Funding Public Projects: A Case for the Nash Product Rule

Florian Brandl ¹
Dominik Peters ³
Felix Brandt ²
Christian Stricker ²
Matthias Greger ²
Warut Suksompong ⁴

¹University of Bonn
²Technical University of Munich
³University of Toronto
⁴National University of Singapore

The 17th Conference on Web and Internet Economics
December 15, 2021
Donor Coordination

- **Annual Charity Matching Programs of companies**
 - In 2021, Microsoft employees raised $208 million for 27,000 nonprofits and schools.\(^1\)
 - Since 2011, Apple’s Employee Giving Program has donated nearly $725 million to 39,000 organizations.\(^2\)

- Employees donate independently of mutual interests.
 - Employee 1 would like to donate to Greenpeace (CLUDING) or WWF (AVES).
 - Employee 2 prefers to donate to AVES or Unicef (UNICEF).
 - An efficient distribution rule would allocate both contributions to AVES.

- Employees can benefit from coordinating the donations.

Which distribution rule should we use?

Main Results

Which distribution rule should be chosen?

- **Goal:**
 - Guarantee (Pareto-)efficiency of the distribution.
 - Incentivize agents to donate to maximize the gains from coordination.
 → requires a strong participation axiom as contributions are initially *owned* by the agents.

- The **Nash product rule** is the only distribution rule we are aware of that simultaneously satisfies efficiency and such a strong participation axiom.
Set N of agents with contributions $C = \{C_i\}_{i \in N}$ not exceeding the individual budgets $\{B_i\}_{i \in N}$.

- Christian
- Dominik
- Felix
- Florian
- Warut

Set A of projects the agents can contribute to:
Set N of agents with contributions $C = \{C_i\}_{i \in N}$ not exceeding the individual budgets $\{B_i\}_{i \in N}$.

I want to contribute 2

- Christian
- Dominik
- Felix
- Florian
- Warut

Set A of projects the agents can contribute to:

- G
- Panda
- UNICEF
Set N of agents with contributions $C = \{C_i\}_{i \in N}$ not exceeding the individual budgets $\{B_i\}_{i \in N}$.

- Christian: 2
- Dominik: 2
- Felix: 1
- Florian: 1
- Warut: 1

Set A of projects the agents can contribute to:
Model

- Set N of agents with contributions $C = \{ C_i \}_{i \in N}$ not exceeding the individual budgets $\{ B_i \}_{i \in N}$.

- Set A of projects the agents can contribute to.

- Individual utility functions $u_i : A \rightarrow \mathbb{R}_{\geq 0}$ (here: $\rightarrow \{0, 1\}$).
- \rightarrow value for one unit that is allocated to project x.
- Distribution $\delta : A \rightarrow \mathbb{R}_{\geq 0}$ with $\sum_{x \in A} \delta(x) = \sum_{i \in N} C_i = |C|$.
- $\rightarrow u_i(\delta) = \sum_{x \in A} \delta(x) u_i(x)$.
- Distribution rule f determining the returned δ.
The Nash Product Rule

<table>
<thead>
<tr>
<th>Agents</th>
<th>C_i</th>
<th>G</th>
<th>Panda</th>
<th>UN</th>
<th>$u_i(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian</td>
<td>2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Dominik</td>
<td>2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Felix</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Florian</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Warut</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Which distribution should be chosen?
The Nash Product Rule

Definition: Nash Product Rule

For an arbitrary profile \(C \),

\[
NASH(C) = \arg \max_{\delta \in \Delta(|C|)} \Pi_{i \in N} u_i(\delta)^{C_i}.
\]

<table>
<thead>
<tr>
<th>Agents</th>
<th>(C_i)</th>
<th>G</th>
<th>🌐</th>
<th>🌊</th>
<th>(u_i(\delta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian</td>
<td>2</td>
<td>2</td>
<td>·</td>
<td>·</td>
<td>3</td>
</tr>
<tr>
<td>Dominik</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>·</td>
<td>6</td>
</tr>
<tr>
<td>Felix</td>
<td>1</td>
<td>·</td>
<td>1</td>
<td>·</td>
<td>3</td>
</tr>
<tr>
<td>Florian</td>
<td>1</td>
<td>·</td>
<td>1</td>
<td>·</td>
<td>3</td>
</tr>
<tr>
<td>Warut</td>
<td>1</td>
<td>·</td>
<td>·</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(\delta_{NASH} \) | 7 | 3 | 3 | 1 | 16 |

\(\checkmark \) efficiency

\(\rightarrow \) no \(\delta' \in \Delta(|C|) \) s.t.

\(u_i(\delta') \geq u_i(\delta) \) for all \(i \in N \) and

\(u_i(\delta') > u_i(\delta) \) for some \(i \in N \).
The Nash Product Rule

<table>
<thead>
<tr>
<th>Agents</th>
<th>C_i</th>
<th>$u_i(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Dominik</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Felix</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Florian</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Warut</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

| δ_{NASH} | 7 | 3 | 3 | 1 | 16 |

- **Observation**: This distribution can be decomposed into individual distributions such that each agent only contributes to his approved projects.

- We call such distributions **decomposable**.

- Decomposability becomes very important when the distribution rule only gives recommendations to the agents.

- A NASH distribution δ can always be decomposed via $\delta_i(x) = C_i \frac{u_i(x)}{u_i(\delta)} \delta(x)$.
The Nash Product Rule

Definition: Nash Product Rule

For an arbitrary profile \(C \),

\[
NASH(C) = \arg \max_{\delta \in \Delta(|C|)} \prod_{i \in N} u_i(\delta)^{C_i}.
\]

| Agents | \(C_i \) | \(\text{G} \) | \(\text{W} \) | \(\text{E} \) | \(u_i(\delta) \) |
|---------|-----------|------------|------------|----------------|
| Christian | 2 | 2 | . | . | 3 |
| Dominik | 2 | 1 | 1 | . | 6 |
| Felix | 1 | . | 1 | . | 3 |
| Florian | 1 | . | 1 | . | 3 |
| Warut | 1 | . | . | 1 | 1 |

\(\delta_{NASH} \):

- \(\delta_{NASH} = 3 \) for efficiency
- \(\delta_{NASH} = 3 \) for decomposability

\(\delta_{NASH} = 16 \)

→ Already sufficient to ensure participation?
By not participating, i.e., saving his contribution, Felix can increase his utility gains \((u_i(\delta) - C_i)\) from coordination.

Goal: Contributing the entire budget should be a dominant strategy for each agent.

→ captured by the axiom of **contribution incentive-compatibility**.
A mechanism f is **contribution incentive-compatible** if for each $i \in N$ and all profiles C, $u_i(f(C_{-i}, C_i)) - C_i$ is weakly increasing in C_i.

<table>
<thead>
<tr>
<th>Agents</th>
<th>C_i</th>
<th>G</th>
<th>S</th>
<th>P</th>
<th>$u_i(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian</td>
<td>2</td>
<td>2</td>
<td>·</td>
<td>·</td>
<td>3</td>
</tr>
<tr>
<td>Dominik</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>·</td>
<td>6</td>
</tr>
<tr>
<td>Felix</td>
<td>1</td>
<td>·</td>
<td>1</td>
<td>·</td>
<td>3</td>
</tr>
<tr>
<td>Florian</td>
<td>1</td>
<td>·</td>
<td>1</td>
<td>·</td>
<td>3</td>
</tr>
<tr>
<td>Warut</td>
<td>1</td>
<td>·</td>
<td>·</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>δ_{NASH}</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agents</th>
<th>C_i</th>
<th>G</th>
<th>S</th>
<th>P</th>
<th>$u_i(\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian</td>
<td>2</td>
<td>2</td>
<td>·</td>
<td>·</td>
<td>3</td>
</tr>
<tr>
<td>Dominik</td>
<td>2</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>5</td>
</tr>
<tr>
<td>Felix</td>
<td>0</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>5/3 +1</td>
</tr>
<tr>
<td>Florian</td>
<td>1</td>
<td>·</td>
<td>1</td>
<td>·</td>
<td>5/3</td>
</tr>
<tr>
<td>Warut</td>
<td>1</td>
<td>·</td>
<td>·</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>δ_{NASH}</td>
<td>6</td>
<td>10/3</td>
<td>5/3</td>
<td>1</td>
<td>38/3</td>
</tr>
</tbody>
</table>
Theorem

The Nash Product Rule satisfies efficiency, decomposability and contribution incentive-compatibility.

We are not aware of any other distribution rule that satisfies efficiency AND contribution incentive-compatibility!
Summary and Further Remarks

\[NASH(C) = \arg \max_{\delta \in \Delta(|C|)} \prod_{i \in N} \left(u_i(\delta) \right)^{c_i} \]

- efficiency
- fairness
- strategy-proofness
- strong CIC or strong DEC
- impossibilities
- efficient computation
- DEC
- CIC

Matthias Greger (TUM)

Funding Public Projects

WIN 2021
NASH (C) = arg max "(|C|)
r_s = N_u (")

G

?
NASH(C) = \arg \max \prod_{\delta \in \Delta(|C|)} \left(u_i(\delta) \right)^{c_i}

Nash equilibrium is the best response to the strategy profile of others.

Efficiency
Fairness
Decentralization
CIC
Strong CIC or strong DEC
Efficient computation
Strategy-proofness
Impossibilities

Matthias Greger (TUM)
Funding Public Projects
WINE 2021
References

