tarjan) all variables have the same value

@ Is there no ingoing edge for an SCC, its value is computed via the smallest upper
bound of all values within the SCC

@ In case of ingoing edges, their values are also to be considered for the upper bound

41/55

Fast Computation of Lookahead Sets

... for our example grammar:

First; :
(, int, name
@ 7 NG =)
§j=E)=D &)

Item Pushdown Automaton as LL(1)-Parser

context is relevanttoo: §' -S$ S —€® | aSh!
First (input) [$ |
[s T

w € First: w € First,] o

Iltem Pushdown Automaton as LL(1)-Parser

w € First; (D
w € First; (First: (7) @1 First:(8) @1 ... ®1 First: (80))
w € Firsti (v) @1 Follow: (B)

Inequality system for Follow: (B) = First1(8) ®1 ... ®1 First1(Bo)
Follow:(S) 2 {8}
Follow: (B) F(Xj)

2
Follow;(B) 2 Followi(A4) if AwaBXi...Xm € P, empty(X1) A... A empty(Xm)

if AvaBX1...Xm € P, empty(X1) A...A empty(X;_1)

s
Item Pushdown Automaton as LL(1)-Parser Item Pushdown Automaton as LL(1)-Parser
For example: S'—+S$ S —¢°|aSh!
Is ¢ an LL(1)-grammar, we can index a lookahead-table with items and nonterminals: The transitions of the according Item Pushdown Automaton:
LL(1)-Lookahead Table 0[S~ ¢S§] e [[S"— e SS[[S—e
We set M[B, w] = i with B~ if w € Firsti(7) ®1 Follow:(B) J L[[57— 53] e[[5= ¢ SH|[S— eaSY
2[[9—= east] a|[S—aesh
3] [S—aeS c[[S—aeSt[S—e
... forexample: S’ —>S8 S—e° | aSb! 1[[S—aeSD e[[S—aeSH[S— eaSh
5[[S—aeSH[S—e] e|[[S—aSed
First1(S) = {e,a} Follow:(S) = {b, $} 6| [S vaeSb[S vaSbe] | e|[S vaSel]
7| [S—aSeb) b | [S— aShbe]
S-rule 0 : Firsti(€) ©1 Follow:(S) = {b,$} 8|5 = eS8|[S e [T =59
S-rule 1: First1(aSb) ®1 Follow1(S) = {a} 9[[S"— eSS|[S—>aSbe] [e[[S—Se§
Lookahead table:
5155 o155
Left Recursion Left Recursion
Theorem: J
Attention: Let a grammar ¢ be reduced and left-recursive, then ' is not LL(k) for any k.
Many grammars are not LL(k) ! J Proof:
.. Letwlog. A—ABla € P
Glessonioiatss and A be reachable from S
REIion Assumption: G'is LL(k)
Grammar (' is called left-recursive, if
A—=TAB foran Ae N,Be (TUN)" =Firsty(a 8" v) N
Firsty (8" y) =0
Example: B E+T T Case1: 3—"e — Contradiction !!!
7 4: T:rF | F Case2: fB—*w # ¢ == Firsty(aw”) N Firsty(@w* 1 v)#0
F — (E) | name | int
... is left-recursive
a5 awiss
Right-Regular Context-Free Parsing Idea 1: Rewrite the rules from G to (G):
Recurring scheme in programming languages: Lists of sth...
S—b | Sab A = {a) if AsaeP
Alternative idea: Regular Expressions \) -« if ae NUT
S (ba) b (e) > €
e : {a*) — €| {a){a) if a € Regext
Definition: Right-Regular Context-Free Grammar () > (). .. {an) if a; € Regextn
A right-regular context-free grammar (RR-CFG) is a () = (o)][{on) i ai € Regexty
4-tuple G = (N, T, P, S) with: ...and generate the according LL(k)-Parser 1/{;;,
@ N the set of nonterminals, Example: Arithmetic Expressions cont'd
@ T the set of terminals, S - E
@ P the set of rules with regular expressions of symbols as rhs, f it ;E *;;k ((\’
e — L(*L /
@ S e N the start symbol F 5 (E)|name|int
Example: Arithmetic Expressions \) = T)
S — E () = €l ¢)
E — T(+T) (+T) > +T
T — F(xF)* () o FA(+F))
F — (E)|name|int { I > €| («F) ()
49155 () - *xF 5055

Definition:
An RR—CFG Gis called RLL(1),
if the corresponding CFG (G) is an LL(1) grammar.

Reinhold Heckmann

Discussion
o directly yields the table driven parser 1/ [, for RLL(1) grammars

@ however: mapping regular expressions to recursive productions unnessessarily strains
the stack
— instead directly construct automaton in the style of Berry-Sethi

Idea 2: Recursive Descent RLL Parsers:

Recursive descent RLL(1)-parsers are an alternative to table-driven parsers; apart from
the usual function scan (), we generate a program frame with the lookahead function
expect () and the main parsing method parse () :

int next;
void expect(Set E){
if ({e,next} NE = 0){
cerr << "Expected” << E << "found” << next;
exit(0);
}

return ;

void parse(){
next = scan();
expect(First1(5)) ;

S();
expect({EOF}) ;
s1/55 s2/ss
Idea 2: Recursive Descent RLL Parsers: Idea 2: Recursive Descent RLL Parsers:
Foreach A — o € P, we introduce:
void A(){
generate() generate(r”) = while (next € F.(r)) {
generate(r)
with the meta-program generate being defined by structural decomposition of «: generate(r1 | ... |ry) = switch(next) {
labels(Firsti(r)) generate(r1) break ;

generate(ry...r;) = generate(ri) .

expect(Firsti(r2)) ; 8

generate(r) labels(Firsti (1)) generate(ry) break ;

. labels({a1,...,am}) = label(ar): ... label(am):

expect(Firsti(ry)) ; label(a) I

generate(ry.) label(e) = default
generate(e) = ;
generate(a) = next = scan();
generate(A) = A();

s/55 54755

Topdown-Parsing

Discussion
@ A practical implementation of an R1L(1)-parser via recursive descent is a
straight-forward idea
@ However, only a subset of the deterministic contextfree languages can be parsed this
way.
@ As soon as First; (_) sets are not disjoint any more,

@ Solution 1: For many accessibly written grammars, the alternation between right hand sides happens
too early. Keeping the common prefixes of right hand sides joined and introducing a new production
for the actual diverging sentence forms often helps.

@ Solution 2: Introduce ranked grammars, and decide conflicting lookahead always in favour of the
higher ranked alternative
— relation to L parsing not so clear any more
— not so clear for _* operator how to decide

@ Solution 3: Going from LL(1) to LL(k)

The size of the occuring sets is rapidly increasing with larger &
Unfortunately, even L L(k) parsers are not sufficient to accept all deterministic contextfree
languages. (regular lookahead — L1 (*))

@ In practical systems, this often motivates the implementation of £ = 1 only ...

55/55

