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The Lexical Analysis

Scanner Token-StreamProgram code

A Token is a sequence of characters, which together form a unit.
Tokens are subsumed in classes. For example:

→ Names (Identifiers) e.g. xyz, pi, ...

→ Constants e.g. 42, 3.14, ”abc”, ...

→ Operators e.g. +, ...

→ Reserved terms e.g. if, int, ...
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The Lexical Analysis - Siever

Classified tokens allow for further pre-processing:

Dropping irrelevant fragments e.g. Spacing, Comments,...
Collecting Pragmas, i.e. directives for the compiler, often implementation dependent,
directed at the code generation process, e.g. OpenMP-Statements;
Replacing of Tokens of particular classes with their meaning / internal representation,
e.g.

→ Constants;

→ Names: typically managed centrally in a Symbol-table, maybe compared to
reserved terms (if not already done by the scanner) and possibly replaced with
an index or internal format (⇒ Name Mangling).
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The Lexical Analysis

Discussion:
Scanner and Siever are often combined into a single component, mostly by providing
appropriate callback actions in the event that the scanner detects a token.
Scanners are mostly not written manually, but generated from a specification.

ScannerSpecification Generator
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The Lexical Analysis - Generating:

... in our case:

ScannerSpecification Generator

Specification of Token-classes: Regular expressions;
Generated Implementation: Finite automata + X
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The Lexical Analysis - Generating:

... in our case:

[0−9]

[1−9]

0

0 | [1-9][0-9]* Generator

Specification of Token-classes: Regular expressions;
Generated Implementation: Finite automata + X
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Chapter 1:

Basics: Regular Expressions
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Regular Expressions

Basics
Program code is composed from a finite alphabet Σ of input characters, e.g.
Unicode
The sets of textfragments of a token class is in general regular.
Regular languages can be specified by regular expressions.

Definition Regular Expressions
The set EΣ of (non-empty) regular expressions
is the smallest set E with:

ε ∈ E (ε a new symbol not from Σ);
a ∈ E for all a ∈ Σ;
(e1 | e2), (e1 · e2), e1

∗ ∈ E if e1, e2 ∈ E .
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Regular Expressions

... Example:
((a · b∗)·a)
(a | b)
((a · b)·(a · b))

Attention:
We distinguish between characters a, 0, $,... and Meta-symbols (, |, ),...
To avoid (ugly) parantheses, we make use of Operator-Precedences:

∗ > · > |

and omit “·”
Real Specification-languages offer additional constructs:

e? ≡ (ε | e)
e+ ≡ (e · e∗)

and omit “ε”
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Regular Expressions

Specification needs Semantics

...Example:

Specification Semantics
abab {abab}
a | b {a, b}
ab∗a {abna | n ≥ 0}

For e ∈ EΣ we define the specified language [[e]] ⊆ Σ∗ inductively by:

[[ε]] = {ε}
[[a]] = {a}
[[e∗]] = ([[e]])∗

[[e1|e2]] = [[e1]] ∪ [[e2]]
[[e1·e2]] = [[e1]] · [[e2]]
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Keep in Mind:

The operators (_)∗,∪, · are interpreted in the context of sets of words:

(L)∗ = {w1 . . . wk | k ≥ 0, wi ∈ L}
L1 · L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}

Regular expressions are internally represented as annotated ranked trees:

.

|

*

b

ε

a

(ab|ε)∗

Inner nodes: Operator-applications;
Leaves: particular symbols or ε.
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Regular Expressions

Example: Identifiers in Java:

le = [a-zA-Z\_\$]
di = [0-9]
Id = {le} ({le} | {di})*

Float = {di}*(\.{di}|{di}\.){di}* ((e|E)(\+|\-)?{di}+)?

Remarks:
“le” and “di” are token classes.
Defined Names are enclosed in “{”, “}”.
Symbols are distinguished from Meta-symbols via “\”.
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Chapter 2:

Basics: Finite Automata
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Finite Automata

Example:

a b

ε

ε

Nodes: States;
Edges: Transitions;
Lables: Consumed input;
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Finite Automata

Definition Finite Automata
A non-deterministic finite automaton
(NFA) is a tuple A = (Q,Σ, δ, I, F ) with:

Q a finite set of states;
Σ a finite alphabet of inputs;
I ⊆ Q the set of start states;
F ⊆ Q the set of final states and
δ the set of transitions (-relation)

For an NFA, we reckon:

Definition Deterministic Finite Automata
Given δ : Q× Σ→ Q a function and |I| = 1, then we call the NFA A deterministic (DFA).
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Finite Automata

Computations are paths in the graph.
Accepting computations lead from I to F .
An accepted word is the sequence of lables along an accepting computation ...

a b

ε

ε
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Finite Automata

Once again, more formally:

We define the transitive closure δ∗ of δ as the smallest set δ′ with:

(p, ε, p) ∈ δ′ and
(p, xw, q) ∈ δ′ if (p, x, p1) ∈ δ and (p1, w, q) ∈ δ′.

δ∗ characterizes for a path between the states p and q the words obtained by
concatenating the labels along it.

The set of all accepting words, i.e. A’s accepted language can be described compactly
as:

L(A) = {w ∈ Σ∗ | ∃ i ∈ I, f ∈ F : (i, w, f) ∈ δ∗}
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Chapter 3:

Converting Regular Expressions to NFAs
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In Linear Time from Regular Expressions to NFAs

ε
e = ε

ε

ε

ε

ε

ε

ε ε

ε

ε

e = e1|e2

e = e1e2

e = a

e = e∗1
e1

e1 e2

e1

e2
a

Thompson’s Algorithm
Produces O(n) states for regular expressions of
length n.
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A formal approach to Thompson’s Algorithm

Berry-Sethi Algorithm
Produces exactly n+ 1 states without ε-transitions and
demonstrates→ Equality Systems and→ Attribute Grammars

Idea:
An automaton covering the syntax tree of a regular expression e tracks (conceptionally via
markers “•”), which subexpressions e′ are reachable consuming the rest of input w.

markers contribute an entry or exit point into the automaton for this
subexpression
edges for each layer of subexpression are modelled after
Thompson’s automata

e

w

e′

19 / 49

Gerard Berry Ravi Sethi



A formal approach to Thompson’s Algorithm

Glushkov Automaton
Produces exactly n+ 1 states without ε-transitions and
demonstrates→ Equality Systems and→ Attribute Grammars

Idea:
An automaton covering the syntax tree of a regular expression e tracks (conceptionally via
markers “•”), which subexpressions e′ are reachable consuming the rest of input w.

markers contribute an entry or exit point into the automaton for this
subexpression
edges for each layer of subexpression are modelled after
Thompson’s automata

e

w

e′
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Berry-Sethi Approach

... for example:

*

.

.

b

|a

ab

|

a

(a|b)∗a(a|b)
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Berry-Sethi Approach

In general:

Input is only consumed at the leaves.
Navigating the tree does not consume input→ ε-transitions
For a formal construction we need identifiers for states.
For a node n’s identifier we take the subexpression, corresponding to the subtree
dominated by n.
There are possibly identical subexpressions in one regular expression.

==⇒ we enumerate the leaves ...
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Berry-Sethi Approach

... for example:

*

.

.

||

b

a

aba
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Berry-Sethi Approach (naive version)

Construction (naive version):

States: •r, r• with r nodes of e;
Start state: •e;
Final state: e•;
Transitions: for leaves r ≡ i x we require: (•r, x, r•).
The leftover transitions are:

r Transitions
r1 | r2 (•r, ε, •r1)

(•r, ε, •r2)
(r1•, ε, r•)
(r2•, ε, r•)

r1 · r2 (•r, ε, •r1)
(r1•, ε, •r2)
(r2•, ε, r•)

r Transitions
r∗1 (•r, ε, r•)

(•r, ε, •r1)
(r1•, ε, •r1)
(r1•, ε, r•)

r1? (•r, ε, r•)
(•r, ε, •r1)
(r1•, ε, r•)
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Berry-Sethi Approach

Discussion:
Most transitions navigate through the expression
The resulting automaton is in general nondeterministic

⇒ Strategy for the sophisticated version:
Avoid generating ε-transitions

Idea:
Pre-compute helper attributes during D(epth)F(irst)S(earch)!

Necessary node-attributes:
first the set of read states below r, which may be reached first, when descending into r.
next the set of read states, which may be reached first in the traversal after r.
last the set of read states below r, which may be reached last when descending into r.

empty can the subexpression r consume ε ?
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Berry-Sethi Approach: 1st step

empty[r] = t if and only if ε ∈ [[r]]

... for example:

*

.

.

||

0 1

2

3 4
a a bb

a
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Berry-Sethi Approach: 1st step

Implementation:
DFS post-order traversal

for leaves r ≡ i x we find empty[r] = (x ≡ ε).

Otherwise:

empty[r1 | r2] = empty[r1] ∨ empty[r2]
empty[r1 · r2] = empty[r1] ∧ empty[r2]
empty[r∗1 ] = t
empty[r1?] = t
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Berry-Sethi Approach: 2nd step

The may-set of first reached read states: The set of read states, that may be reached from
•r (i.e. while descending into r) via sequences of ε-transitions:
first[r] = {i in r | (•r, ε, • i x ) ∈ δ∗, x 6= ε}

... for example:
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f f
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Berry-Sethi Approach: 2nd step

Implementation:
DFS post-order traversal

for leaves r ≡ i x we find first[r] = {i | x 6= ε}.

Otherwise:

first[r1 | r2] = first[r1] ∪ first[r2]

first[r1 · r2] =

{
first[r1] ∪ first[r2] if empty[r1] = t
first[r1] if empty[r1] = f

first[r∗1 ] = first[r1]
first[r1?] = first[r1]
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Berry-Sethi Approach: 3rd step

The may-set of next read states: The set of read states reached after reading r, that may
be reached next via sequences of ε-transitions.
next[r] = {i | (r•, ε, • i x ) ∈ δ∗, x 6= ε}

... for example:
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Berry-Sethi Approach: 3rd step

Implementation:
DFS pre-order traversal

For the root, we find: next[e] = ∅
Apart from that we distinguish, based on the context:

r Equalities

r1 | r2 next[r1] = next[r]
next[r2] = next[r]

r1 · r2 next[r1] =

{
first[r2] ∪ next[r] if empty[r2] = t
first[r2] if empty[r2] = f

next[r2] = next[r]
r∗1 next[r1] = first[r1] ∪ next[r]
r1? next[r1] = next[r]
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Berry-Sethi Approach: 4th step

The may-set of last reached read states: The set of read states, which may be reached
last during the traversal of r connected to the root via ε-transitions only:
last[r] = {i in r | ( i x •, ε, r•) ∈ δ∗, x 6= ε}

... for example:
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Berry-Sethi Approach: 4th step

Implementation:
DFS post-order traversal

for leaves r ≡ i x we find last[r] = {i | x 6= ε}.

Otherwise:

last[r1 | r2] = last[r1] ∪ last[r2]

last[r1 · r2] =

{
last[r1] ∪ last[r2] if empty[r2] = t
last[r2] if empty[r2] = f

last[r∗1 ] = last[r1]
last[r1?] = last[r1]
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Berry-Sethi Approach: (sophisticated version)

Construction (sophisticated version):
Create an automanton based on the syntax tree’s new attributes:

States: {•e} ∪ {i• | i a leaf not ε}
Start state: •e

Final states: last[e] if empty[e] = f
{•e} ∪ last[e] otherwise

Transitions: (•e, a, i•) if i ∈ first[e] and i labled with a.
(i•, a, i′•) if i′ ∈ next[i] and i′ labled with a.

We call the resulting automaton Ae.
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Berry-Sethi Approach

... for example:

a a
a

b
a

a

b

b a

a

b

3

4

2

0

1

Remarks:
This construction is known as Berry-Sethi- or Glushkov-construction.
It is used for XML to define Content Models
The result may not be, what we had in mind...

34 / 49



Chapter 4:

Turning NFAs deterministic
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The expected outcome:

a, b

a a, b

Remarks:
ideal automaton would be even more compact
(→ Antimirov automata, Follow Automata)
but Berry-Sethi is rather directly constructed
Anyway, we need a deterministic version

⇒ Powerset-Construction
36 / 49



Powerset Construction

... for example:
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Powerset Construction
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Powerset Construction

... for example:
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Powerset Construction

Theorem:
For every non-deterministic automaton A = (Q,Σ, δ, I, F ) we can compute a
deterministic automaton P(A) with

L(A) = L(P(A))

Construction:

States: Powersets of Q;
Start state: I;

Final states: {Q′ ⊆ Q | Q′ ∩ F 6= ∅};
Transitions: δP(Q′, a) = {q ∈ Q | ∃ p ∈ Q′ : (p, a, q) ∈ δ}.
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Powerset Construction

Observation:
There are exponentially many powersets of Q

Idea: Consider only contributing powersets. Starting with the set QP = {I} we only
add further states by need ...
i.e., whenever we can reach them from a state in QP
However, the resulting automaton can become enormously huge
... which is (sort of) not happening in practice

Therefore, in tools like grep a regular expression’s DFA is never created!
Instead, only the sets, directly necessary for interpreting the input are generated while
processing the input
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Powerset Construction

... for example:

ba ba

a a
a

b
a

a

b

b a

a

b

3

4

2

0

1

1 14

02320

40 / 49



Powerset Construction

... for example:

ba ba

a a
a

b
a

a

b

b a

a

b

3

4

2

0

1

a

02

1 14

023

40 / 49
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Powerset Construction

... for example:
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Remarks:

For an input sequence of length n , maximally O(n) sets are generated
Once a set/edge of the DFA is generated, they are stored within a hash-table.
Before generating a new transition, we check this table for already existing edges with
the desired label.

Summary:

Theorem:
For each regular expression e we can compute a deterministic automaton
A = P(Ae) with

L(A) = [[e]]
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Chapter 5:

Scanner design
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Scanner design

Input (simplified): a set of rules:

e1 { action1 }
e2 { action2 }

. . .
ek { actionk }

Output: a program,

... reading a maximal prefix w from the input, that satisfies e1 | . . . | ek;

... determining the minimal i , such that w ∈ [[ei]];

... executing actioni for w.
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Implementation:

Idea:

Create the NFA P(Ae) = (Q,Σ, δ, q0, F ) for the expression e = (e1 | . . . | ek);
Define the sets:

F1 = {q ∈ F | q ∩ last[e1] 6= ∅}
F2 = {q ∈ (F\F1) | q ∩ last[e2] 6= ∅}

. . .
Fk = {q ∈ (F\(F1 ∪ . . . ∪ Fk−1)) | q ∩ last[ek] 6= ∅}

For input w we find: δ∗(q0, w) ∈ Fi iff the scanner must execute actioni
for w
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Implementation:

Idea (cont’d):
The scanner manages two pointers 〈A,B〉 and the related states 〈qA, qB〉...
Pointer A points to the last position in the input, after which a state qA ∈ F was
reached;
Pointer B tracks the current position.

H a l l o " ) ;( "s t d o u t . w r i t le n

A B
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Implementation:

Idea (cont’d):
The current state being qB = ∅ , we consume input up to position A and reset:

B := A; A := ⊥;
qB := q0; qA := ⊥

H a l l o " ) ;( "w r i t le n

A B

q4q4
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Implementation:

Idea (cont’d):
The current state being qB = ∅ , we consume input up to position A and reset:

B := A; A := ⊥;
qB := q0; qA := ⊥

H a l l o " ) ;( "

w r i t le n
A B

q0⊥
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Extension: States

Now and then, it is handy to differentiate between particular scanner states.
In different states, we want to recognize different token classes with different
precedences.
Depending on the consumed input, the scanner state can be changed

Example: Comments

Within a comment, identifiers, constants, comments, ... are ignored
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Input (generalized): a set of rules:

〈state〉 { e1 { action1 yybegin(state1); }
e2 { action2 yybegin(state2); }

. . .
ek { actionk yybegin(statek); }

}

The statement yybegin (statei); resets the current state to statei.
The start state is called (e.g.flex JFlex) YYINITIAL.

... for example:

〈YYINITIAL〉 ′′/∗′′ { yybegin(COMMENT); }
〈COMMENT〉 { ′′ ∗ /′′ { yybegin(YYINITIAL); }

. | \n { }
}
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Remarks:

“.” matches all characters different from “\n”.
For every state we generate the scanner respectively.
Method yybegin (STATE); switches between different scanners.
Comments might be directly implemented as (admittedly overly complex) token-class.
Scanner-states are especially handy for implementing preprocessors, expanding
special fragments in regular programs.
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