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Chapter 1

Basic Concepts

1.1 Elementary Logic

In all academic disciplines, systems of logical statements play a central role. To a large extent, scientific
theories attempt to verify or falsify specific statements concerning the objects to be studied in the respec-
tive discipline. Statements that are of importance in economic theory include, for example, statements
about commodity prices, interest rates, gross national product, quantities of goods bought and sold.
Statements are not restricted to academic considerations. For example, commonly used propositions

such as

There are 1000 students registered in this course

or

The instructor of this course is less than 70 years old

are examples of statements.
A property common to all statements that we will consider here is that they are either true or false.

For example, the first of the above examples can easily be shown to be false (we just have to consult the
class list to see that the number of students registered in this course is not 1000), whereas the second
statement is a true statement. Therefore, we will use the term “statement” in the following sense.

Definition 1.1.1 A statement is a proposition which is either true or false.

Note that, by using the formulation “either . . . or”, we rule out statements that are neither true nor false,
and we exclude statements with the property of being true and false. This restriction is imposed to avoid
logical inconsistencies.
To put it simply, elementary logic is concerned with the analysis of statements as defined above, and

with combinations of and relations among such statements. We will now introduce specific methods to
derive new statements from given statements.

Definition 1.1.2 Given a statement a, the negation of a is the statement “a is false”. We denote the
negation of a statement a by ¬a (in words: “not a”).

For example, for the statements

a: There are 1000 students registered in this course,
b: The instructor of this course is less than 70 years old,
c: 2 · 3 = 5,

the corresponding negations can be formulated as

¬a: The number of students registered in this course is not equal to 1000,
¬b: The instructor of this course is at least 70 years old,
¬c: 2 · 3 �= 5.

Two statements can be combined in different ways to obtain further statements. The most important
ways of formulating such compound statements are introduced in the following definitions.

1
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a b ¬a ¬b a ∧ b a ∨ b ¬(a ∧ b) ¬(a ∨ b)
T T F F T T F F
T F F T F T T F
F T T F F T T F
F F T T F F T T

Table 1.1: Negation, conjunction, and disjunction.

a b a⇒ b b⇒ a a⇔ b ¬b⇒ ¬a ¬a⇒ ¬b
T T T T T T T
T F F T F F T
F T T F F T F
F F T T T T T

Table 1.2: Implication and equivalence.

Definition 1.1.3 Given two statements a and b, the conjunction of a and b is the statement “a is true
and b is true”. We denote the conjunction of a and b by a ∧ b (in words: “a and b”).

Definition 1.1.4 Given two statements a and b, the disjunction of a and b is the statement “a is true
or b is true”. We denote the disjunction of a and b by a ∨ b (in words: “a or b”).

It is very important to note that “or” in Definition 1.1.4 is not an “exclusive or” as in “either . . . or”.
The statement a ∨ b is true whenever at least one of the two statements a, b is true. In particular, a ∨ b
is true if both a and b are true.
A convenient way of illustrating statements is to use a truth table. In Table 1.1, the truth values (“T”

for “true” and “F” for “false”) of the statements ¬a, ¬b, a∧ b, a∨ b, ¬(a∧ b), ¬(a∨ b) are illustrated for
different combinations of truth values of a and b.
Other compound statements which are of importance are implication and equivalence.

Definition 1.1.5 Given two statements a and b, the implication “a implies b” is the statement “If a is
true, then b is true”. We denote this implication by a⇒ b (in words: “a implies b”).

Definition 1.1.6 Given two statements a and b, the equivalence of a and b is the statement “a is true
if and only if b is true”. We denote this equivalence by a⇔ b (in words: “a if and only if b”).

In a truth table, implication and equivalence can be illustrated as in Table 1.2. Note that a ⇔ b is
equivalent to (a⇒ b) ∧ (b⇒ a) (Exercise: use a truth table to verify this). Furthermore, the statement
a ⇒ b is equivalent to the statement ¬a ∨ b (again, use a truth table to prove this equivalence), and,
as is demonstrated in Table 1.2, a ⇒ b is equivalent to ¬b ⇒ ¬a. Some other useful equivalences are
sumarized in Table 1.3. In particular, note that ¬(¬a) is equivalent to a, ¬(a∧b) is equivalent to ¬a∨¬b,
and ¬(a ∨ b) is equivalent to ¬a ∧ ¬b.
Any compound statement involving negation, conjunction, disjunction, implication, and equivalence

can be expressed equivalently as a statement involving negation and conjunction (or negation and dis-
junction) only.

a b ¬(¬a) ¬(¬b) ¬(a ∧ b) ¬a ∨ ¬b ¬(a ∨ b) ¬a ∧ ¬b
T T T T F F F F
T F T F T T F F
F T F T T T F F
F F F F T T T T

Table 1.3: Negation.
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The tools of elementary logic are useful in proving mathematical theorems. To illustrate that, we
provide a discussion of some common proof techniques.
One possibility to prove that a statement is true is to use a direct proof. In the case of an implication,

a direct proof of the statement a⇒ b proceeds by assuming that a is true, and then showing that b must
necessarily be true as well.
Below is an example for a direct proof. Recall that a natural number (or positive integer) x is even if

and only if there exists a natural number n such that x = 2n. A natural number x is odd if and only if
there exists a natural number m such that x = 2m− 1. Consider the following statements.

a: x is an even natural number and y is an even natural number,
b: xy is an even natural number.

We now give a direct proof of the implication a⇒ b. Assume a is true. Because x and y are even, there
exist natural numbers n and m such that x = 2n and y = 2m. Therefore, xy = (2n)(2m) = 2(2nm) = 2r,
where r := 2nm is a natural number (the notation := stands for “is defined by”). This means xy = 2r
for some natural number r, which proves that xy must be even. ‖
(The symbol ‖ is used to denote the end of a proof.)
Another possibility to prove that a statement is true is to show that its negation is false (it should

be clear from the equivalence of ¬(¬a) and a—see Table 1.3—that this is indeed equivalent to a direct
proof of a). This method of proof is called an indirect proof or a proof by contradiction.
For example, consider the statements

a: x �= 0,
b: There exists exactly one real number y such that xy = 1.

We prove a ⇒ b by contradiction, that is, we show that ¬(a⇒ b) must be false. Note that ¬(a ⇒ b) is
equivalent to ¬(¬a ∨ b), which, in turn, is equivalent to a ∧ ¬b. Assume a ∧ ¬b is true (that is, a⇒ b is
false). We will lead this assumption to a contradiction, which will prove that a⇒ b is true.
Because a is true, x �= 0. If b is false, there are two possible cases. The first possible case is that

there exists no real number y such that xy = 1, and the second possibility is that there exist (at least)
two different real numbers y and z such that xy = 1 and xz = 1. Consider the first case. Because x �= 0,
we can choose y = 1/x. Clearly, xy = x(1/x) = 1, which is a contradiction. In the second case, we have
xy = 1 ∧ xz = 1 ∧ y �= z. Because x �= 0, we can divide the two equations by x to obtain y = 1/x and
z = 1/x. But this implies y = z, which is a contradiction to y �= z. Hence, in all possible cases, the
assumption ¬(a ⇒ b) leads to a contradiction. Therefore, this assumption must be false, which means
that a⇒ b is true. ‖
Because, for any two statements a and b, a ⇔ b is equivalent to (a ⇒ b) ∧ (b ⇒ a), proving the

equivalence a⇔ b can be accomplished by proving the implications a⇒ b and b⇒ a.
We conclude this section with another example of a mathematical proof, namely, the proof of the

quadratic formula. Consider the quadratic equation

x2 + px+ q = 0 (1.1)

where p and q are given real numbers. The following theorem provides conditions under which real
numbers x satisfying this equation exist, and shows how to find these solutions to (1.1).

Theorem 1.1.7 (i) The equation (1.1) has a real solution if and only if (p/2)2 ≥ q.
(ii) A real number x is a solution to (1.1) if and only if[

x = −p
2
+

√(p
2

)2
− q
]
∨
[
x = −p

2
−
√(p
2

)2
− q
]
. (1.2)

Proof. (i) Adding (p/2)2 and subtracting q on both sides of (1.1), it follows that (1.1) is equivalent to

x2 + px+
(p
2

)2
=
(p
2

)2
− q

which, in turn, is equivalent to (
x+
p

2

)2
=
(p
2

)2
− q. (1.3)
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The left side of (1.3) is nonnegative. Therefore, (1.3) has a solution if and only if the right side of (1.3)
is nonnegative as well, that is, if and only if (p/2)2 ≥ q.
(ii) Because (1.3) is equivalent to (1.1), x is a solution to (1.1) if and only if x solves (1.3). Taking

square roots on both sides, we obtain[
x+
p

2
=

√(p
2

)2
− q
]
∨
[
x+
p

2
= −
√(p
2

)2
− q
]
.

Subtracting p/2 from both sides, we obtain (1.2). ‖
For example, consider the equation

x2 + 6x+ 5 = 0.

We have p = 6 and q = 5. Note that (p/2)2 − q = 4 ≥ 0, and therefore, the equation has a real solution.
According to Theorem 1.1.7, a solution x must be such that

x = −3 +
√(
6

2

)2
− 5


 ∨

x = −3−

√(
6

2

)2
− 5


 ,

that is, the solutions are x = −1 and x = −5.
As another example, consider

x2 + 2x+ 1 = 0.

We obtain (p/2)2 − q = 0, and it follows that we have the unique solution x = −1.
Finally, consider

x2 + 2x+ 2 = 0.

We obtain (p/2)2 − q = −1 < 0, and therefore, this equation does not have a real solution.

1.2 Sets

As is the case for logical statements, sets are encountered frequently in everyday life. A set is a collection
of objects such as, for example, the set of all provinces of Canada, the set of all students registered in
this course, or the set of all natural numbers. The precise formal definition of a set that we will be using
is the following.

Definition 1.2.1 A set is a collection of objects such that, for each object under consideration, the object
is either in the set or not in the set, and each object appears at most once in a given set.

Note that, according to Definition 1.2.1, it is ruled out that an object belongs to a set and, at the same
time, does not belong to this set. Analogously to the assumption that a statement must be either true
or false (see Definition 1.1.1), such situations must be excluded in order to avoid logical inconsistencies.
For a set A and an object x, we use the notation x ∈ A for “Object x is an element (or a member) of

A” (in the sense that x belongs to A). If x is not an element (a member) of A, we write x �∈ A. Clearly,
the statement x �∈ A is equivalent to ¬(x ∈ A).
There are different possibilities of describing a set. Some sets can be described by enumerating their

elements. For example, consider the sets

A := {Applied Health Sciences, Arts, Engineering, Environmental Studies,
Mathematics, Science},

B := {2, 4, 6, 8, 10},
IN := {1, 2, 3, 4, 5, . . .},
Z := {0, 1,−1, 2,−2, 3,−3, . . .},
∅ := {}.

The set ∅ is called the empty set (the set which contains no elements).
There are sets that cannot be described by enumerating their elements, such as the set of real numbers.

Therefore, another method must be used to describe these sets. The second commonly used way of
describing a set is to enumerate the properties that are shared by its elements. For example, the sets A,
B, IN, Z defined above can be described in terms of the properties of their members as
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A = {x | x is a faculty of this university},
B = {x | x is an even natural number between 1 and 10},
IN = {x | x is a natural number},
Z = {x | x is an integer}.

The symbol IN will be used throughout to denote the set of natural numbers. Z denotes the set of
integers. Other important sets are

IN0 := {x | x ∈ Z ∧ x ≥ 0},
IR := {x | x is a real number},
IR+ := {x | x ∈ IR∧ x ≥ 0},
IR++ := {x | x ∈ IR ∧ x > 0},
Q := {x | x ∈ IR ∧ (∃p ∈ Z, q ∈ IN such that x = p/q)}.

Q is the set of rational numbers. The symbol ∃ stands for “there exists”. An example for a real number
that is not a rational number is π = 3.141593 . . ..
The following definitions describe some important relationships between sets.

Definition 1.2.2 For two sets A and B, A is a subset of B if and only if

x ∈ A⇒ x ∈ B.

We denote this subset relationship by A ⊆ B.

Therefore, A is a subset of B if and only if each element of A is also an element of B.
An alternative way of formulating the statement x ∈ A⇒ x ∈ B is

∀x ∈ A, x ∈ B

where the symbol ∀ denotes “for all”. In general, implications such as x ∈ A⇒ b where A is a set and b
is a statement can equivalently be formulated as

∀x ∈ A, b.

Sometimes, the notation B ⊇ A is used instead of A ⊆ B, which means “B is a superset of A”. The
statements A ⊆ B and B ⊇ A are equivalent.
Two sets are equal if and only if they contain the same elements. We can define this property of two

sets in terms of the subset relation.

Definition 1.2.3 Two sets A and B are equal if and only if (A ⊆ B) ∧ (B ⊆ A). In this case, we write
A = B.

Examples for subset relationships are

IN ⊆ Z, Z ⊆ Q, Q ⊆ IR, IR+ ⊆ IR, {1, 2, 4} ⊆ {1, 2, 3, 4}.

Intervals are important subsets of IR. We distinguish between non-degenerate and degenerate intervals.
Let a, b ∈ IR be such that a < b. Then the following non-degenerate intervals can be defined.

[a, b] := {x | x ∈ IR ∧ (a ≤ x ≤ b)} (closed interval),
(a, b) := {x | x ∈ IR∧ (a < x < b)} (open interval),
[a, b) := {x | x ∈ IR ∧ (a ≤ x < b)} (half-open interval),
(a, b] := {x | x ∈ IR ∧ (a < x ≤ b)} (half-open interval).

Using the symbols ∞ and −∞ for “infinity” and “minus infinity”, and letting a ∈ IR, the following sets
are also non-degenerate intervals.

(−∞, a] := {x | x ∈ IR ∧ x ≤ a},
(−∞, a) := {x | x ∈ IR∧ x < a},
[a,∞) := {x | x ∈ IR∧ x ≥ a},
(a,∞) := {x | x ∈ IR ∧ x > a}.
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B

A

Figure 1.1: A ⊆ B.

In particular, IR+ = [0,∞) and IR++ = (0,∞) are non-degenerate intervals. Furthermore, IR is the
interval (−∞,∞). Degenerate intervals are either empty or contain one element only; that is, ∅ is a
degenerate interval, and so are sets of the form {a} with a ∈ IR.
If a set A is a subset of a set B and B, in turn, is a subset of a set C, then A must be a subset of C.

(This is the transitivity property of the relation ⊆.) Formally,

Theorem 1.2.4 For any three sets A, B, C,

(A ⊆ B) ∧ (B ⊆ C)⇒ A ⊆ C.

Proof. Suppose (A ⊆ B) ∧ (B ⊆ C). If A = ∅, A clearly is a subset of C (the empty set is a subset of
any set). Now suppose A �= ∅. We have to prove x ∈ A ⇒ x ∈ C. Let x ∈ A. Because A ⊆ B, x ∈ B.
Because B ⊆ C, x ∈ C, which completes the proof. ‖
The following definitions introduce some important set operations.

Definition 1.2.5 The intersection of two sets A and B is defined by

A ∩B := {x | x ∈ A ∧ x ∈ B}.

Definition 1.2.6 The union of two sets A and B is defined by

A ∪B := {x | x ∈ A ∨ x ∈ B}.

Two sets A and B are disjoint if and only if A ∩B = ∅, that is, two sets are disjoint if and only if they
do not have any common elements.

Definition 1.2.7 The difference between a set A and a set B is defined by

A \B := {x | x ∈ A ∧ x �∈ B}.

The set A \B is called “A without B” or “A minus B”.

Definition 1.2.8 The symmetric difference of two sets A and B is defined by

A�B := (A \B) ∪ (B \A).

Clearly, for any two sets A and B, we have A�B = B�A (prove this as an exercise).
Sets can be illustrated diagramatically by using so-called Venn diagrams. For example, the subset

relation A ⊆ B can be illustrated as in Figure 1.1. The intersection A ∩ B and the union A ∪ B are
illustrated in Figures 1.2 and 1.3. Finally, the difference A \B and the symmetric difference A�B are
shown in Figures 1.4 and 1.5.
As an example, consider the sets A = {1, 2, 3, 6} and B = {2, 3, 4, 5}. Then we obtain

A ∩B = {2, 3}, A ∪B = {1, 2, 3, 4, 5, 6}, A \B = {1, 6}, B \A = {4, 5}, A�B = {1, 4, 5, 6}.

For the applications of set theory discussed in this course, universal sets can be defined, where, for
a given universal set, all sets under consideration are subsets of this universal set. For example, we will
frequently be concerned with subsets of IR, so that in these situations, IR can be considered the universal
set. For obvious reasons, we will always assume that the universal set under consideration is nonempty.
Given a universal set X and a set A ⊆ X, the complement of A in X can be defined.
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Figure 1.2: A ∩B.
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Figure 1.3: A ∪B.
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Figure 1.4: A \B.
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Figure 1.5: A�B.

X

��
��
A

��

�
�
�

�
�
�
��

�
�
�
�
�
�

�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�

�
�
�
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�

�
�
�
��

�
�
�

��

�
�

�
�

�
�

�
��

�
�

�
�

��

Figure 1.6: A.
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Definition 1.2.9 Let X be a nonempty universal set, and let A ⊆ X. The complement of A in X is
defined by A := X \A.
In a Venn diagram, the complement of A ⊆ X can be illustrated as in Figure 1.6.
For example, if A = [a, b) ⊆ X = IR, the complement of A in IR is given by A = (−∞, a) ∪ [b,∞).

As another example, let X = IN and A = {x | x ∈ IN ∧ (x is odd)} ⊆ IN. We have A = {x | x ∈
IN ∧ (x is even)}.
The following theorem provides a few useful results concerning complements.

Theorem 1.2.10 Let X be a nonempty universal set, and let A ⊆ X.

(i) A = A,
(ii) X = ∅,
(iii) ∅ = X.

Proof. (i) A = X \A = {x | x ∈ X ∧x �∈ A} = {x | x ∈ X∧x �∈ {y | y �∈ A}} = {x | x ∈ X ∧x ∈ A} = A.
(ii) We proceed by contradiction. Suppose X �= ∅. Then there exists y ∈ X. By definition, X = {x |

x ∈ X ∧ x �∈ X}. Therefore, y ∈ X ∧ y �∈ X. But this is a contradiction, because no object can be a
member of a set and, at the same time, not be a member of this set.
(iii) By way of contradiction, suppose ∅ �= X. Then there exists x ∈ X such that x �∈ ∅. But this

implies x ∈ ∅, which is a contradiction, because the empty set has no elements. ‖
Part (i) of Theorem 1.2.10 states that, as one would expect, the complement of the complement of a

set A is the set A itself.
Some important properties of set operations are summarized in the following theorem.

Theorem 1.2.11 Let A, B, C be sets.

(i.1) A ∩B = B ∩A,
(i.2) A ∪B = B ∪A,
(ii.1) A ∩ (B ∩ C) = (A ∩B) ∩C,
(ii.2) A ∪ (B ∪ C) = (A ∪B) ∪C,
(iii.1) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(iii.2) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

The proof of Theorem 1.2.11 is left as an exercise. Properties (i) are the commutative laws, (ii) are the
associative laws, and (iii) are the distributive laws of the set operations ∪ and ∩.
Next, we introduce the Cartesian product of sets.

Definition 1.2.12 For two sets A and B, the Cartesian product of A and B is defined by

A× B := {(x, y) | x ∈ A ∧ y ∈ B}.

A×B is the set of all ordered pairs (x, y), the first component of which is a member of A, and the second
component of which is an element of B. The term “ordered” is very important in the previous sentence.
A pair (x, y) ∈ A × B is, in general, different from the pair (y, x). Note that nothing guarantees that
(y, x) is even an element of A× B. Some examples for Cartesian products are given below.
Let A = {1, 2, 4} and B = {2, 3}. Then

A ×B = {(1, 2), (1, 3), (2, 2), (2, 3), (4, 2), (4, 3)}.

As another example, let A = (1, 2) and B = [0, 1]. The Cartesian product of A and B is given by

A ×B = {(x, y) | (1 < x < 2) ∧ (0 ≤ y ≤ 1)}.

Finally, let A = {1} and B = [1, 2]. Then

A ×B = {(x, y) | x = 1 ∧ (1 ≤ y ≤ 2)}.

If A and B are subsets of IR, the Cartesian product A×B can be illustrated in a diagram. The above
examples are depicted in Figures 1.7 to 1.9.
We can also form Cartesian products of more than two sets. The following definition introduces the

notion of an n-fold Cartesian product.
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Figure 1.7: A×B, first example.
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Figure 1.8: A ×B, second example.
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Figure 1.9: A×B, third example.

Definition 1.2.13 Let n ∈ IN. For n sets A1, A2, . . . , An, the Cartesian product of A1, A2, . . . , An is
defined by

A1 × A2 × . . .×An := {(x1, x2, . . . , xn) | xi ∈ Ai ∀i = 1, . . . , n}.

The elements of an n-fold Cartesian product are called ordered n-tuples (again, note that the order of the
components of an n-tuple is important).
For example, if A1 = {1, 2}, A2 = {0, 1}, A3 = {1}, we obtain

A1 ×A2 × A3 = {(1, 0, 1), (1, 1, 1), (2, 0, 1), (2, 1, 1)}.

Of course, (some of) the sets A1, A2, . . . , An can be equal—Definitions 1.2.12 and 1.2.13 do not require
the sets which define a Cartesian product to be distinct. For example, if A = {1, 2}, we can, for example,
form the Cartesian products

A× A = {(1, 1), (1, 2), (2, 1), (2, 2)}

and

A× A× A = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}.

For simplicity, the n-fold Cartesian product of a set A is denoted by An, that is,

An := A× A× . . .× A︸ ︷︷ ︸
n times

.

The most important Cartesian product in this course is the n-fold Cartesian product of IR, defined
by

IRn := {(x1, x2, . . . , xn) | xi ∈ IR ∀i = 1, . . . , n}.

IRn is called the n-dimensional Euclidean space. (The term “space” is sometimes used for sets that have
certain structural properties.) The elements of IRn (ordered n-tuples of real numbers) are usually referred
to as vectors—details will follow in Chapter 2.
We conclude this section with some notation that will be used later on. For x = (x1, x2, . . . , xn) ∈ IRn,

we define
n∑
i=1

xi := x1 + x2 + . . .+ xn.

Therefore,
∑n
i=1 xi denotes the sum of the n numbers x1, x2, . . . , xn.
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1.3 Sets of Real Numbers

This section discusses some properties of subsets of IR that are of major importance in later chapters.
First, we define neighborhoods of points in IR. Intuitively, a neighborhood of a point x0 ∈ IR is a set

of real numbers that are, in some sense, “close” to x0. In order to introduce neighborhoods formally, the
definition of absolute values of real numbers is needed. For x ∈ IR, the absolute value of x is defined as

|x| :=
{

x if x ≥ 0
−x if x < 0.

The definition of a neighborhood in IR is

Definition 1.3.1 For x0 ∈ IR and ε ∈ IR++, the ε-neighborhood of x0 is defined by

Uε(x0) := {x ∈ IR | |x− x0| < ε}.

Note that, in this definition, we used the formulation

. . . x ∈ IR | . . .

instead of
. . . x | x ∈ IR ∧ . . .

in order to simplify notation. This notation will be used at times if one of the properties defining the
elements of a set is the membership in some given set.
|x−x0| is the distance between the points x and x0 in IR. According Definition 1.3.1, an ε-neighborhood

of x0 ∈ IR is the set of points x ∈ IR such that the distance between x and x0 is less than ε. An
ε-neighborhood of x0 is a specific open interval containing x0—clearly, the neighborhood Uε(x0) can be
written as

Uε(x0) = (x0 − ε, x0 + ε).

Neighborhoods can be used to define interior points of a set A ⊆ IR.

Definition 1.3.2 Let A ⊆ IR. x0 ∈ A is an interior point of A if and only if there exists ε ∈ IR++ such
that Uε(x0) ⊆ A.

According to this definition, a point x0 ∈ A is an interior point of A if and only if there exists a
neighborhood of x0 that is contained in A.
For example, consider the set A = [0, 1). We will prove that all points x ∈ (0, 1) are interior points of

A, but the point 0 is not.
First, let x0 ∈ [1/2, 1). Let ε := 1− x0. This implies x0− ε = 2x0− 1 ≥ 0 and x0+ ε = 1, and hence,

Uε(x0) = (x0 − ε, x0 + ε) ⊆ [0, 1) = A. Therefore, all points in [1/2, 1) are interior points of A.
Now let x0 ∈ (0, 1/2). Define ε := x0. Then we have x0 − ε = 0 and x0 + ε = 2x0 < 1. Again,

Uε(x0) = (x0 − ε, x0 + ε) ⊆ [0, 1) = A. Hence, all points in the interval (0, 1/2) are interior points of A.
To show that 0 is not an interior point of A, we proceed by contradiction. Suppose 0 is an interior

point of A = [0, 1). Then there exists ε ∈ IR++ such that Uε(0) = (−ε, ε) ⊆ [0, 1) = A. Let δ := ε/2.
Then it follows that −ε < −δ < 0, and hence, −δ ∈ Uε(0). Because Uε(0) ⊆ A, this implies −δ ∈ A.
Because −δ is negative, this is a contradiction to the definition of A.
If all elements of a set A ⊆ IR are interior points, then A is called an open set in IR. Furthermore, if

the complement of a set A ⊆ IR is open in IR, then A is called closed in IR. Formally,

Definition 1.3.3 A set A ⊆ IR is open in IR if and only if

x ∈ A⇒ x is interior point of A.

Definition 1.3.4 A set A ⊆ IR is closed in IR if and only if A is open in IR.
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Openness and closedness can be defined in more abstract spaces than IR. However, for the purposes of
this course, we can restrict attention to subsets of IR (and IRn, which will be discussed later on). If
there is no ambiguity concerning the universal set under consideration (in this course, IR or IRn), we will
sometimes simply write “open” (respectively “closed”) instead of “open (respectively closed) in IR” (or
in IRn).
We have already seen that the set A = [0, 1) is not open in IR, because 0 is an element of A which

is not an interior point of A. To find out whether or not A is closed in IR, we have to consider the
complement of A in IR. This complement is given by A = (−∞, 0) ∪ [1,∞). A is not an open set in IR,
because the point 1 is not an interior point of A (prove this as an exercise—the proof is analogous to the
proof that 0 is not an interior point of A). Therefore, A is not closed in IR. This example establishes
that there exist subsets of IR which are neither open nor closed in IR.
Any open interval is an open set in IR (which justifies the terminology open intervals for these sets),

and all closed intervals are closed in IR. Furthermore, unions of disjoint open intervals are open, and
unions of disjoint closed intervals are closed. IR itself is an open set. To show this, let x0 ∈ IR, and choose
any ε ∈ IR++. Clearly, (x0 − ε, x0 + ε) ⊆ IR, and therefore, all elements of IR are interior points of IR.
The empty set is another example of an open set in IR. This is the case, because the empty set does

not contain any elements. According to Definition 1.3.3, openness of ∅ requires

x ∈ ∅ ⇒ x is interior point of ∅.

From Section 1.1, we know that the implication a⇒ b is equivalent to ¬a∨ b. Therefore, if a is false, the
implication is true. For any x ∈ IR, the statement x ∈ ∅ is false (because no object can be an element of
the empty set). Consequently, the above implication is true for all x ∈ IR, which shows that ∅ is open in
IR.
Note that the openness of IR implies the closedness of ∅, and the openness of ∅ implies the closedness

of IR. Therefore, IR and ∅ are sets which are both open and closed in IR.
We now define convex subsets of IR.

Definition 1.3.5 A set A ⊆ IR is convex if and only if

[λx+ (1 − λ)y] ∈ A ∀x, y ∈ A, ∀λ ∈ [0, 1].

Geometrically, a set A ⊆ IR is convex if, for any two points x and y in this set, all points on the line
segment joining x and y belong to A as well. A point λx + (1 − λ)y where λ ∈ [0, 1] is called a convex
combination of x and y. A convex combination of two points is simply a weighted average of these points.
For example, if we set λ = 1/2, the corresponding convex combination is

1

2
x+
1

2
y,

and for λ = 1/4, we obtain the convex combination

1

4
x+
3

4
y.

The convex subsets of IR are easy to describe. All intervals (including IR itself) are convex (no matter
whether they are open, closed, or half-open), all sets consisting of a single point are convex, and the
empty set is convex.
For example, let A = [0, 1). To prove that A is convex, let x, y ∈ A. We have to show that any convex

combination of x and y must be in A. Let λ ∈ [0, 1]. Without loss of generality, suppose x ≤ y. Then it
follows that

λx + (1− λ)y ≥ λx+ (1− λ)x = x
and

λx + (1− λ)y ≤ λy + (1− λ)y = y.
Therefore, x ≤ λx + (1 − λ)y ≤ y. Because x and y are elements of A, x ≥ 0 and y < 1. Therefore,
0 ≤ λx+ (1− λ)y < 1, which implies [λx+ (1− λ)y] ∈ A.
An example of a subset of IR which is not convex is A = [0, 1]∪ {2}. Let x = 1, y = 2, and λ = 1/2.

Then x ∈ A and y ∈ A and λ ∈ [0, 1], but λx+ (1− λ)y = 3/2 �∈ A.
The following definition introduces upper and lower bounds of subsets of IR.
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Definition 1.3.6 Let A ⊆ IR be nonempty, and let u, � ∈ IR.

(i) u is an upper bound of A if and only if x ≤ u for all x ∈ A.
(ii) � is a lower bound of A if and only if x ≥ � for all x ∈ A.

A nonempty set A ⊆ IR is bounded from above (resp. bounded from below) if and only if it has an upper
(resp. lower) bound. A nonempty set A ⊆ IR is bounded if and only if A has an upper bound and a lower
bound.
Not all subsets of IR have upper or lower bounds. For example, the set IR+ = [0,∞) has no upper

bound. To show this, we proceed by contradiction. Suppose u ∈ IR is an upper bound of IR+. But IR+
contains elements x such that x > u, which contradicts the assumption that u is an upper bound of IR+.
On the other hand, IR+ is bounded from below—any number in the interval (−∞, 0] is a lower bound of
IR+.
The above example shows that an upper bound or a lower bound need not be unique, if it exists.

Specific upper and lower bounds are introduced in the next definition.

Definition 1.3.7 Let A ⊆ IR be nonempty, and let u, � ∈ IR.
(i) u is the least upper bound (the supremum) of A if and only if u is an upper bound of A and u ≤ u′

for all u′ ∈ IR that are upper bounds of A.
(ii) � is the greatest lower bound (the infimum) of A if and only if � is a lower bound of A and � ≥ �′

for all �′ ∈ IR that are lower bounds of A.

Every nonempty subset of IR which has an upper (resp. lower) bound has a supremum (resp. an infimum).
This is not necessarily the case if IR is replaced by some other universal set—for example, the set of rational
numbers Q does not have this property.
If a set A ⊆ IR has a supremum (resp. an infimum), the supremum (resp. infimum) is unique. Formally,

Theorem 1.3.8 Let A ⊆ IR be nonempty, and let u, u′, �, �′ ∈ IR.

(i) u is a supremum of A and u′ is a supremum of A ⇒ u = u′.
(ii) � is an infimum of A and �′ is an infimum of A ⇒ � = �′.

Proof. (i) Let A ⊆ IR. Suppose u ∈ IR is a supremum of A and u′ ∈ IR is a supremum of A. This implies
that u and u′ are upper bounds of A. By definition of a supremum, it follows that u ≤ u′ and u′ ≤ u,
and therefore, u = u′.
The proof of part (ii) is analogous. ‖
Note that the above result justifies the terms “the” supremum and “the” infimum used in Definition

1.3.7. We will denote the supremum (resp. infimum) of A ⊆ IR by sup(A) (resp. inf(A)).
Note that it is not required that the supremum (resp. infimum) of a set A ⊆ IR is itself an element

of A. For example, let A = [0, 1). As can be shown easily, the supremum and the infimum of A exist
and are given by sup(A) = 1 and inf(A) = 0. Therefore, inf(A) ∈ A, but sup(A) �∈ A. If the supremum
(resp. infimum) of A ⊆ IR is an element of A, it is sometimes called the maximum (resp. minimum) of A,
denoted by max(A) (resp. min(A)). Therefore, we can define the maximum and the minimum of a set by

Definition 1.3.9 Let A ⊆ IR be nonempty, and let u, � ∈ IR.

(i) u = max(A) if and only if u = sup(A) ∧ u ∈ A.
(ii) � = min(A) if and only if � = inf(A) ∧ � ∈ A.

1.4 Functions

Given two sets A and B, a function that maps A into B assigns one element in B to each element in
A. The use of functions is widespread (but not always recognized and explicitly declared as such). For
example, giving final grades for a course to students is an example of establishing a function from the set
of students registered in a course to the set of possible course grades. Each student is assigned exactly
one final grade. The formal definition of a function is

Definition 1.4.1 Let A and B be nonempty sets. If there exists a mechanism f that assigns exactly one
element in B to each element in A, then f is called a function from A to B.
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A function from A to B is denoted by

f : A �→ B, x �→ y = f(x)

where y = f(x) ∈ B is the image of x ∈ A. A is the domain of the function f , B is the range of f . The
set

f(A) := {y ∈ B | ∃x ∈ A such that y = f(x)}
is the image of A under f (sometimes also called the image of f). More generally, the image of S ⊆ A
under f is defined as

f(S) := {y ∈ B | ∃x ∈ S such that y = f(x)}.
Note that defining a function f involves two steps: First, the domain and the range of the function

have to be specified, and then, for each element x in the domain of the function, it has to be stated which
element in the range of f is assigned to x according to f .
Equality of functions is defined as

Definition 1.4.2 Two functions f1 : A1 �→ B1 and f2 : A2 �→ B2 are equal if and only if

(A1 = A2) ∧ (B1 = B2) ∧ (f1(x) = f2(x) ∀x ∈ A1).

Note that equality of two functions requires that their domains and their ranges are equal.
To illustrate possible applications of functions, consider the above mentioned example. Suppose we

have a course in which six students are registered. For simplicity, we number the students from 1 to 6.
The possible course grades are {A,B, C,D,F} (script letters are used in this example to avoid confusion
with the domain A and the range B of the function considered). An assignment of grades to students
can be expressed as a function f : {1, 2, 3, 4, 5, 6} �→ {A,B, C,D,F}. For example, if students 1 and 3 get
an A, student 2 gets a B, student 4 fails, and students 5 and 6 get a D, the function f is defined as

f : {1, 2, 3, 4, 5, 6} �→ {A,B, C,D,F}, x �→



A if x ∈ {1, 3}
B if x = 2
D if x ∈ {5, 6}
F if x = 4.

(1.4)

The image of f is f(A) = {A,B,D,F}. As this example demonstrates, f(A) is not necessarily equal to
the range B—there may exist elements y ∈ B such that there exists no x ∈ A with y = f(x) (as is the
case for C ∈ B in the above example). Of course, by definition of f(A), we always have the relationship
f(A) ⊆ B.
As another example, consider the function defined by

f : IR �→ IR, x �→ x2. (1.5)

The image of f is

f(IR) = {y ∈ IR | ∃x ∈ IR such that y = x2} = {y ∈ IR | y ≥ 0} = IR+.

Again, B = IR �= IR+ = f(IR) = f(A).
Next, the graph of a function is defined.

Definition 1.4.3 The graph G of a function f : A �→ B is a subset of the Cartesian product A × B,
defined as

G := {(x, y) | x ∈ A ∧ y = f(x)}.

In other words, the graph of a function f : A �→ B is the set of all pairs (x, f(x)), where x ∈ A. For
functions such that A ⊆ IR and B ⊆ IR, the graph is a useful tool to give a diagrammatic illustration of
the function. For example, the graph of the function f defined in (1.5) is

G = {(x, y) | x ∈ IR ∧ y = x2}

and is illustrated in Figure 1.10.
As mentioned before, the range of a function is not necessarily equal to the image of this function. In

the special case where f(A) = B, we say that the function f is surjective (or onto). We define
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Figure 1.10: The graph of a function.

Definition 1.4.4 A function f : A �→ B is surjective (onto) if and only if f(A) = B.

A function f : A �→ B such that, for each y ∈ f(A), there exists exactly one x ∈ A with y = f(x) is
called injective (or one-to-one). Formally,

Definition 1.4.5 A function f : A �→ B is injective (one-to-one) if and only if

∀x, y ∈ A, x �= y ⇒ f(x) �= f(y).

If a function is onto and one-to-one, the function is called bijective.

Definition 1.4.6 A function f : A �→ B is bijective if and only if f is surjective and injective.

As an example, consider the function f defined in (1.4). This function is not surjective, because there
exists no x ∈ {1, 2, 3, 4, 5, 6} such that f(x) = C. Furthermore, this function is not injective, because
1 �= 3, but f(1) = f(3) = A.
The function f defined in (1.5) is not surjective, because, for y = −1 ∈ B, there exists no x ∈ IR such

that f(x) = x2 = y. f is not injective, because, for example, f(1) = f(−1) = 1.
As another example, define a function f by

f : IR �→ IR+, x �→ x2.

Note that this is not the same function as the one defined in (1.5), because it has a different range. That
choosing a different range indeed gives us a different function can be seen by noting that this function is
surjective, whereas the one in the previous example is not. The function is not injective, and therefore,
not bijective.
Here is another example that illustrates the importance of defining the domain and the range properly.

Let
f : IR+ �→ IR, x �→ x2.

This function is not surjective (note that its range is IR, but its image is IR+), but it is injective. To prove
that, consider any x, y ∈ IR+ = A such that x �= y. Note that the domain of f is IR+, and therefore, x
and y are nonnegative. Because x �= y, we can, without loss of generality, assume x > y. Because both x
and y are nonnegative, it follows that x2 > y2, and therefore, f(x) = x2 �= y2 = f(y), which proves that
f is injective.
As a final example, let

f : IR+ �→ IR+, x �→ x2.
Now the domain and the range of f are given by IR+. For each y ∈ IR+ = B, there exists x ∈ IR+ = A
such that y = f(x) (namely, x =

√
y), which proves that f is onto. Furthermore, as in the previous
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example, f(x) �= f(y) whenever x, y ∈ IR+ = A and x �= y. Therefore, f is one-to-one, and hence,
bijective.
Bijective functions allow us to find, for each y ∈ B, a unique element x ∈ A such that y = f(x). This

suggests that a bijective function from A to B can be used to define another function with domain B
and range A, which assigns each x ∈ A to its image under f . This motivates the following definition of
an inverse function.

Definition 1.4.7 Let f : A �→ B be bijective. The function defined by

f−1 : B �→ A, f(x) �→ x

is called the inverse function of f.

Note that an inverse function is not defined if f is not bijective.
For example, consider the function

f : IR �→ IR, x �→ x3.

This function is bijective (Exercise: prove this), and consequently, its inverse function f−1 exists. By
definition of the inverse, we have, for all x ∈ IR, y ∈ IR,

f−1(y) = x⇔ y = x3 ⇔ y1/3 = x,

and therefore, the inverse of f is given by

f−1 : IR �→ IR, y �→ y1/3.

Two functions with appropriate domains and ranges can be combined to form a composite function.
More precisely, composite functions are defined as

Definition 1.4.8 Suppose two functions f : A �→ B and g : B �→ C are given. The function

g ◦ f : A �→ C, x �→ g(f(x))

is the composite function of f and g.

An important property of the inverse function f−1 of a bijective function f is that its inverse is given by
f . Hence, for a bijective function f : A �→ B, we have

f−1(f(x)) = x ∀x ∈ A

and
f(f−1(y)) = y ∀y ∈ B.

The following definition introduces some important special cases of bijective functions, namely, per-
mutations.

Definition 1.4.9 Let A be a finite subset of IN. A permutation of A is a bijective function π : A �→ A.

For example, a permutation of A = {1, 2, 3} is given by

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 1
2 if x = 3
3 if x = 2.

Other permutations of A are

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 2
2 if x = 3
3 if x = 1

(1.6)

and

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 3
2 if x = 2
3 if x = 1.
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A permutation can be used to change the numbering of objects. For example, if

π : {1, . . . , n} �→ {1, . . . , n}

is a permutation of {1, . . . , n} and x = (x1, . . . , xn) ∈ IRn, a renumbering of the components of x is
obtained by applying the permutation π. The resulting vector is

xπ = (xπ(1), . . . , xπ(n)).

More specifically, if π is given by (1.6) and x = (x1, x2, x3) ∈ IR3, we obtain

xπ = (x3, x1, x2).

1.5 Sequences of Real Numbers

In addition to having some economic applications in their own right, sequences of real numbers are
very useful for the formulation of some properties of real-valued functions. This section provides a
brief introduction to sequences of real numbers. We restrict attention to considerations that will be of
importance for this course.
A sequence of real numbers is a special case of a function as defined in the previous section, namely,

a function with the domain IN and the range IR.

Definition 1.5.1 A sequence of real numbers is a function a : IN �→ IR, n �→ a(n). To simplify notation,
we will write an instead of a(n) for n ∈ IN, and use {an} to denote such a sequence.

More general sequences (not necessarily of real numbers) could be defined by allowing the range to be a
set that is not necessarily equal to IR in the above definition. However, all sequences encountered in this
chapter will be sequences of real numbers, and we will, for simplicity of presentation, refer to them as
“sequences” and omit “of real numbers”. Sequences of elements of IRn will be discussed in Chapter 4.
Here is an example of a sequence. Define

a : IN �→ IR, n �→ 1− 1
n
. (1.7)

The first few points in this sequence are

a1 = 0, a2 = 1/2, a3 = 2/3, a4 = 3/4, . . . .

Sequences also appear in economic problems. For example, suppose a given amount of money x ∈ IR++
is deposited to a bank account, and there is a fixed rate of interest r ∈ IR++. After one year, the value
of this investment is x + rx = (1 + r)x. Assuming this amount is reinvested and the rate of interest is
unchanged, the value after two years is (1 + r)x + r(1 + r)x = (1 + r)(1 + r)x = x(1 + r)2. In general,
after n ∈ IN years, the value of the investment is x(1 + r)n. These values of the investment in different
years can be expressed as a sequence, namely, the sequence {an}, where

an = x(1 + r)
n ∀n ∈ IN.

This is a special case of a geometric sequence.

Definition 1.5.2 A sequence {an} is a geometric sequence if and only if there exists q ∈ IR such that

an+1 = qan ∀n ∈ IN.

A geometric sequence has a quite simple structure in the sense that all elements of the sequence can
be derived from the first element of the sequence, given the number q ∈ IR. This is the case because,
according to Definition 1.5.2, a2 = qa1, a3 = qa2 = q

2a1 and, for n ∈ IN with n ≥ 2, an = qn−1a1. The
above example of interest accumulation is a geometric sequence, where q = 1 + r and a1 = qx.
It is often important to analyze the behaviour of a sequence as n becomes, loosely speaking, “large”.

To formalize this notion more precisely, we introduce the following definition.
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Definition 1.5.3 (i) A sequence {an} converges to α ∈ IR if and only if

∀ε ∈ IR++, ∃n0 ∈ IN such that an ∈ Uε(α) ∀n ≥ n0.

(ii) If {an} converges to α ∈ IR, α is the limit of {an}, and we write

lim
n→∞

an = α.

Recall that Uε(α) is the ε-neighborhood of α ∈ IR, where ε ∈ IR++. Therefore, the statement “an ∈ Uε(α)”
is equivalent to “|an − α| < ε”.
In words, {an} converges to α ∈ IR if and only if, for any ε ∈ IR++, at most a finite number of elements

of {an} are outside the ε-neighborhood of α.
To illustrate this definition, consider again the sequence defined in (1.7). We prove that this sequence

converges to the limit 1. In order to do so, we show that, for all ε ∈ IR++, there exists n0 ∈ IN such that
|an − 1| < ε for all n ≥ n0. For any ε ∈ IR++, choose n0 ∈ IN such that n0 > 1/ε. For n ≥ n0, it follows
that n > 1/ε, and therefore,

ε >
1

n
= |1− 1

n
− 1| = |an − 1|,

which shows that the sequence {an} converges to the limit α = 1.
The following terminology will be used.

Definition 1.5.4 A sequence {an} is convergent if and only if there exists α ∈ IR such that

lim
n→∞

an = α.

A sequence {an} is divergent if and only if {an} is not convergent.

Here is an example of a divergent sequence. Define {an} by

an = n ∀n ∈ N. (1.8)

That this sequence diverges can be shown by contradiction. Suppose {an} is convergent. Then there
exists α ∈ IR such that limn→∞ an = α. Therefore, for any ε ∈ IR++, there exists n0 ∈ IN such that

|n− α| < ε ∀n ≥ n0. (1.9)

Let n1 ∈ IN be such that n1 > α+ ε. Then n1 − α > ε, and therefore,

|n− α| = n− α > ε ∀n ≥ n1. (1.10)

Let n2 ∈ IN be such that n2 ≥ n0 and n2 ≥ n1. Then (1.9) implies |n2 − α| < ε, and (1.10) implies
|n2 − α| > ε, which is a contradiction.
Two special cases of divergence, defined below, are of particular importance.

Definition 1.5.5 A sequence {an} diverges to ∞ if and only if

∀c ∈ IR, ∃n0 ∈ IN such that an ≥ c ∀n ≥ n0.

Definition 1.5.6 A sequence {an} diverges to −∞ if and only if

∀c ∈ IR, ∃n0 ∈ IN such that an ≤ c ∀n ≥ n0.

For example, the sequence {an} defined in (1.8) diverges to ∞ (Exercise: provide a proof).
Note that there are divergent sequences which do not diverge to ∞ or −∞. A divergent sequence

which does not diverge to ∞ or −∞ is said to oscillate. For example, consider the sequence {an} defined
by

an =

{
0 if n is even
1 if n is odd.

(1.11)

As an exercise, prove that this sequence oscillates.
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For a sequence {an} and α ∈ IR ∪ {−∞,∞}, we will sometimes use the notation

an −→ α

if α ∈ IR and {an} converges to α, or if α ∈ {−∞,∞} and {an} diverges to α.
In Definition 1.5.3, we referred to α as “the” limit of {an}, if {an} converges to α. This terminology is

justified, because a sequence cannot have more than one limit. That is, the limit of a convergent sequence
is unique, as stated in the following theorem.

Theorem 1.5.7 Let {an} be a sequence, and let α, β ∈ IR. If limn→∞ an = α and limn→∞ an = β, then
α = β.

Proof. By way of contradiction, assume

( lim
n→∞

an = α) ∧ ( lim
n→∞

an = β) ∧ α �= β.

Without loss of generality, suppose α < β. Define

ε :=
β − α
2
> 0.

Then it follows that

Uε(α) =
(
α− β + α+ β

2
,
α+ β

2

)
and

Uε(β) =
(
α+ β

2
,
α+ β

2
+ β − α

)
.

Therefore,
Uε(α) ∩ Uε(β) = ∅. (1.12)

Because limn→∞ an = α, there exists n0 ∈ IN such that an ∈ Uε(α) for all n ≥ n0. Analogously, because
limn→∞ an = β, there exists n1 ∈ IN such that an ∈ Uε(β) for all n ≥ n1. Let n2 ∈ IN be such that
n2 ≥ n0 and n2 ≥ n1. Then

an ∈ Uε(α) ∧ an ∈ Uε(β) ∀n ≥ n2,

which is equivalent to an ∈ Uε(α) ∩ Uε(β) for all n ≥ n2, a contradiction to (1.12). ‖
The convergence of some sequences can be established by showing that they have certain properties.

We define

Definition 1.5.8

(i) A sequence {an} is monotone nondecreasing ⇔ an+1 ≥ an ∀n ∈ IN,
(ii) A sequence {an} is monotone nonincreasing ⇔ an+1 ≤ an ∀n ∈ IN.

Definition 1.5.9

(i) A sequence {an} is bounded from above⇔ ∃c ∈ IR such that an ≤ c ∀n ∈ IN,
(ii) A sequence {an} is bounded from below⇔ ∃c ∈ IR such that an ≥ c ∀n ∈ IN,
(iii) A sequence {an} is bounded ⇔ {an} is bounded from above and from below.

For example, consider the sequence {an} defined in (1.7). This sequence is monotone nondecreasing,
because

an+1 = 1−
1

n + 1
≥ 1− 1

n
= an ∀n ∈ IN.

Furthermore, {an} is bounded, because 0 ≤ an ≤ 1 for all n ∈ IN.
There are some important relationships between convergent, monotone, and bounded sequences. First,

we show that a convergent sequence must be bounded.

Theorem 1.5.10 Let {an} be a sequence. If {an} is convergent, then {an} is bounded.
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Proof. Suppose {an} is convergent with limit α ∈ IR. Let ε = 1. Then there exists n0 ∈ IN such that
|an − α| < 1 ∀n ≥ n0.

Define

N1 := {n ∈ IN | n > n0 ∧ an ≥ α},
N2 := {n ∈ IN | n > n0 ∧ an < α}.

Then it follows that

an < α+ 1 ∀n ∈ N1, (1.13)

an > α− 1 ∀n ∈ N2. (1.14)

Now define

c1 := max({a1, . . . , an0, α+ 1}),
c2 := min({a1, . . . , an0, α− 1}).

(Clearly, c1 and c2 are well-defined, because a finite set of real numbers must have a maximum and a
minimum.) This, together with (1.13) and (1.14), implies

c2 ≤ an ≤ c1 ∀n ∈ N,
which proves that {an} is bounded. ‖
Boundedness of a sequence does not imply the convergence of this sequence. For example, the se-

quence {an} defined in (1.11) is bounded (because 0 ≤ an ≤ 1 for all n ∈ IN), but it is not convergent.
However, boundedness from above (resp. below) together with monotone nondecreasingness (resp. nonin-
creasingness) together imply that a sequence is convergent. This result provides a criterion that is often
very useful when it is to be determined whether a sequence is convergent. The theorem below states this
result formally.

Theorem 1.5.11 Let {an} be a sequence.
(i) {an} is monotone nondecreasing and bounded from above ⇒

{an} is convergent with limit sup({an | n ∈ IN}).
(ii) {an} is monotone nonincreasing and bounded from below ⇒

{an} is convergent with limit inf({an | n ∈ IN}).
Proof. (i) Suppose {an} is bounded from above and monotone nondecreasing. Boundedness from above
of {an} is equivalent to the boundedness from above of the set {an | n ∈ IN}. Therefore, sup({an | n ∈ IN})
exists. Letting α = sup({an | n ∈ IN}), we have an ≤ α for all n ∈ IN. Next, we show

∀ε ∈ IR++, ∃n0 ∈ IN such that α− an0 < ε. (1.15)

Suppose this is not the case. Then there exists ε ∈ IR++ such that α−an ≥ ε for all n ∈ IN. Equivalently,
α − ε ≥ an for all n ∈ IN, which means that α − ε is an upper bound of {an | n ∈ IN}. Because
α − ε < α, this contradicts the definition of α as the supremum of this set. Therefore, (1.15) is true.
This implies α− ε < an0 . Because {an} is monotone nondecreasing, an ≥ an0 for all n ≥ n0. Therefore,
α− ε < an0 ≤ an for all n ≥ n0, which implies

α− an < ε ∀n ≥ n0. (1.16)

Because an ≤ α for all n ∈ IN, (1.16) is equivalent to
|an − α| < ε ∀n ≥ n0,

which proves that α is the limit of {an}.
The proof of part (ii) of the theorem is analogous. ‖
The results below show how the limits of sums, products, and ratios of convergent sequences can be

obtained. The proofs of these theorems are left as exercises.

Theorem 1.5.12 Let {an}, {bn} be sequences, and let α, β ∈ IR. If limn→∞ an = α and limn→∞ bn = β,
then limn→∞(an + bn) = α+ β and limn→∞(anbn) = αβ.

Theorem 1.5.13 Let {an}, {bn} be sequences, and let α, β ∈ IR. Furthermore, let bn �= 0 for all n ∈ IN
and β �= 0. If limn→∞ an = α and limn→∞ bn = β, then limn→∞(an/bn) = α/β.



Chapter 2

Linear Algebra

2.1 Vectors

In Chapter 1, we introduced elements of the space IRn as ordered n-tuples (x1, . . . , xn), where xi ∈ IR
for all i = 1, . . . , n. Geometrically, we can think of x ∈ IRn as a point in the n-dimensional space. For
example, for n = 2, the point x = (1, 2) ∈ IR2 can be represented by a point in the two-dimensional
coordinate system with the coordinates 1 and 2.
Another possibility is to think of x ∈ IRn as a parametrization of a vector in IRn. We can visualize the

vector x ∈ IRn as an “arrow” starting at the origin 0 = (0, . . . , 0) ∈ IRn which “points” at x = (x1, . . . , xn).
For example, the vector x = (1, 2) ∈ IR2 can be represented as in Figure 2.1.
For some of our applications, it is important whether the components of a vector in IRn are arranged

in a column or in a row. A column vector in IRn is written as

x =


 x1...
xn


 ∈ IRn,

and the corresponding row vector (the vector with the same elements as x, but arranged in a row) is

x′ = (x1, . . . , xn) ∈ IRn.

The notation ′ stands for “transpose”. For example, the transpose of

x =

(
1
2

)
∈ IR2

is x′ = (1, 2). If x is a column vector, then its transpose is a row vector. The transpose of the transpose
of a vector x ∈ IRn is the vector x itself, that is, (x′)′ = x. For simplicity, we will omit the ′ for row
vectors whenever it is of no importance whether x ∈ IRn is to be treated as a column vector or a row
vector. It should be kept in mind, though, that for some applications, this distinction is of importance.
The following operations can be applied to vectors.

Definition 2.1.1 Let n ∈ IN, and let x, y ∈ IRn. The sum of x and y is defined by

x+ y :=


 x1 + y1...
xn + yn


 .

Definition 2.1.2 Let n ∈ IN, let α ∈ IR, and let x ∈ IRn. The product of α and x is defined by

αx :=


 αx1...
αxn


 .

21
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Figure 2.1: The vector x = (1, 2).
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Figure 2.2: Vector addition.

The operation described in Definition 2.1.1 is called vector addition, the operation introduced in Definition
2.1.2 is called scalar multiplication.
Vector addition and scalar multiplication have very intuitive geometric interpretations. Consider, for

example, x = (1, 2) ∈ IR2 and y = (3, 1) ∈ IR2. Then we obtain x+y = (1+3, 2+1) = (4, 3). This vector
addition is illustrated in Figure 2.2.
Now consider x = (1, 2) ∈ IR2 and α = 2. We obtain αx = (2 · 1, 2 · 2) = (2, 4), which is illustrated in

Figure 2.3.
Geometrically, the vector 2x points in the same direction as x ∈ IRn, but is twice as long (we will

discuss the notion of the “length” of a vector in more detail below).
Using vector addition and scalar multiplication, we can define the operation vector subtraction.

Definition 2.1.3 Let n ∈ IN, and let x, y ∈ IRn. The difference of x and y is defined by

x− y := x+ (−1)y.

The following theorem summarizes some properties of vector addition and scalar multiplication.

Theorem 2.1.4 Let n ∈ IN, let α, β ∈ IR, and let x, y, z ∈ IRn.
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Figure 2.3: Scalar multiplication.

(i) x+ y = y + x,
(ii) (x+ y) + z = x+ (y + z),
(iii) α(βx) = (αβ)x,
(iv) (α+ β)x = αx+ βx,
(v) α(x+ y) = αx+ αy.

The proof of this theorem is left as an exercise.
Vector addition and scalar multiplication yield new vectors in IRn. The operation introduced in the

following definition assigns a real number to a pair of vectors.

Definition 2.1.5 Let n ∈ IN, and let x, y ∈ IRn. The inner product of x and y is defined by

xy :=
n∑
i=1

xiyi.

The inner product of two vectors is used frequently in economic models. For example, if x ∈ IRn+ represents
a commodity bundle and p ∈ IRn++ denotes a price vector, the inner product px =

∑n
i=1 pixi is the value

of the commodity bundle at these prices.
The inner product has the following properties.

Theorem 2.1.6 Let n ∈ IN, let α ∈ IR, and let x, y, z ∈ IRn.

(i) xy = yx,
(ii) xx ≥ 0,
(iii) xx = 0⇔ x = 0,
(iv) (x+ y)z = xz + yz,
(v) (αx)y = α(xy).

Again, the proof of this theorem is left as an exercise.
Of special importance are the so-called unit vectors in IRn. For i ∈ {1, . . . , n}, the ith unit vector is

defined by

eij :=

{
0 if j �= i
1 if j = i

∀j = 1, . . . , n.

For example, for n = 2, e1 = (1, 0) and e2 = (0, 1). See Figure 2.4.
We now define the Euclidean norm of a vector.
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Figure 2.4: Unit vectors.

Definition 2.1.7 Let n ∈ IN, and let x ∈ IRn. The Euclidean norm of x is defined by

‖x‖ :=
√
xx =

√√√√ n∑
i=1

x2i .

Because the Euclidean norm is the only norm considered in this chapter, we will refer to ‖x‖ simply as
the norm of x ∈ IRn. Geometrically, the norm of a vector can be interpreted as a measure of its length.
For example, let x = (1, 2) ∈ IR2. Then

‖x‖ =
√
1 · 1 + 2 · 2 =

√
5.

Clearly, ‖ei‖ = 1 for the unit vector ei ∈ IRn.
Based on the Euclidean norm, we can define the Euclidean distance of two vectors x, y ∈ IRn as the

norm of the difference x− y.
Definition 2.1.8 Let n ∈ IN, and let x, y ∈ IRn. The Euclidean distance of x and y is defined by

d(x, y) := ‖x− y‖.

Again, we will omit the term “Euclidean”, because the above defined distance is the only notion of distance
used in this chapter. See Chapter 4 for a more detailed discussion of distance functions for vectors. For
n = 1, we obtain the usual norm and distance used for real numbers. For x ∈ IR, ‖x‖ =

√
x2 = |x|, and

for x, y ∈ IR, d(x, y) = ‖x− y‖ = |x− y|.
For many applications discussed in this course, the question whether or not some vectors are linearly

independent is of great importance. Before defining the terms “linear (in)dependence” precisely, we have
to introduce linear combinations of vectors.

Definition 2.1.9 Let m, n ∈ IN, and let x1, . . . , xm, y ∈ IRn. y is a linear combination of x1, . . . , xm if
and only if there exist α1, . . . , αm ∈ IR such that

y =
m∑
j=1

αjx
j.

For example, consider the vectors x1 = (1, 2), x2 = (0, 1), x3 = (5,−1), y = (−9/2, 5) in IR2. y is a linear
combination of x1, x2, x3, because, with α1 = 1/2, α2 = 3, α3 = −1, we obtain

y = α1x
1 + α2x

2 + α3x
3.

Note that any vector x ∈ IRn can be expressed as a linear combination of the unit vectors e1, . . . , en—
simply choose αi = xi for all i = 1, . . . , n to verify this.
Linear (in)dependence of vectors is defined as



2.1. VECTORS 25

Definition 2.1.10 Let m, n ∈ IN, and let x1, . . .xm ∈ IRn. The vectors x1, . . . , xm are linearly indepen-
dent if and only if

m∑
j=1

αjx
j = 0⇒ αj = 0 ∀j = 1, . . . , m.

The vectors x1, . . . xm are linearly dependent if and only if they are not linearly independent.

Linear independence of x1, . . . , xm requires that the only possibility to choose α1, . . . , αm ∈ IR such that∑m
j=1 αjx

j = 0 is to choose α1 = . . . = αm = 0. Clearly, the vectors x
1, . . . , xm are linearly dependent if

and only if there exist α1, . . . , αm ∈ IR such that
m∑
j=1

αjx
j = 0 ∧ (∃k ∈ {1, . . . , m} such that αk �= 0).

As an example, consider the vectors x1 = (2, 1), x2 = (1, 0). To check whether these vectors are linearly
independent, we have to consider the equation

α1

(
2
1

)
+ α2

(
1
0

)
=

(
0
0

)
. (2.1)

(2.1) is equivalent to
2α1 + α2 = 0 ∧ α1 = 0. (2.2)

By (2.2), we must have α1 = 0, and therefore, α2 = 0 in order to satisfy (2.1). Hence, the only possibility
to satisfy (2.1) is to choose α1 = α2 = 0, which means that the two vectors are linearly independent.
Another example for a set of linearly independent vectors is the set of unit vectors {e1, . . . , en} in IRn.

Clearly, the equation
n∑
j=1

αje
j = 0

is equivalent to

α1



1
0
...
0


+ . . .+ αn



0
...
0
1


 =


 0...
0


 ,

which requires αj = 0 for all j = 1, . . . , n. For a single vector x ∈ IRn, it is not very hard to find out
whether the vector is linearly dependent or independent. This is shown in

Theorem 2.1.11 Let n ∈ IN, and let x ∈ IRn. x is linearly independent if and only if x �= 0.

Proof. Let x = 0. Then any α ∈ IR satisfies

αx = 0. (2.3)

Therefore, there exists α �= 0 satisfying (2.3), which shows that 0 is linearly dependent.
Now let x �= 0. Then there exists k ∈ {1, . . . , n} such that xk �= 0. To satisfy

α


 x1...
xn


 =


 0...
0


 , (2.4)

we must, in particular, have αxk = 0. Because xk �= 0, the only possibility to satisfy (2.4) is to choose
α = 0. Therefore, x is linearly independent. ‖
The following theorem provides an alternative formulation of linear dependence for m ≥ 2 vectors.

Theorem 2.1.12 Let n,m ∈ IN with m ≥ 2, and let x1, . . . , xm ∈ IRn. The vectors x1, . . . , xm are
linearly dependent if and only if (at least) one of these vectors is a linear combination of the remaining
vectors.
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Proof. “Only if”: Suppose x1, . . . , xm are linearly dependent. Then there exist α1, . . .αm ∈ IR such that

m∑
j=1

αjx
j = 0 (2.5)

and there exists k ∈ {1, . . . , m} such that αk �= 0. Without loss of generality, suppose k = m. Because
αm �= 0, we can divide (2.5) by αm to obtain

m∑
j=1

αj

αm
xj = 0

or, equivalently,

xm =
m−1∑
j=1

βjx
j,

where βj := −αj/αm for all j = 1, . . . , m− 1. But this means that xm is a linear combination of the
remaining vectors.

“If”: Suppose one of the vectors x1, . . . , xm is a linear combination of the remaining vectors. Without
loss of generality, suppose xm is this vector. Then there exist α1, . . . , αm−1 ∈ IR such that

xm =
m−1∑
j=1

αjx
j .

Defining αm := −1, this is equivalent to
m∑
j=1

αjx
j = 0.

Because αm �= 0, this implies that the vectors x1, . . . , xm are linearly dependent. ‖
Further results concerning linear (in)dependence will follow later in this chapter, once matrices and

the solution of systems of linear equations have been discussed.

2.2 Matrices

Matrices are arrays of real numbers. The formal definition is

Definition 2.2.1 Let m, n ∈ IN. An m× n matrix is an array

A = (aij) =



a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn




where aij ∈ IR for all i = 1, . . . , m, j = 1, . . . , n.

Therefore, an m× n matrix is an array of real numbers with m rows and n columns. An m× n matrix
such that m = n is called a square matrix, that is, a square matrix has the same number of rows and
columns.

Equality of two matrices is defined as

Definition 2.2.2 Let m, n, q, r ∈ IN. Furthermore, let A = (aij) be an m× n matrix, and let B = (bij)
be a q × r matrix. A and B are equal if and only if

(m = q) ∧ (n = r) ∧ (aij = bij ∀i = 1, . . . , m, ∀j = 1, . . . , n).
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Vectors are special cases of matrices. A column vector

x =


 x1...
xn


 ∈ IRn

is an n× 1 matrix, and a row vector x′ = (x1, . . . , xn) ∈ IRn is a 1 × n matrix. We can also think of an
m× n matrix as an ordered n-tuple of m-dimensional column vectors

 a11...
am1


 . . .


 a1n

...
amn




or as an ordered m-tuple of n-dimensional row vectors

(a11, . . . , a1n)
...

(am1, . . . , amn).

The transpose of a matrix is defined as

Definition 2.2.3 Let m, n ∈ IN, and let A be an m× n matrix. The transpose of A is defined by

A′ :=



a11 a21 . . . am1
a12 a22 . . . am2
...

...
...

a1n a2n . . . amn


 .

Clearly, if A is an m× n matrix, A′ is an n×m matrix. The transpose of A is obtained by interchanging
the roles of rows and columns. For i = 1, . . . , m and j = 1, . . . , n, the ith row of A is the ith column of
A′, and the jth column of A is the jth row of A′. For example, the transpose of the 2× 3 matrix

A =

(
3 −1 0
2 0 1

)
is the 3× 2 matrix

A′ =


 3 2
−1 0
0 1


 .

The transpose of the transpose of a matrix A is the matrix A itself, that is, for any matrix A, (A′)′ = A.
Symmetric square matrices will play an important role in this course. We define

Definition 2.2.4 Let n ∈ IN. An n × n matrix A is symmetric if and only if A′ = A.

Note that symmetry is defined only for square matrices. For example, the 2× 2 matrix

A =

(
1 2
2 0

)
is symmetric, because

A′ =

(
1 2
2 0

)
= A.

On the other hand, the 2× 2 matrix
B =

(
1 2
−2 0

)
is not symmetric, because

B′ =

(
1 −2
2 0

)
�= B.

Now we will introduce some important matrix operations. First, we define matrix addition.
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Definition 2.2.5 Let m, n ∈ IN, and let A = (aij) and B = (bij) be m× n matrices. The sum of A and
B is defined by

A+ B := (aij + bij) =



a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n
...

...
...

am1 + bm1 am2 + bm2 . . . amn + bmn


 .

Note that the sum A+ B is defined only for matrices of the same type, that is, A and B must have the
same number of rows and the same number of columns. As examples, consider the 2× 3 matrices

A =

(
2 1 0
3 0 −1

)
, B =

(
1 0 0
0 2 2

)
.

The sum of theses two matrices is

A +B =

(
3 1 0
3 2 1

)
.

Next, scalar multiplication is defined.

Definition 2.2.6 Let m, n ∈ IN, and let A = (aij) be an m× n matrix. Furthermore, let α ∈ IR. The
product of α and A is defined by

αA := (αaij) =



αa11 αa12 . . . αa1n
αa21 αa22 . . . αa2n
...

...
...

αam1 αam2 . . . αamn


 .

For example, let α = −2 and

A =


 0 −2
1 2
5 0


 .

Then

αA =


 0 4
−2 −4
−10 0


 .

The following theorem summarizes some properties of matrix addition and scalar multiplication (note
the similarity to Theorem 2.1.4).

Theorem 2.2.7 Let m, n ∈ IN, and let A, B, C be m× n matrices. Furthermore, let α, β ∈ IR.

(i) A +B = B +A,
(ii) (A +B) +C = A + (B + C),
(iii) α(βA) = (αβ)A,
(iv) (α+ β)A = αA+ βA,
(v) α(A+B) = αA + αB.

As an exercise, prove this theorem.
The multiplication of two matrices is only defined if the matrices satisfy a conformability condition

for matrix multiplication. In particular, the matrix product AB is defined only if the number of columns
in A is equal to the number of rows in B.

Definition 2.2.8 Let m, n, r ∈ IN. Furthermore, let A = (aij) be an m× n matrix and let B = (bij) be
an n × r matrix. The matrix product AB is defined by

AB :=

(
n∑
k=1

aikbkj

)
=



∑n
k=1 a1kbk1

∑n
k=1 a1kbk2 . . .

∑n
k=1 a1kbkr∑n

k=1 a2kbk1
∑n
k=1 a2kbk2 . . .

∑n
k=1 a2kbkr

...
...

...∑n
k=1 amkbk1

∑n
k=1 amkbk2 . . .

∑n
k=1 amkbkr


 .
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If A is an m× n matrix and B is an n × r matrix, the matrix AB is an m× r matrix. If A is an m× n
matrix, B is a q × r matrix, and n �= q, the product AB is not defined.
The above definition is best illustrated with an example. Let

A =


 2 10 2
1 1


 , B = ( 1 0 3 0

−1 2 2 1

)
.

A is a 3× 2 matrix, and B is a 2× 4 matrix, and therefore, the conformability condition for the multipli-
cation of these matrices is satisfied (because the number of columns in A is equal to the number of rows
in B). The matrix AB is a 3× 4 matrix, and it is obtained as follows.

AB =


 2 10 2
1 1


 ( 1 0 3 0

−1 2 2 1

)

=


 2 · 1 + 1 · (−1) 2 · 0 + 1 · 2 2 · 3 + 1 · 2 2 · 0 + 1 · 1
0 · 1 + 2 · (−1) 0 · 0 + 2 · 2 0 · 3 + 2 · 2 0 · 0 + 2 · 1
1 · 1 + 1 · (−1) 1 · 0 + 1 · 2 1 · 3 + 1 · 2 1 · 0 + 1 · 1




=


 1 2 8 1
−2 4 4 2
0 2 5 1


 .

Some results on matrix multiplication are stated below.

Theorem 2.2.9 Let m, n, q, r ∈ IN. If A is an m × n matrix, B is an n × q matrix, and C is a q × r
matrix, then (AB)C = A(BC).

Proof. By definition, AB = (
∑n
k=1 aikbkj). Therefore,

(AB)C =

(
q∑
l=1

(
n∑
k=1

aikbkl

)
clj

)

=

(
q∑
l=1

n∑
k=1

aikbklclj

)

=

(
n∑
k=1

q∑
l=1

aikbklclj

)

=

(
n∑
k=1

aik

(
q∑
l=1

bklclj

))

= A(BC). ‖

Theorem 2.2.10 Let m, n, r ∈ IN. If A is an m × n matrix and B and C are n × r matrices, then
A(B + C) = AB +AC.

Theorem 2.2.11 Let m, n, r ∈ IN. If A and B are m × n matrices and C is an n × r matrix, then
(A +B)C = AC +BC.

The proofs of Theorems 2.2.10 and 2.2.11 are left as exercises.

Theorem 2.2.12 Let m, n, r ∈ IN. If A is an m×n matrix and B is an n×r matrix, then (AB)′ = B′A′.

Proof. First, note that (AB)′ is an r × m matrix, and B′A′ is an r × m matrix. Because AB =
(
∑n
k=1 aikbkj), (AB)

′ = (
∑n
k=1 ajkbki). Furthermore,

B′A′ =

(
n∑
k=1

bkiajk

)
=

(
n∑
k=1

ajkbki

)
,

and therefore, (AB)′ = B′A′. ‖
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Theorem 2.2.9 describes the associative laws of matrix multiplication, and Theorems 2.2.10 and 2.2.11
contain the distributive laws for matrix addition and multiplication. Note that matrix multiplication is
not commutative, that is, in general, AB is not equal to BA. If A is an m × n matrix, B is an n × r
matrix, and m �= r, the product BA is not even defined, even though AB is defined. If A is an m × n
matrix, B is an n ×m matrix, and m �= n, both products AB and BA are defined, but these matrices
are not of the same type—AB is an m ×m matrix, whereas BA is an n × n matrix. Clearly, if m �= n,
these matrices cannot be equal. If A and B both are n× n matrices, AB and BA are defined and are of
the same type (both are n × n matrices), but still, AB and BA are not necessarily equal. For example,
consider

A =

(
1 2
3 4

)
, B =

(
0 −1
6 7

)
.

Then we obtain

AB =

(
12 13
24 25

)
, BA =

(
−3 −4
27 40

)
.

Clearly, AB �= BA.
Therefore, the order in which we form a matrix product is important. For a matrix product AB, we

use the terminology “A is postmultiplied by B” or “B is premultiplied by A”.
The rank of a matrix will be of importance in solving systems of linear equations later on in this

chapter. First, we define the row rank and the column rank of a matrix.

Definition 2.2.13 Let m, n ∈ IN, and let A be an m× n matrix.

(i) The row rank of A, Rr(A), is the maximal number of linearly independent row vectors in
A.
(ii) The column rank of A, Rc(A), is the maximal number of linearly independent column
vectors in A.

It can be shown that, for any matrix A, the row rank of A is equal to the column rank of A (see the next
section for more details). Therefore, we can define the rank of an m× n matrix A as

R(A) := Rr(A) = Rc(A).

For example, consider the matrix

A =

(
2 0
1 1

)
.

The column vectors of A, (
2
1

)
,

(
0
1

)
,

are linearly independent, and so are the row vectors (2, 0) and (1, 1) (show this as an exercise). Therefore,
the maximal number of linearly independent row (column) vectors in A is 2, which implies R(A) = 2.
Now consider the matrix

B =

(
2 −4
1 −2

)
.

We have (
−4
−2

)
= −2

(
2
1

)
,

and therefore, the column vectors of B are linearly dependent. The maximal number of linearly indepen-
dent column vectors is one (because we can find a column vector that is not equal to 0), and therefore,
R(B) = Rc(B) = 1. (As an exercise, show that the row rank of B is equal to one.)
Special matrices that are of importance are null matrices and identity matrices.

Definition 2.2.14 Let m, n ∈ IN. The m× n null matrix is defined by

0 :=



0 0 . . . 0
0 0 . . . 0
...
...

...
0 0 . . . 0


 .
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Definition 2.2.15 Let n ∈ IN. The n× n identity matrix E = (eij) is defined by

eij :=

{
0 if i �= j
1 if i = j

∀i, j = 1, . . . , n.

Hence, all entries of a null matrix are equal to zero, and an identity matrix has ones along the main
diagonal, and all other entries are equal to zero. Note that only square identity matrices are defined.
If the m× n null matrix is added to any m× n matrix A, the resulting matrix is the matrix A itself.

Therefore, null matrices play a role analogous to the role played by the number zero for the addition of
real numbers (the role of the neutral element for addition). Analogously, the n × n identity matrix has
the property AE = A for all m × n matrices A and EB = B for all n ×m matrices B. Therefore, the
identity matrix is the neutral element for postmultiplication and premultiplication of matrices.

2.3 Systems of Linear Equations

Solving systems of equations is a frequently occuring problem in economic theory. For example, equilib-
rium conditions can be formulated as equations, and if we want to look for equilibria in several markets
simultaneously, we obtain a whole set (or system) of equations. In this section, we deal with the special
case where these equations are linear. For m, n ∈ IN, a system of m linear equations in n variables can
be written as

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
am1x1 + am2x2 + . . .+ amnxn = bm

(2.6)

where the aij and the bi, i = 1, . . . , m, j = 1, . . . , n, are given real numbers. Clearly, (2.6) can be written
in matrix notation as

Ax = b

where A is anm×nmatrix and b ∈ IRm. An alternative way of formulating (2.6) (which will be convenient
in employing a specific solution method) is


x1 x2 . . . xn
a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
am1 am2 . . . amn bm


 .

To solve (2.6) means to find a solution vector x∗ ∈ IRn such that all m equations in (2.6) are satisfied.
A solution to (2.6) need not exist, and if a solution exists, it need not be unique.
Clearly, the solvability of a system of linear equations will depend on the properties of A and b. We

will derive a general method of solving systems of linear equations and provide necessary and sufficient
conditions on A and b for the existence of a solution.
The basic idea underlying the method of solution described below—theGaussian elimination method—

is that certain transformations of a system of linear equations do not affect the solution of the system (by
a solution, we mean the set of solution vectors, which may, of course, be empty), such that the solution
of the transformed system is easy to find.
We say that two systems of equations are equivalent if they have the same solution. Because renum-

bering the variables involved does not change the property of a vector solving a system of linear equations,
this possibility is included by allowing for permutations of the columns of the system. Formally,

Definition 2.3.1 Let m, n ∈ IN, and let π be a permutation of {1, . . . , n}. Furthermore, let A and C be
m× n matrices, and let b, d ∈ IRm. The systems of linear equations Ax = b and Cxπ = d are equivalent
if and only if, for all x ∈ IRn,

x solves Ax = b⇔ xπ solves Cxπ = d.

We denote the equivalence of two systems of equations by (Ax = b) ∼ (Cxπ = d).
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The following theorem provides a list of transformations that lead to equivalent systems of equations.

Theorem 2.3.2 Let m, n ∈ IN, and let π be a permutation of {1, . . . , n}. Furthermore, let A be an m×n
matrix, and let b ∈ IRm.

(i) If two equations in the system of linear equations Ax = b are interchanged, the resulting
system is equivalent to Ax = b.
(ii) If an equation in the system Ax = b is multiplied by a real number α �= 0, the resulting
system of equations is equivalent to Ax = b.
(iii) If an equation in the system Ax = b is replaced by the sum of this equation and a multiple
of another equation in Ax = b, the resulting system is equivalent to Ax = b.
(iv) If Aπ is the m×n matrix obtained by applying the permutation π to the n column vectors
of A, the system Aπxπ = b is equivalent to Ax = b.

The proof of Theorem 2.3.2 is left as an exercise (that the transformations defined in this theorem lead
to equivalent systems of equations can be verified by simple substitution).
To illustrate the use of Theorem 2.3.2, consider the following example. Let

A =

(
2 −1
−4 0

)
, b =

(
2
4

)
.

Then the system of linear equations Ax = b is equivalent to
 x1 x2
2 −1 2
−4 0 4


 ∼


 x2 x1
−1 2 2
0 −4 4


 ∼


 x2 x1
1 −2 −2
0 −4 4




(application of (iv)—exchange columns 1 and 2; application of (ii)—multiply Equation 1 by −1)

∼


 x2 x1
1 −2 −2
0 1 −1


 ∼


 x2 x1
1 0 −4
0 1 −1




(application of (ii)—multiply Equation 2 by −1/4; application of (iii)—add two times Equation 2 to
Equation 1). The solution of this system of linear equations (and therefore, the solution of the equivalent
system Ax = b) can be obtained easily. It is x∗2 = −4 and x∗1 = −1, which means we obtain the unique
solution vector x∗ = (−1,−4).
This procedure can be generalized. The transformations mentioned in Theorem 2.3.2 allow us to find,

for any system of linear equations, an equivalent system with a simple structure. This procedure—the
Gaussian elimination method—is described below.
Let m, n ∈ IN, let A be an m× n matrix, and let b ∈ IRm. By repeated application of Theorem 2.3.2,

we can find a permutation π of {1, . . . , n}, a number k ∈ {1, . . . , n}, an m × n matrix C, and a vector
d ∈ IRm such that (Cxπ = d) ∼ (Ax = b) and



xπ(1) xπ(2) . . . xπ(k) xπ(k+1) . . . xπ(n)
1 0 . . . 0 c1(k+1) . . . c1n d1
0 1 . . . 0 c2(k+1) . . . c2n d2
...

...
...

...
...

0 . . . 1 ck(k+1) . . . ckn dk
0 . . . 0 0 . . . 0 dk+1
...

...
...

...
...

0 . . . 0 0 . . . 0 dm



. (2.7)

The following example illustrates the application of the Gaussian elimination method. Consider the
following system of linear equations. Applying the elimination method, we obtain


x1 x2 x3 x4 x5
1 0 2 0 1 1
2 −2 1 3 0 2
0 −1 0 1 0 2
0 0 −3 1 −2 −4


 ∼



x1 x2 x3 x4 x5
1 0 2 0 1 1
0 −2 −3 3 −2 0
0 −1 0 1 0 2
0 0 −3 1 −2 −4
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(add −2 times Equation 1 to Equation 2)

∼



x1 x2 x3 x4 x5
1 0 2 0 1 1
0 −1 0 1 0 2
0 −2 −3 3 −2 0
0 0 −3 1 −2 −4


 ∼



x1 x2 x3 x4 x5
1 0 2 0 1 1
0 1 0 −1 0 −2
0 −2 −3 3 −2 0
0 0 −3 1 −2 −4




(interchange Equations 2 and 3; multiply Equation 2 by −1)

∼



x1 x2 x3 x4 x5
1 0 2 0 1 1
0 1 0 −1 0 −2
0 0 −3 1 −2 −4
0 0 −3 1 −2 −4


 ∼



x1 x2 x3 x4 x5
1 0 2 0 1 1
0 1 0 −1 0 −2
0 0 −3 1 −2 −4
0 0 0 0 0 0


 (2.8)

(add 2 times Equation 2 to Equation 3; add −1 times Equation 3 to Equation 4)

∼



x1 x2 x4 x3 x5
1 0 0 2 1 1
0 1 −1 0 0 −2
0 0 1 −3 −2 −4
0 0 0 0 0 0


 ∼



x1 x2 x4 x3 x5
1 0 0 2 1 1
0 1 0 −3 −2 −6
0 0 1 −3 −2 −4
0 0 0 0 0 0




(interchange columns 3 and 4; add Equation 3 to Equation 2). We have now transformed the original
system of linear equations into an equivalent system of the form (2.7). It is now easy to see that any
x ∈ IR5 satisfying

x1 = 1− 2x3 − x5
x2 = −6 + 3x3 + 2x5
x4 = −4 + 3x3 + 2x5

is a solution. Therefore, we can choose α1 := x3 and α2 := x5 arbitrarily, and any solution x
∗ can be

written as

x∗ =



x∗1
x∗2
x∗3
x∗4
x∗5


 =



1
−6
0
−4
0


+ α1



−2
3
1
3
0


+ α2



−1
2
0
2
1


 .

Now let us modify this example by changing b4 from −4 to 0. The resulting system of linear equations
is 


x1 x2 x3 x4 x5
1 0 2 0 1 1
2 −2 1 3 0 2
0 −1 0 1 0 2
0 0 −3 1 −2 0


 .

Using the same transformations that led to (2.8) in the previous example, it follows that this system is
equivalent to 


x1 x2 x3 x4 x5
1 0 2 0 1 1
0 1 0 −1 0 −2
0 0 −3 1 −2 −4
0 0 −3 1 −2 0


 ∼



x1 x2 x3 x4 x5
1 0 2 0 1 1
0 1 0 −1 0 −2
0 0 −3 1 −2 −4
0 0 0 0 0 4




(add −1 times Equation 3 to Equation 4). Clearly, this system of equations cannot have a solution,
because the last equation requires 0 = 4, which is, of course, impossible.
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In general, whenever any of the numbers dk+1, . . . , dm in (2.7) is different from zero, we see that the
corresponding system of linear equations cannot have a solution.
Theorem 2.3.2 and (2.7) can also be used to show that the column rank of a matrix must be equal to

the row rank of a matrix (see Section 2.2). This follows from the observation that the transformations
mentioned in Theorem 2.3.2, if applied to a matrix, leave the column and row rank of this matrix
unchanged.
Clearly, Ax = b has a solution if and only if dk+1 = . . . = dm = 0 in (2.7). Because the transformations

used in the elimination method do not change the rank of A and of (A, b), where

(A, b) :=


 a11 . . . a1n b1

...
...

...
am1 . . . amn bm


 ,

we obtain

Theorem 2.3.3 Let m, n ∈ IN, let A be an m× n matrix, and let b ∈ IRm. The system Ax = b has at
least one solution if and only if R(A) = R(A, b).

Theorem 2.3.3 gives a precise answer to the question under which conditions solutions to a system of
linear equations exist.
The question whether vectors are linearly independent can be formulated in terms of a system of

linear equations. The vectors x1, . . . , xm ∈ IRn, where m, n ∈ IN, are linearly independent if and only if
the only solution to the system of linear equations

α1x
1 + . . .+ αmx

m = 0

is α∗1 = . . . = α
∗
m = 0. We now show that at most n vectors of dimension n can be linearly independent.

Theorem 2.3.4 Let m, n ∈ IN, and let x1, . . . , xm ∈ IRn. If m > n, then x1, . . .xm are linearly depen-
dent.

Proof. Consider the system of linear equations

α1 . . . αm
x11 . . . xm1 0
...

...
...

x1n . . . xmn 0


 . (2.9)

Using the Gaussian elimination method, we can find an equivalent system of the form


απ(1) απ(2) . . . απ(k) απ(k+1) . . . απ(m)
1 0 . . . 0 c1(k+1) . . . c1m 0
0 1 . . . 0 c2(k+1) . . . c2m 0
...

...
...

...
...

0 . . . 1 ck(k+1) . . . ckm 0
0 . . . 0 0 . . . 0 0
...

...
...

...
...

0 . . . 0 0 . . . 0 0




(note that, because the right sides in (2.9) are equal to zero, the right sides of the transformed system
must be equal to zero—the transformations that are used to obtain this equivalent system leave these
zeroes unchanged). Because k ≤ n < m, the set {απ(k+1), . . . , απ(m)} is nonempty. Therefore, we can
choose απ(k+1), . . . , απ(m) arbitrarily (in particular, different from zero) and απ(1), . . . , απ(k) so that the
equations in the above system are satisfied. But this means there exist α1, . . . , αm ∈ IR satisfying (2.9)
such that at least one αj is different from zero. This means that the vectors x

1, . . . xm must be linearly
dependent. ‖
We conclude this section with a special case of systems of linear equations, where the number of

equations is equal to the number of variables. These systems are important in many applications.
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The following result deals with the existence and uniqueness of a solution to a system of n equations in
n variables, where n ∈ IN. In many economic models, not only existence, but also uniqueness of a solution
is of importance, because multiple solutions can pose a serious selection problem and can complicate the
analysis of the behaviour of economic variables considerably. Again, the rank of the matrix of coefficients
is the crucial factor in determining whether or not a unique solution to a system of linear equations exists.

Theorem 2.3.5 Let n ∈ IN, and let A be an n× n matrix. Ax = b has a unique solution for all b ∈ IRn
if and only if R(A) = n.

Proof. “Only if”: By way of contradiction, suppose the system Ax = b has a unique solution x∗ ∈ IRn
for all b ∈ IRn, and R(A) < n. Then one of the row vectors in A can be written as a linear combination
of the remaining row vectors. Without loss of generality, suppose

(an1, . . . , ann) = α1(a11, . . . , a1n) + . . .+ αn−1(a(n−1)1, . . . , a(n−1)n) (2.10)

with α1, . . . , αn−1 ∈ IR. Let

b =



0
...
0
1


 ∈ IRn,

and consider the system of equations
Ax = b. (2.11)

Now successively add −α1 times the first, −α2 times the second,. . ., −αn−1 times the (n− 1)st equation
to the nth equation. By (2.10) and the definition of b, the nth equation becomes

0 = 1,

which means that (2.11) cannot have a solution for b ∈ IRn as chosen above. This is a contradiction.
“If”: Suppose R(A) = n. Let b ∈ IRn. We have to prove

(i) the existence,
(ii) the uniqueness

of a solution to the system Ax = b.
(i) Existence. By Theorem 2.3.4, the vectors

 a11...
an1


 , . . . ,


 a1n...
ann


 ,

 b1...
bn




must be linearly dependent (n+ 1 vectors in IRn cannot be linearly independent). Therefore, there exist
α1, . . . , αn, β ∈ IR such that

α1


 a11...
an1


+ . . .+ αn


 a1n...
ann


+ β


 b1...
bn


 =


 0...
0


 ,

where at least one of the real numbers α1, . . . , αn, β must be different from zero.
If β = 0,

α1


 a11...
an1


+ . . .+ αn


 a1n...
ann


 =


 0...
0


 ,

and there exists k ∈ {1, . . . , n} such that αk �= 0. But this contradicts the assumption R(A) = n.
Therefore, β �= 0. This implies

(
−α1
β

) a11...
an1


+ . . .+ (−αn

β

) a1n...
ann


 =


 b1...
bn


 ,
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which means that

x∗ =

(
−α1
β
, . . . ,−αn

β

)
solves Ax = b. This proves (i).
(ii) Uniqueness. Suppose Ax = b and Ay = b, where x, y ∈ IRn. We have to show that x = y.

Subtracting the second of the above systems from the first, we obtain A(x−y) = 0, which can be written
as

(x1 − y1)


 a11...
an1


+ . . .+ (xn − yn)


 a1n...
ann


 =


 0...
0


 . (2.12)

Because R(A) = n, the column vectors inA are linearly independent, and therefore, (2.12) can be satisfied
only if xi = yi for all i = 1, . . . , n, that is, x = y. ‖

2.4 The Inverse of a Matrix

Recall that for any real number x �= 0, there exists a number y ∈ IR such that xy = 1, namely, y = 1/x.
Analogously, we could ask ourselves whether, for an n × n matrix A, we can find a matrix B such that
AB = E. As we will see, this is not the case for all n × n matrices—there are square matrices A (and
the null matrix is not the only one) such that there exists no such matrix B.
We will use the following terminology.

Definition 2.4.1 Let n ∈ IN, and let A be an n× n matrix.

(i) A is nonsingular if and only if there exists a matrix B such that AB = E.
(ii) A is singular if and only if A is not nonsingular.

For example, consider the matrix

A =

(
2 0
1 1

)
.

For

B =

(
1/2 0
−1/2 1

)
,

we obtain AB = E, and therefore, the matrix A is nonsingular.
Now let

A =

(
2 −4
1 −2

)
.

A is nonsingular if and only if we can find a 2× 2 matrix B = (bij) such that(
2 −4
1 −2

)(
b11 b12
b21 b22

)
=

(
1 0
0 1

)
.

This implies that B must satisfy

(2b12 − 4b22 = 0) ∧ (b12 − 2b22 = 1).

But this is equivalent to
(b12 − 2b22 = 0) ∧ (b12 − 2b22 = 1),

and clearly, there exists no such matrix B. Therefore, A is singular.
Nonsingularity of a square matrix A is equivalent to A having full rank.

Theorem 2.4.2 Let n ∈ IN, and let A be an n× n matrix. A is nonsingular if and only if R(A) = n.

Proof. “Only if”: Suppose A is nonsingular. Then there exists a matrix B such that AB = E. Let
b ∈ IRn. Then

b = Eb = (AB)b = A(Bb).
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This means that the system of linear equations Ax = b has a solution x∗ (namely, x∗ = Bb) for all
b ∈ IRn. By the argument used in the proof of Theorem 2.3.5, this implies R(A) = n.
“If”: Suppose R(A) = n. By Theorem 2.3.5, this implies that Ax = b has a unique solution for

all b ∈ IRn. In particular, for b = ei, where i ∈ {1, . . . , n}, there exists a unique x∗i ∈ IRn such that
Ax∗i = ei. Because the matrix composed of the column vectors (e1, . . . , en) is the identity matrix E, it
follows that AB = E, where B := (x∗1, . . . , x∗n). ‖
In the second part of the above proof, we constructed a matrix B such that AB = E for a given

square matrix A with full rank. Note that, because of the uniqueness of the solution x∗i, i = 1, . . . , n, the
resulting matrix B = (x∗1, . . . , x∗n) is uniquely determined. Therfore, for any nonsingular square matrix
A, there exists exactly one matrix B such that AB = E. Therefore, the above proof also has shown

Theorem 2.4.3 Let n ∈ IN, and let A be an n× n matrix. If AB = E and AC = E, then B = C.

For a nonsingular square matrix A, we call the unique matrix B such that AB = E the inverse of A, and
we denote it by A−1.

Definition 2.4.4 Let n ∈ IN, and let A be a nonsingular n × n matrix. The unique matrix A−1 such
that

AA−1 = E

is called the inverse matrix of A.

Some important properties of inverse matrices are summarized below.

Theorem 2.4.5 Let n ∈ IN. If A is a nonsingular n×n matrix, then A−1 is nonsingular and (A−1)−1 =
A.

Proof. Because nonsingularity is equivalent to R(A) = n, and because R(A′) = R(A), it follows that
A′ is nonsingular. Therefore, there exists a unique matrix B such that A′B = E. Clearly, E′ = E, and
therefore,

E = E′ = (A′B)′ = B′A,

and we obtain
B′ = B′E = B′(AA−1) = (B′A)A−1 = EA−1 = A−1.

This implies A−1A = B′A = E, and hence, A is the inverse of A−1. ‖

Theorem 2.4.6 Let n ∈ IN. If A is a nonsingular n × n matrix, then A′ is nonsingular and (A′)−1 =
(A−1)′.

Proof. That A′ is nonsingular follows from R(A′) = R(A) and the nonsingularity of A. Using Theorem
2.4.5, we obtain

E = E′ = (A−1A)′ = A′(A−1)′.

Therefore, (A′)−1 = (A−1)′. ‖

Theorem 2.4.7 Let n ∈ IN. If A and B are nonsingular n × n matrices, then AB is nonsingular and
(AB)−1 = B−1A−1.

Proof. By the rules of matrix multiplication,

(AB)(B−1A−1) = A(BB−1)A−1 = AEA−1 = AA−1 = E.

Therefore, (AB)−1 = B−1A−1. ‖

2.5 Determinants

The determinant of a square matrix A is a real number associated with A that is useful for several
purposes. We first consider a geometric interpretation of the determinant of a 2× 2 matrix.
Consider two vectors a1, a2 ∈ IR2. Suppose we want to find the area of the parallelogram spanned by

the two vectors a1 and a2. Figure 2.5 illustrates this area V for the vectors a1 = (3, 1) and a2 = (1, 2).



38 CHAPTER 2. LINEAR ALGEBRA

1 2 3 4 5 x1

1

2

3

4

5

x2

�
�
�
�
�
��

��
��

��
����

a2

��
��

��
���

�
�
�
�
�
�

a1

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
��

�
�
�
�
V

�
��

�
��

Figure 2.5: Geometric interpretation of determinants.

Of course, we would like to be able to assign a real number representing this area to any pair of vectors
a1, a2 ∈ IR2. Letting A2 denote the set of all 2× 2 matrices, this means that we want to find a function
f : A2 �→ IR such that, for any A ∈ A2, f(A) is interpreted as the area of the parallelogram spanned by
the column vectors (or the row vectors) of A.
It can be shown that the only function that has certain plausible properties (properties that we would

expect from a function assigning the area of such a parallelogram to each matrix) is the function that
assigns the absolute value of the determinant of A to each matrix A ∈ A2. More generally, the only
function having such properties in any dimension n ∈ IN is the function that assigns the absolute value
of A’s determinant to each square matrix A.
In addition to this geometrical interpretation, the determinant of a matrix has several very important

properties, as we will see later. In order to introduce the determinant of a square matrix formally, we
need some further definitions involving permutations.

Definition 2.5.1 Let n ∈ IN, and let π : {1, . . . , n} �→ {1, . . . , n} be a permutation of {1, . . . , n}. The
numbers π(i) and π(j) form an inversion (in π) if and only if

i < j ∧ π(i) > π(j).

For example, let n = 3, and define the permutation

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 2
2 if x = 3
3 if x = 1

(2.13)

Then π(1) and π(2) form an inversion, because π(1) > π(2), and π(1) and π(3) form an inversion, because
π(1) > π(3). Therefore, there are two inversions in the above permutation. We define

Definition 2.5.2 Let n ∈ IN, and let π : {1, . . . , n} �→ {1, . . . , n} be a permutation of {1, . . . , n}. The
number of inversions in π is denoted by N(π).

Definition 2.5.3 Let n ∈ IN, and let π : {1, . . . , n} �→ {1, . . . , n} be a permutation of {1, . . . , n}.

(i) π is an odd permutation of {1, . . . , n} ⇔ N(π) is odd.
(ii) π is an even permutation of {1, . . . , n} ⇔ N(π) is even ∨ N(π) = 0.

The number of inversions in the permutation π defined in (2.13) is N(π) = 2, and therefore, π is an even
permutation.
Letting Π denote the set of all permutations of {1, . . . , n}, the determinant of an n × n matrix can

now be defined.
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Definition 2.5.4 Let n ∈ IN, and let A be an n× n matrix. The determinant of A is defined by

|A| :=
∑
π∈Π
aπ(1)1aπ(2)2 . . . aπ(n)n(−1)N(π).

To illustrate Definition 2.5.4, consider first the case n = 2. There are two permutations π1 and π2 of
{1, 2}, namely,

π1(1) = 1 ∧ π1(2) = 2
and

π2(1) = 2 ∧ π2(2) = 1.
Clearly, N(π1) = 0 and N(π2) = 1 (that is, π1 is even and π2 is odd). Therefore, the determinant of a
2× 2 matrix A is given by

|A| = a11a22(−1)0 + a21a12(−1)1 = a11a22 − a21a12.

For example, the determinant of

A =

(
1 2
−1 1

)
is

|A| = 1 · 1− (−1) · 2 = 1 + 2 = 3.
In general, the determinant of a 2× 2 matrix is obtained by subtracting the product of the off-diagonal
elements from the product of the elements on the main diagonal.
For n = 3, there are six possible permutations, namely,

π1(1) = 1 ∧ π1(2) = 2 ∧ π1(3) = 3,
π2(1) = 1 ∧ π2(2) = 3 ∧ π2(3) = 2,
π3(1) = 2 ∧ π3(2) = 1 ∧ π3(3) = 3,
π4(1) = 2 ∧ π4(2) = 3 ∧ π4(3) = 1,
π5(1) = 3 ∧ π5(2) = 1 ∧ π5(3) = 2,
π6(1) = 3 ∧ π6(2) = 2 ∧ π6(3) = 1.

We have N(π1) = 0, N(π2) = 1, N(π3) = 1, N(π4) = 2, N(π5) = 2, and N(π6) = 3 (verify this as an
exercise). Therefore, the determinant of a 3× 3 matrix A is given by

|A| = a11a22a33(−1)0 + a11a32a23(−1)1 + a21a12a33(−1)1

+ a21a32a13(−1)2 + a31a12a23(−1)2 + a31a22a13(−1)3

= a11a22a33 − a11a32a23 − a21a12a33 + a21a32a13 + a31a12a23 − a31a22a13.

For example, the determinant of

A =


 1 0 4
2 1 −1
0 1 0




is

|A| = 1 · 1 · 0− 1 · 1 · (−1) − 2 · 0 · 0 + 2 · 1 · 4 + 0 · 0 · (−1)− 0 · 1 · 4
= 0 + 1 + 0 + 8 + 0 + 0 = 9.

For large n, the calculation of determinants can become computationally quite involved. In general,
there are n! (in words: “n factorial”) permutations of {1, . . . , n}, where, for n ∈ IN,

n! := 1 · 2 · . . . · n.

For example, if A is a 5 × 5 matrix, the calculation of |A| involves the summation of 5! = 120 terms.
However, it is possible to simplify the calculation of determinants of matrices of higher dimensions. We
introduce some more definitions in order to do so.
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Definition 2.5.5 Let n ∈ IN, and let A be an n × n matrix. For i, j ∈ {1, . . . , n}, let Aij denote the
(n− 1)× (n− 1) matrix that is obtained from A by removing row i and column j. The cofactor of aij is
defined by

|Cij| := (−1)i+j |Aij|.

Definition 2.5.6 Let n ∈ IN, and let A be an n× n matrix. The adjoint of A is defined by

adj(A) :=


 |C11| . . . |Cn1|...

...
|C1n| . . . |Cnn|


 .

Therefore, the adjoint of A is the transpose of the matrix of cofactors of A.
The cofactors of a square matrix A can be used to expand the determinant of A along a row or a

column of A. This expansion procedure is described in the following theorem, which is stated without a
proof.

Theorem 2.5.7 Let n ∈ IN, and let A be an n× n matrix.

(i) |A| =
∑n
j=1 aij|Cij| ∀i = 1, . . . , n.

(ii) |A| =
∑n
i=1 aij|Cij| ∀j = 1, . . . , n.

Expanding the determinant of an n×nmatrix A along a row or column of A is a method that proceeds by
calculating n determinants of (n−1)×(n−1) matrices, which can simplify the calculation of a determinant
considerably—especially if a matrix has a row or column with many zero entries. For example, consider

A =


 1 0 4
2 1 −1
0 1 0


 .

If we expand |A| along the third row (which is the natural choice, because this row has many zeroes), we
obtain

|A| = 0 · (−1)3+1 ·
∣∣∣∣ 0 4
1 −1

∣∣∣∣+1 · (−1)3+2 ·
∣∣∣∣ 1 4
2 −1

∣∣∣∣+0 · (−1)3+3 ·
∣∣∣∣ 1 02 1

∣∣∣∣ = 0+(−1) · (−1−8)+0 = 9.
Next, some important properties of determinants are summarized (the proof of the following theorem

is omitted).

Theorem 2.5.8 Let n ∈ IN, and let A and B be n× n matrices.

(i) |A′| = |A|.
(ii) If B is obtained from A by adding a multiple of one row (column) of A to another row
(column) of A, then |B| = |A|.
(iii) If B is obtained from A by multiplying one row (column) of A by α ∈ IR, then |B| = α|A|.
(iv) If B is obtained from A by interchanging two rows (columns) of A, then |B| = −|A|.
(v) |AB| = |A||B|.

Part (v) of the above theorem gives us a convenient way to find the determinant of the inverse of
a nonsingular matrix A. First, note that |E| = 1 (Exercise: show this). For a nonsingular square
matrix A, we have AA−1 = E, and therefore, |AA−1| = |E| = 1. By part (v) of Theorem 2.5.8,
|AA−1| = |A||A−1| = 1, and therefore,

|A−1| = 1

|A| .

Note that |A||A−1| = 1 implies that the determinant of a nonsingular matrix (and the determinant of its
inverse) must be different from zero. In fact, a nonzero determinant is equivalent to the nonsingularity
of a square matrix. Formally,

Theorem 2.5.9 Let n ∈ IN, and let A be an n× n matrix. A is nonsingular if and only if |A| �= 0.
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For a system of linear equations Ax = b, where A is a nonsingular n × n matrix and b ∈ IRn,
determinants can be used to find the unique solution to this system. The following theorem describes
this method, which is known as Cramer’s rule.

Theorem 2.5.10 Let n ∈ IN. Furthermore, let A be a nonsingular n × n matrix, and let b ∈ IRn. The
unique solution x∗ ∈ IRn to the system of linear equations Ax = b satisfies

x∗j =

∣∣∣∣∣∣∣
a11 . . . a1(j−1) b1 a1(j+1) . . . a1n
...

...
...

...
...

an1 . . . an(j−1) bn an(j+1) . . . ann

∣∣∣∣∣∣∣
|A| ∀j = 1, . . . , n.

Proof. Let x∗ ∈ IRn be the unique solution to Ax = b (existence and uniqueness of x∗ follow from the
nonsingularity of A). By part (iii) of Theorem 2.5.8,

x∗j |A| =

∣∣∣∣∣∣∣
a11 . . . a1(j−1) x

∗
ja1j a1(j+1) . . . a1n

...
...

...
...

...
an1 . . . an(j−1) x

∗
janj an(j+1) . . . ann

∣∣∣∣∣∣∣ ∀j = 1, . . . , n.
By part (ii) of Theorem 2.5.8, the determinant of a matrix is unchanged if we add a multiple of a column
to another column. Repeated application of this property yields

x∗j |A| =

∣∣∣∣∣∣∣
a11 . . . a1(j−1)

∑n
k=1 x

∗
ka1k a1(j+1) . . . a1n

...
...

...
...

...
an1 . . . an(j−1)

∑n
k=1 x

∗
kank an(j+1) . . . ann

∣∣∣∣∣∣∣ ∀j = 1, . . . , n.
Because x∗ solves Ax = b,

∑n
k=1 x

∗
kaik = bi for all i = 1, . . . , n. Therefore,

x∗j |A| =

∣∣∣∣∣∣∣
a11 . . . a1(j−1) b1 a1(j+1) . . . a1n
...

...
...

...
...

an1 . . . an(j−1) bn an(j+1) . . . ann

∣∣∣∣∣∣∣ ∀j = 1, . . . , n. (2.14)

Because A is nonsingular, |A| �= 0, and therefore, we can divide both sides of (2.14) by |A| to complete
the proof. ‖
As an example, consider the system of equations Ax = b, where

A =


 2 0 1
1 −1 0
1 0 3


 , b =


 10
1


 .

First, we calculate |A| to determine whether A is nonsingular. Expanding |A| along the second column
yields

|A| = (−1)
∣∣∣∣ 2 1
1 3

∣∣∣∣ = −5 �= 0.
By Cramer’s rule,

x∗1 =

∣∣∣∣∣∣
1 0 1
0 −1 0
1 0 3

∣∣∣∣∣∣
|A| =

(−1)
∣∣∣∣ 1 11 3

∣∣∣∣
−5 =

2

5
,

x∗2 =

∣∣∣∣∣∣
2 1 1
1 0 0
1 1 3

∣∣∣∣∣∣
|A| =

(−1)
∣∣∣∣ 1 11 3

∣∣∣∣
−5 =

2

5
,

x∗3 =

∣∣∣∣∣∣
2 0 1
1 −1 0
1 0 1

∣∣∣∣∣∣
|A| =

(−1)
∣∣∣∣ 2 11 1

∣∣∣∣
−5 =

1

5
.
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Determinants can also be used to provide an alternative way of finding the inverse of a nonsingular
square matrix.

Theorem 2.5.11 Let n ∈ IN. If A is a nonsingular n× n matrix, then

A−1 =
1

|A|adj(A).

Proof. By definition, AA−1 = E. Letting a−1ij denote the element in the i
th row and jth column of A−1,

we can write this matrix equation as

A



a−11j
...
a−1nj


 = ej ∀j = 1, . . . , n.

By Cramer’s rule,

a−1ij =

∣∣∣∣∣∣∣
a11 . . . a1(i−1) e

j
1 a1(i+1) . . . a1n

...
...

...
...

...
an1 . . . an(i−1) e

j
n an(i+1) . . . ann

∣∣∣∣∣∣∣
|A| ∀i, j = 1, . . . , n.

Expanding along the ith column, we obtain (recall that ejj = 1 and e
j
i = 0 for i �= j)

a−1ij =
(−1)i+jAji
|A| =

|Cji|
|A| ∀i, j = 1, . . . , n,

that is,

A−1 =
1

|A|adj(A). ‖

2.6 Quadratic Forms

Quadratic forms are expressions in several variables such that each variable appears either as a square or
in a product with another variable. Formally, we can write a quadratic form in n variables x1, . . . , xn in
the following way.

Definition 2.6.1 Let n ∈ IN. Furthermore, let αij ∈ IR for all i = 1, . . . , n, j = 1, . . . , i, where αij �= 0
for at least one αij. The expression

n∑
i=1

i∑
j=1

αijxixj

is a quadratic form in the variables x1, . . . , xn.

Every quadratic form in n variables can be expressed as a matrix product

x′Ax

where A is the symmetric n× n matrix given by

A =



α11

1
2α12 . . . 1

2α1n
1
2α12 α22 . . . 1

2α2n
...

...
...

1
2
α1n

1
2
α2n . . . αnn


 . (2.15)

It can be shown that, for given αij, the matrix A defined in (2.15) is the only symmetric n × n matrix
such that

x′Ax =
n∑
i=1

i∑
j=1

αijxixj.
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Therefore, any symmetric square matrix uniquely defines a quadratic form.
For example, consider the symmetric matrix

A =

(
1 2
2 −1

)
.

The quadratic form defined by this matrix is

x′Ax = x21 + 2x1x2 + 2x1x2 − x22 = x21 + 4x1x2 − x22.

The properties of a quadratic form are determined by the properties of the symmetric square ma-
trix defining this quadratic form. Of particular importance are the following definiteness properties of
symmetric square matrices.

Definition 2.6.2 Let n ∈ IN. A symmetric n× n matrix A is

(i) positive definite ⇔ x′Ax > 0 ∀x ∈ IRn \ {0},
(ii) negative definite ⇔ x′Ax < 0 ∀x ∈ IRn \ {0},
(iii) positive semidefinite ⇔ x′Ax ≥ 0 ∀x ∈ IRn,
(iv) negative semidefinite ⇔ x′Ax ≤ 0 ∀x ∈ IRn.

These properties will be of importance later on when we discuss second-order conditions for the opti-
mization of functions of several variables.
Here are some examples. Let

A =

(
2 1
1 1

)
, B =

(
−2 1
1 −1

)
, C =

(
1 2
2 1

)
.

The quadratic form defined by A is

x′Ax = 2x21 + 2x1x2 + x
2
2 = x

2
1 + (x1 + x2)

2,

which is positive for all x ∈ IR2 \ {0}. Therefore, A is positive definite. Similarly, we obtain

x′Bx = −2x21 + 2x1x2 − x22 = (−1)(x21 + (x1 − x2)2),

which is negative for all x ∈ IR2 \ {0}, and hence, B is negative definite. Finally, the quadratic form
defined by C is

x′Cx = x21 + 4x1x2 + x
2
2 = 2x1x2 + (x1 + x2)

2.

For x′ = (1, 1), we obtain x′Cx = 6 > 0, and substituting (−1, 1) for x′ yields x′Cx = −2 < 0.
Therefore, C is neither positive (semi)definite nor negative (semi)definite. A matrix which is neither
positive semidefinite nor negative semidefinite is called indefinite.
For matrices of higher dimensions, checking definiteness properties can be a quite involved task. There

are some useful criteria for definiteness properties in terms of the determinants of a matrix and some of
its submatrices. Some further definitions are needed in order to introduce these criteria.

Definition 2.6.3 Let n ∈ IN, and let A be an n× n matrix. Furthermore, let k ∈ {1, . . . , n}.

(i) A principal submatrix of order k of A is a k×k matrix that is obtained by removing (n−k)
rows and the (n − k) columns with the same numbers from A.
(ii) The leading principal submatrix of order k of A is the k × k matrix that is obtained by
removing the last (n−k) rows and columns from A. The leading principal submatrix of order
k of A is denoted by Ak.

For example, the principal submatrices of order 2 of

A =


 1 2 0
0 −1 0
2 1 −2




are (
1 2
0 −1

)
,

(
1 0
2 −2

)
,

(
−1 0
1 −2

)
.
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The leading principal submatrices of orders k = 1, 2, 3 of A are

(1),

(
1 2
0 −1

)
, A,

respectively. Note that principal submatrices are obtained by removing rows and columns with the same
numbers. For the above matrix A, the submatrix(

1 2
2 1

)
which is obtained by removing row 2 and column 3 from A is not a principal submatrix of A.
The determinant of a (leading) principal submatrix is called a (leading) principal minor. Hence, the

leading principal minor of order k of an n× n matrix A is

|Ak| =

∣∣∣∣∣∣∣
a11 . . . a1k
...

...
ak1 . . . akk

∣∣∣∣∣∣∣ .
We now can state

Theorem 2.6.4 Let n ∈ IN, and let A be a symmetric n× n matrix. A is
(i) positive definite ⇔ |Mk| > 0 for all principal submatrices Mk of order k, for all k =
1, . . . , n,
(ii) negative definite ⇔ (−1)k|Mk| > 0 for all principal submatrices Mk of order k, for all
k = 1, . . . , n,
(iii) positive semidefinite ⇔ |Mk| ≥ 0 for all principal submatrices Mk of order k, for all
k = 1, . . . , n,
(iv) negative semidefinite ⇔ (−1)k|Mk| ≥ 0 for all principal submatrices Mk of order k, for
all k = 1, . . . , n.

Proof (for n = 2). Theorem 2.6.4 is true for any n ∈ IN, but we will only prove the case n = 2 here.
See more specialized literature for the general proof.
(i) “⇒”: By way of contradiction, suppose A is positive definite, but there exists k ∈ {1, 2} and a

principal submatrix Mk of order k such that |Mk| ≤ 0. For n = 2, there are three possible cases.
I: a11 ≤ 0;
II: a22 ≤ 0;
III: |A| ≤ 0.

In case I, let x′ = (1, 0). Then x′Ax = a11 ≤ 0, which contradicts the positive definiteness of A.
In case II, let x′ = (0, 1). Then x′Ax = a22 ≤ 0, which again contradicts the positive definiteness of

A.
Finally, consider case III. If a22 ≤ 0, we can use the same reasoning as in case II to obtain a contra-

diction. If a22 > 0, let

x1 =
√
a22, x2 = −

a12√
a22
.

Then x′Ax = a11a22 − a212 = |A| ≤ 0, contradicting the positive definiteness of A.
“⇐”: Suppose a11 > 0, a22 > 0, and |A| = a11a22 − a212 > 0. For any x ∈ IRn \ {0}, we obtain

x′Ax = a11x
2
1 + 2a12x1x2 + a22x

2
2

= a11x
2
1 + 2a12x1x2 + a22x

2
2 +
a212
a11
x22 −

a212
a11
x22

= a11

(
x21 + 2

a12

a11
x1x2 +

a212
a211
x22

)
+

(
a22 −

a212
a11

)
x22

= a11

(
x1 +

a12

a11
x2

)2
+
a11a22 − a212
a11

x22

= a11

(
x1 +

a12
a11
x2

)2
+
|A|
a11
x22 > 0,
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and therefore, A is positive definite.
The proof of part (ii) is analogous and left as an exercise.
(iii) “⇒”: Suppose A is positive semidefinite, but there exists k ∈ {1, 2} and a principal submatrix

Mk of order k such that |Mk| < 0. Again, there are three possible cases.

I: a11 < 0;
II: a22 < 0;
III: |A| < 0.

In case I, let x′ = (1, 0). Then x′Ax = a11 < 0, which contradicts the positive semidefiniteness of A.
In case II, let x′ = (0, 1). Then x′Ax = a22 < 0, which again contradicts the positive semidefiniteness

of A.
Now consider case III. If a22 < 0, we can use the same reasoning as in case II to obtain a contradiction.

If a22 = 0, let x
′ = (a12,−(a11 + 1)/2). Then x′Ax = −a212 = |A| < 0, contradicting the positive

semidefiniteness of A. If a22 > 0, let

x1 =
√
a22, x2 = −

a12√
a22
.

Again, we obtain x′Ax = a11a22 − a212 = |A| < 0, contradicting the positive semidefiniteness of A.
“⇐”: Suppose a11 ≥ 0, a22 ≥ 0, and |A| = a11a22 − a212 ≥ 0. Let x ∈ IRn. If a11 = 0, |A| ≥ 0 implies

a12 = 0, and we obtain
x′Ax = a22x

2
2 ≥ 0.

If a11 > 0, we obtain (analogously to the proof of part (i))

x′Ax = a11

(
x1 +

a12

a11
x2

)2
+
|A|
a11
x22 ≥ 0,

which proves that A is positive semidefinite.
The proof of (iv) is analogous and left as an exercise. ‖
For positive and negative definiteness, it is sufficient to check the leading principal minors of A.

Theorem 2.6.5 Let n ∈ IN, and let A be a symmetric n× n matrix. A is

(i) positive definite ⇔ |Ak| > 0 ∀k = 1, . . . , n,
(ii) negative definite ⇔ (−1)k|Ak| > 0 ∀k = 1, . . . , n.

Proof. Again, we give a proof for n = 2.
(i) By Theorem 2.6.4, all that needs to be shown is that the n leading principal minors of A are

positive if and only if all principal minors of order k = 1, . . . , n of A are positive.
Clearly, if all principal minors of order k are positive, then, in particular, the leading principal minors

of order k are positive for all k = 1, . . . , n.
Conversely, suppose the leading principal minors of A are positive. Therefore, in the case n = 2, we

have a11 > 0 and |A| > 0. Because A is symmetric, |A| > 0 implies a11a22 − a212 > 0. Therefore,

a11a22 > a
2
12. (2.16)

Because a11 > 0, dividing (2.16) by a11 yields a22 > a
2
12/a11 ≥ 0, which completes the proof of (i).

Part (ii) is proven analogously. ‖
Therefore, a symmetric n×n matrix A is positive definite if and only if the leading principal minors of

A are positive, and A is negative definite if and only if the signs of the leading principal minors alternate,
starting with |A1| = a11 < 0.
For positive and negative semidefiniteness, a result analogous to Theorem 2.6.5 can not be obtained.

Checking the leading principal minors is, in general, not sufficient to determine whether a matrix is
positive or negative semidefinite. For example, consider the matrix

A =

(
0 0
0 −1

)
.
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We have |A1| = 0 and |A2| = |A| = 0. Therefore, |Ak| ≥ 0 for all k = 1, 2, but A is not positive
semidefinite, because, for example, choosing x′ = (0, 1) leads to x′Ax = −1 < 0.
As an example for the application of Theorems 2.6.4 and 2.6.5, consider again

A =

(
2 1
1 1

)
, B =

(
−2 1
1 −1

)
, C =

(
1 2
2 1

)
.

We obtain |A1| = 2 > 0 and |A2| = |A| = 1 > 0, and therefore, according to Theorem 2.6.5, A is positive
definite. Furthermore, |B1| = −2 < 0 and |B2| = |B| = 1 > 0, which means that B is negative definite.
Finally, |C1| = 1 > 0 and |C2| = |C| = −3 < 0. According to Theorem 2.6.4, C is neither positive
semidefinite nor negative semidefinite, and therefore, C is indefinite.



Chapter 3

Functions of One Variable

3.1 Continuity

In this chapter, we discuss functions the domain and range of which are subsets of IR. Hence, a real-valued
function of one variable is a function f : A �→ B where A ⊆ IR and B ⊆ IR. To simplify matters, we
assume that A is an interval of the form [a, b] with a, b ∈ IR or (a, b) with a ∈ IR ∪ {−∞}, b ∈ IR ∪ {∞}
or [a, b) with a ∈ IR, b ∈ IR ∪ {∞} or (a, b] with a ∈ IR ∪ {−∞}, b ∈ IR, where a < b. It should be noted
that some, but not all, of the results stated in this chapter can be generalized to domains that are not
necessarily intervals. The range of f will, in most cases, simply be the set IR itself.
In many economic models (and in other applications), real-valued functions are assumed to be con-

tinuous. Loosely speaking, continuity ensures that “small” changes in the argument of a function do not
lead to “large” changes in the value of the function. The formal definition of continuity is

Definition 3.1.1 Let A ⊆ IR, and let f : A �→ IR be a function. Furthermore, let x0 ∈ A.
(i) The function f is continuous at x0 if and only if

∀δ ∈ IR++, ∃ε ∈ IR++ such that f(x) ∈ Uδ(f(x0)) ∀x ∈ Uε(x0) ∩A.

(ii) The function f is continuous on A0 ⊆ A if and only if f is continuous at each x0 ∈ A0. If f is
continuous on A, we will often simply say that f is continuous.

According to this definition, a function f is continuous at a point x0 in its domain if, for each neighborhood
of f(x0), there exists a neighborhood of x0 such that f(x) is in this neighborhood of f(x0) for all x in
the domain of f that are in the neighborhood of x0.
Consider the following example. Let

f : IR �→ IR, x �→ 2x,

and let x0 = 1. Then f(x0) = f(1) = 2. To show that the function f is continuous at x0 = 1, we have to
show that, for any δ ∈ IR++, we can find an ε ∈ IR++ such that

f(x) ∈ (2− δ, 2 + δ) ∀x ∈ (1− ε, 1 + ε).

For δ ∈ IR++, let ε := δ/2. Then, for all x ∈ Uε(1) = (1− δ/2, 1 + δ/2),

f(x) > 2(1− ε) = 2(1− δ/2) = 2− δ and f(x) < 2(1 + ε) = 2(1 + δ/2) = 2 + δ.

Therefore, f(x) ∈ Uδ(2) for all x ∈ Uε(1). Similarly, it can be shown that f is continuous at any point
x0 ∈ IR (Exercise: provide a proof), and therefore, f is continuous on its domain IR.
As another example, consider the function

f : IR �→ IR, x �→
{
0 if x ≤ 0
1 if x > 0.

This function is not continuous at x0 = 0. To show this, let δ = 1/2. Continuity of f at x0 = 0 requires
that there exists ε ∈ IR++ such that f(x) ∈ (−1/2, 1/2) for all x ∈ Uε(0) = (−ε, ε). For any ε ∈ IR++,

47
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x

f(x)

x0

f(x0)

f(x0)− δ

f(x0) + δ

x0 − ε x0 + ε

Figure 3.1: A continuous function.

x

f(x)

x0

f(x0)

f(x0)− δ

f(x0) + δ u

Figure 3.2: A discontinuous function.

Uε(0) contains points x > 0, and therefore, any neighborhood of x0 = 0 contains points x such that
f(x) = 1 �∈ Uδ(f(x0)) = (−1/2, 1/2). Therefore, f is not continuous at x0 = 0.
Using the graph of a function, continuity can be illustrated in a diagram. Figure 3.1 gives an example

of the graph of a function f that is continuous at x0, whereas the function with the graph illustrated in
Figure 3.2 is not continuous at the point x0.

An alternative definition of continuity can be given in terms of sequences of real numbers.

Theorem 3.1.2 Let A ⊆ IR be an interval, and let f : A �→ IR be a function. Furthermore, let x0 ∈ A.
f is continuous at x0 if and only if, for all sequences {xn} such that xn ∈ A for all n ∈ IN,

lim
n→∞

xn = x0⇒ lim
n→∞

f(xn) = f(x0).

Proof. “Only if”: Suppose f is continuous at x0 ∈ A. Then, for any δ ∈ IR++, there exists ε ∈ IR++
such that

f(x) ∈ Uδ(f(x0)) ∀x ∈ Uε(x0) ∩A.
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Let {xn} be a sequence such that xn ∈ A for all n ∈ IN and {xn} converges to x0. Because limn→∞ xn =
x0, we can find n0 ∈ IN such that

|xn − x0| < ε ∀n ≥ n0.

Therefore, |f(xn)− f(x0)| < δ for all n ≥ n0, which implies that {f(xn)} converges to f(x0).
“If”: Suppose f is not continuous at x0 ∈ A. Then there exists δ ∈ IR++ such that, for all ε ∈ IR++,

there exists x ∈ Uε(x0) ∩A with
f(x) �∈ Uδ(f(x0)).

Let εn := 2/n for all n ∈ IN. By assumption, for any n ∈ IN, there exists xn ∈ Uεn(x0) ∩A such that

|f(xn) − f(x0)| ≥ δ. (3.1)

Because xn ∈ Uεn(x0) ∩A for all n ∈ IN, the sequence {xn} converges to x0. By (3.1), {f(xn)} does not
converge to f(x0), which completes the proof. ‖
Theorem 3.1.2 is particularly useful in proving that a function is not continuous at a point x0 in its

domain. One only has to find one sequence {xn} that converges to x0 such that the sequence {f(xn)}
does not converge to f(x0).
We now introduce limits of a function which are closely related to limits of sequences.

Definition 3.1.3 Let A ⊆ IR, and let f : A �→ IR be a function. Furthermore, let α ∈ IR ∪ {−∞,∞}.
(i) Let x0 ∈ IR ∪ {−∞}, and suppose (x0, x0 + h) ⊆ A for some h ∈ IR++. The right-side limit of

f at x0 exists and is equal to α if and only if, for all monotone nonincreasing sequences {xn} such that
xn ∈ A for all n ∈ IN,

xn −→ x0 ⇒ f(xn) −→ α.

If the right-side limit of f at x0 exists and is equal to α, we write limx↓x0 f(x) = α.

(ii) Let x0 ∈ IR∪{∞}, and suppose (x0−h, x0) ⊆ A for some h ∈ IR++. The left-side limit of f at x0
exists and is equal to α if and only if, for all monotone nondecreasing sequences {xn} such that xn ∈ A
for all n ∈ IN,

xn −→ x0 ⇒ f(xn) −→ α.

If the left-side limit of f at x0 exists and is equal to α, we write limx↑x0 f(x) = α.

(iii) Let x0 ∈ IR, and suppose (x0−h, x0)∪ (x0, x0+ h) ⊆ A for some h ∈ IR++. The limit of f at x0
exists and is equal to α if and only if the right-side and left-side limits of f at x0 exist and are equal to
α. If the limit of f at x0 exists and is equal to α, we write limx→x0 f(x) = α.

For finite values of x0 and α, an equivalent definition of a limit can be given directly (that is, without
using sequences). We obtain

Theorem 3.1.4 Let A ⊆ IR, and let f : A �→ IR be a function. Furthermore, let x0 ∈ IR, α ∈ IR, and
suppose (x0 − h, x0) ∪ (x0, x0 + h) ⊆ A for some h ∈ IR++. The limit of f at x0 exists and is equal to α
if and only if

∀δ ∈ IR++, ∃ε ∈ IR++ such that f(x) ∈ Uδ(α) ∀x ∈ Uε(x0).

Analogous results are valid for one-sided limits.
For interior points of the domain of a function, continuity at these points can be formulated in terms

of limits. We obtain

Theorem 3.1.5 Let A ⊆ IR be an interval, and let f : A �→ IR be a function. Furthermore, let x0 be an
interior point of A. f is continuous at x0 if and only if limx→x0 f(x) exists and limx→x0 f(x) = f(x0).

Theorem 3.1.5 can be proven by combining Theorem 3.1.2 and Definition 3.1.3.
Analogously, for boundary points of A, we obtain

Theorem 3.1.6 Let A = [a, b] with a, b ∈ IR and a < b. Furthermore, let f : A �→ IR be a function.

(i) f is continuous at a if and only if limx↓a f(x) exists and limx↓a f(x) = f(a).
(ii) f is continuous at b if and only if limx↑b f(x) exists and limx↑b f(x) = f(b).
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To illustrate the application of Theorem 3.1.5, consider the following examples. Let

f : IR �→ IR, x �→ 2x.

We use Theorem 3.1.5 to prove that f is continuous at x0 = 1. We obtain

lim
x↑1
f(x) = lim

x↑1
2x = 2

and
lim
x↓1
f(x) = lim

x↓1
2x = 2,

and therefore, limx→1 f(x) exists and is equal to 2. Furthermore, f(1) = 2, and therefore, according to
Theorem 3.1.5, f is continuous at x0 = 1.
Now let

f : IR �→ IR, x �→
{
0 if x ≤ 0
1 if x > 0.

Let x0 = 0. We have
lim
x↑0
f(x) = lim

x↑0
0 = 0

and
lim
x↓0
f(x) = lim

x↓0
1 = 1,

and therefore, limx→0 f(x) does not exist. By Theorem 3.1.5, f is not continuous at x0 = 0.
Finally, consider the function given by

f : IR �→ IR, x �→
{
0 if x = 0
1 if x �= 0.

For x0 = 0, we obtain
lim
x↑0
f(x) = lim

x↑0
1 = 1

and
lim
x↓0
f(x) = lim

x↓0
1 = 1.

Therefore, limx→0 f(x) exists and is equal to 1. But we have f(0) = 0 �= 1, and hence, f is not continuous
at x0 = 0.
The following definition introduces some notation for functions that can be defined using other func-

tions.

Definition 3.1.7 Let A ⊆ IR be an interval, and let f : A �→ IR and g : A �→ IR be functions. Further-
more, let α ∈ IR.
(i) The sum of f and g is the function defined by

f + g : A �→ IR, x �→ f(x) + g(x).

(ii) The function αf is defined by

αf : A �→ IR, x �→ αf(x).

(iii) The product of f and g is the function defined by

fg : A �→ IR, x �→ f(x)g(x).

(iv) If g(x) �= 0 for all x ∈ A, the ratio of f and g is the function defined by

f

g
: A �→ IR, x �→ f(x)

g(x)
.

Some useful results concerning the continuity of functions are summarized in
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Theorem 3.1.8 Let A ⊆ IR be an interval, and let f : A �→ IR and g : A �→ IR be functions. Furthermore,
let α ∈ IR. If f and g are continuous at x0 ∈ A, then

(i) f + g is continuous at x0.
(ii) αf is continuous at x0.
(iii) fg is continuous at x0.
(iv) If g(x) �= 0 for all x ∈ A, f/g is continuous at x0.

The proof of this theorem follows from the corresponding properties of sequences and Theorem 3.1.2.
Furthermore, if two functions f : A �→ IR and g : f(A) �→ IR are continuous, then the composite

function g ◦ f is continuous. We state this result without a proof.
Theorem 3.1.9 Let A ⊆ IR be an interval. Furthermore, let f : A �→ IR and g : f(A) �→ IR be functions,
and let x0 ∈ A. If f is continuous at x0 and g is continuous at y0 = f(x0), then g ◦ f is continuous at
x0.

If the domain of a continuous function is an interval, the inverse of this function is continuous.

Theorem 3.1.10 Let A ⊆ IR be an interval, let B ⊆ IR, and let f : A �→ B be bijective. If f is continuous
on A, then f−1 is continuous on B = f(A).

The assumption that A is an interval is essential in this theorem. For some bijective functions f with
more general domains A ⊆ IR, continuity of f does not imply continuity of f−1. To illustrate that,
consider the following example. Let

f : [0, 1] ∪ (2, 3] �→ [0, 2], x �→
{

x2 if x ∈ [0, 1]
x− 1 if x ∈ (2, 3].

The domain of this function is A = [0, 1] ∪ (2, 3], which is not an interval. The function f is continuous
on A and bijective (Exercise: show this). The inverse of f exists and is given by

f−1 : [0, 2] �→ [0, 1]∪ (2, 3], y �→
{ √

y if y ∈ [0, 1]
y + 1 if y ∈ (1, 2].

Clearly, f−1 is not continuous at y0 = 1.
Some important examples for continuous functions are polynomials.

Definition 3.1.11 Let A ⊆ IR be an interval, and let f : A �→ IR be a function. Furthermore, let
n ∈ IN ∪ {0}. f is a polynomial of degree n if and only if there exist α0, . . . , αn ∈ IR with αn �= 0 if
n ∈ IN such that

f(x) =
n∑
i=0

αix
i ∀x ∈ A.

For example, the function
f : IR �→ IR, x �→ −2 + x− 2x3

is a polynomial of degree three. Other examples for polynomials are constant functions, defined by

f : IR �→ IR, x �→ α

where α ∈ IR is a constant, affine functions

f : IR �→ IR, x �→ α+ βx

where α, β ∈ IR, β �= 0, and quadratic functions

f : IR �→ IR, x �→ α+ βx + γx2

where α, β, γ ∈ IR, γ �= 0. Constant functions are polynomials of degree zero, affine functions are
polynomials of degree one, and quadratic functions are polynomials of degree two.
Because the function

f : IR �→ IR, x �→ xn

is continuous for any n ∈ IN (Exercise: prove this), Theorem 3.1.8 implies that all polynomials are
continuous.
Analogously to monotonic sequences, monotonicity properties of functions can be defined. We con-

clude this section with the definitions of these properties.
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x

f(x)

x0

f(x0)

x0 + h

f(x0 + h)

x0 + h̄

f(x0 + h̄)

Figure 3.3: The difference quotient.

Definition 3.1.12 Let A ⊆ IR be an interval, and let B ⊆ A. Furthermore, let f : A �→ IR be a function.
(i) f is (monotone) nondecreasing on B if and only if

x > y ⇒ f(x) ≥ f(y) ∀x, y ∈ B.

(ii) f is (monotone) increasing on B if and only if

x > y ⇒ f(x) > f(y) ∀x, y ∈ B.

(iii) f is (monotone) nonincreasing on B if and only if

x > y ⇒ f(x) ≤ f(y) ∀x, y ∈ B.

(iv) f is (monotone) decreasing on B if and only if

x > y ⇒ f(x) < f(y) ∀x, y ∈ B.

If f is nondecreasing (respectively increasing, nonincreasing, decreasing) on its domain A, we will some-
times simply say that f is nondecreasing (respectively increasing, nonincreasing, decreasing).

3.2 Differentiation

An important issue concerning real-valued functions of one real variable is the question how the value of a
function changes as a consequence of a change in its argument. We first give a diagrammatic illustration.
Consider the graph of a function f : IR �→ IR as illustrated in Figure 3.3.
Suppose we want to find the rate of change in the value of f as a consequence of a change in the

variable x from x0 to x0+h. A natural way to do this is to use the slope of the secant through the points
(x0, f(x0)) and (x0 + h, f(x0 + h)). Clearly, this slope is given by the ratio

f(x0 + h)− f(x0)
h

. (3.2)

The quotient in (3.2) is called the difference quotient of f for x0 and h. This slope depends on the
number h ∈ IR we add to x0 (h can be positive or negative). Depending on f , the values of the difference
quotient for given x0 can differ substantially for different values of h—consider, for example, the difference
quotients that are obtained with h and with h̄ in Figure 3.3.
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In order to obtain some information about the behaviour of f “close” to a point x0, it is desirable
to find an indicator that is independent of the number h which represents the deviation from x0. The
natural way to proceed is to use the limit of the difference quotient as h approaches zero as an indicator
of the change in f at x0. If this limit exists and is finite, we say that the function is differentiable at the
point x0. Formally,

Definition 3.2.1 Let A ⊆ IR, and let f : A �→ IR be a function. Furthermore, let x0 be an interior point
of A. The function f is differentiable at x0 if and only if

lim
h→0

f(x0 + h) − f(x0)
h

(3.3)

exists and is finite. If f is differentiable at x0, we call the limit in (3.3) the derivative of f at x0 and
denote it by f ′(x0).

Definition 3.2.1 applies to interior points of A only. We can also define “one-sided” derivatives at the
endpoints of the interval A, if these points are elements of A.

Definition 3.2.2 Let f : [a, b] �→ IR with a, b ∈ IR and a < b.
(i) f is (right-side) differentiable at a if and only if

lim
h↓0

f(a + h)− f(a)
h

(3.4)

exists and is finite. If f is (right-side) differentiable at a, we call the limit in (3.4) the (right-side)
derivative of f at a and denote it by f ′(a).

(ii) f is (left-side) differentiable at b if and only if

lim
h↑0

f(b + h)− f(b)
h

(3.5)

exists and is finite. If f is (left-side) differentiable at b, we call the limit in (3.5) the (left-side) derivative
of f at b and denote it by f ′(b).

A function f : A �→ IR is differentiable on an interval B ⊆ A if f ′(x0) exists for all interior points x0 of
B, and the right-side and left-side derivatives of f at the endpoints of B exist whenever these endpoints
belong to B. If f : A �→ IR is differentiable on A, the function

f ′ : A �→ IR, x �→ f ′(x)

is called the derivative of f . If the function f ′ is differentiable at x0 ∈ A, we can find the second derivative
of f at x0, which is just the derivative of f

′ at x0. Formally, if f
′ : A �→ IR is differentiable at x0 ∈ A, we

call

f ′′(x0) = lim
h→0

f ′(x0 + h)− f ′(x0)
h

the second derivative of f at x0. Analogously, we can define higher-order derivatives of f , and we write
f(n)(x0) for the n

th derivative of f at x0 (where n ∈ IN), if this derivative exists.
For a function f which is differentiable at a point x0 in its domain, f

′(x0) is the slope of the tangent
to the graph of f at x0. The equation of this tangent for a differentiable function f : A �→ IR at x0 ∈ A is

y = f(x0) + f
′(x0)(x− x0) ∀x ∈ A.

As an example, consider the following function

f : IR �→ IR, x �→ 2 + x+ 4x2.

To determine whether or not this function is differentiable at a point x0 in its domain, we have to find
out whether the limit of the difference quotient as h approaches zero exists and is finite. For the above
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function f and x0 ∈ IR, we obtain

f(x0 + h)− f(x0)
h

=
2 + x0 + h+ 4(x0 + h)

2 − 2− x0 − 4(x0)2
h

=
h+ 4((x0)

2 + 2x0h+ h
2)− 4(x0)2

h

=
h+ 8x0h+ 4h

2

h
= 1 + 8x0 + 4h.

Clearly,
lim
h→0
(1 + 8x0 + 4h) = 1 + 8x0,

and therefore, f is differentiable at any point x0 ∈ IR with f ′(x0) = 1 + 8x0.
Differentiability is a stronger requirement than continuity. This is shown in the following theorems.

Theorem 3.2.3 Let A ⊆ IR be an interval, and let f : A �→ IR be a function. Furthermore, let x0 be an
interior point of A. If f is differentiable at x0, then f is continuous at x0.

Proof. For h ∈ IR such that (x0 + h) ∈ A and h �= 0, we obtain

f(x0 + h) − f(x0) =
(
f(x0 + h)− f(x0)

h

)
h.

Because f is differentiable at x0,

lim
h→0
(f(x0 + h)− f(x0)) = f ′(x0) lim

h→0
h = 0.

This implies
lim
h→0
f(x0 + h) = f(x0).

Defining x := x0 + h, this can be written as

lim
x→x0

f(x) = f(x0),

which proves that f is continuous at x0. ‖
Again, we can extend the result of Theorem 3.2.3 to boundary points of A.

Theorem 3.2.4 Let f : [a, b] �→ IR with a, b ∈ IR and a < b.

(i) If f is right-side differentiable at a, then f is continuous at a.
(ii) If f is left-side differentiable at b, then f is continuous at b.

The proof of this theorem is analogous to the proof of Theorem 3.2.3 and is left as an exercise.
Continuity does not imply differentiability. Consider, for example, the function

f : IR �→ IR, x �→ |x|.

This function is continuous at x0 = 0, but it is not differentiable at x0 = 0. To show this, note that

lim
x↓0
f(x) = lim

x↓0
x = 0, lim

x↑0
f(x) = lim

x↑0
−x = 0,

and f(0) = 0. Therefore, limx→0 f(x) exists and is equal to f(0) = 0, which shows that f is continuous
at x0 = 0.
Now note that

lim
h↓0

f(0 + h)− f(0)
h

=
h

h
= 1

and

lim
h↑0

f(0 + h) − f(0)
h

=
−h
h
= −1.
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Clearly,

lim
h↓0

f(0 + h)− f(0)
h

�= lim
h↑0

f(0 + h)− f(0)
h

,

and therefore,

lim
h→0

f(0 + h)− f(0)
h

does not exist, which implies that f is not differentiable at x0 = 0.
The following theorem introduces some rules of differentiation which simplify the task of finding the

derivatives of certain differentiable functions. It states that sums, multiples, products, and ratios of
differentiable functions are differentiable, and shows how these derivatives are obtained.

Theorem 3.2.5 Let A ⊆ IR be an interval, and let f : A �→ IR, g : A �→ IR be functions. Furthermore,
let α ∈ IR. Let x0 be an interior point of A, and suppose f and g are differentiable at x0.
(i) f + g is differentiable at x0, and (f + g)

′(x0) = f
′(x0) + g

′(x0).
(ii) αf is differentiable at x0, and (αf)

′(x0) = αf
′(x0).

(iii) fg is differentiable at x0, and (fg)
′(x0) = f

′(x0)g(x0) + f(x0)g
′(x0).

(iv) If g(x0) �= 0, then f/g is differentiable at x0, and(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g′(x0)
[g(x0)]2

.

Proof. (i) Because f and g are differentiable at x0, f
′(x0) and g

′(x0) exist. Now it follows that

lim
h→0

f(x0 + h) + g(x0 + h)− f(x0)− g(x0)
h

= lim
h→0

f(x0 + h)− f(x0)
h

+ lim
h→0

g(x0 + h)− g(x0)
h

= f ′(x0) + g
′(x0).

(ii) lim
h→0

αf(x0 + h)− αf(x0)
h

= α lim
h→0

f(x0 + h)− f(x0)
h

= αf ′(x0).

(iii) lim
h→0

f(x0 + h)g(x0 + h)− f(x0)g(x0)
h

= lim
h→0

f(x0 + h)g(x0 + h)− f(x0)g(x0 + h)
h

+ lim
h→0

f(x0)g(x0 + h)− f(x0)g(x0)
h

= lim
h→0

f(x0 + h)− f(x0)
h

g(x0 + h)

+ lim
h→0
f(x0)

g(x0 + h)− g(x0)
h

= f ′(x0)g(x0) + f(x0)g
′(x0).

(iv) Because g is differentiable at x0, g is continuous at x0. Therefore, g(x0) �= 0 implies that there
exists a neighborhood of x0 such that g(x) �= 0 for all x ∈ A in this neighborhood. Let h ∈ IR be such
that (x0 + h) is in this neighborhood. Then we obtain

lim
h→0

f(x0 + h)/g(x0 + h) − f(x0)/g(x0)
h

= lim
h→0

f(x0 + h)g(x0) − f(x0)g(x0 + h)
hg(x0 + h)g(x0)

=

lim
h→0

g(x0)[f(x0 + h)− f(x0)]− f(x0)[g(x0 + h)− g(x0)]
hg(x0 + h)g(x0)

=
f ′(x0)g(x0) − f(x0)g′(x0)

[g(x0)]2
. ‖

Replacing the limits in the above proof by the corresponding one-sided limits, we obtain analogous results
for boundary points of A. The formulation of these results is left as an exercise.
We now find the derivatives of some important functions. First, consider affine functions of the form

f : IR �→ IR, x �→ α+ βx
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with α, β ∈ IR and β �= 0. Let x ∈ IR. Then

lim
h→0

f(x + h)− f(x)
h

= lim
h→0

α+ β(x + h) − α− βx
h

= lim
h→0

βh

h
= β.

Therefore, f ′(x) = β for all x ∈ IR.
Now consider the linear function

f : IR �→ IR, x �→ βx
with β ∈ IR, β �= 0. For any x ∈ IR, we obtain

lim
h→0

f(x + h) − f(x)
h

= lim
h→0

β(x + h) − βx
h

= lim
h→0
β = β,

and therefore, f ′(x) = β for all x ∈ IR.
If f is a constant function

f : IR �→ IR, x �→ α
with α ∈ IR, we can write f as

f : IR �→ IR, x �→ α+ βx − βx
with β ∈ IR, β �= 0. Parts (i) and (ii) of Theorem 3.2.5 imply, together with the above results for affine
and linear functions,

f ′(x) = 0 ∀x ∈ IR. (3.6)

Next, let
f : IR �→ IR, x �→ xn

where n ∈ IN. For x ∈ IR, we obtain the difference quotient
f(x + h) − f(x)

h
=
(x+ h)n − xn

h
.

The binomial formula (which we will not prove here) says that, for x, y ∈ IR and n ∈ IN,

(x + y)n =
n∑
k=0

n!

k!(n− k)!x
n−kyk.

Therefore, we obtain

lim
h→0

f(x + h) − f(x)
h

= lim
h→0

∑n
k=0

n!
k!(n−k)!x

n−khk − xn

h

= lim
h→0

∑n
k=1

n!
k!(n−k)!x

n−khk

h

= lim
h→0

nxn−1h+
∑n
k=2

n!
k!(n−k)!x

n−khk

h

= nxn−1 + lim
h→0

n∑
k=2

n!

k!(n− k)!x
n−khk−1

= nxn−1.

Therefore,
f ′(x) = nxn−1 ∀x ∈ IR. (3.7)

If we have a polynomial

f : IR �→ IR, x �→
n∑
i=0

αix
i

with n ∈ IN, Theorem 3.2.5, (3.6), and (3.7) can be applied to conclude

f ′(x) =
n∑
i=1

iαix
i−1 ∀x ∈ IR.

A very useful rule for differentiation that applies to composite functions is the chain rule, which is
described in the following theorem.
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Theorem 3.2.6 Let A ⊆ IR be an interval, and let f : A �→ IR, g : f(A) �→ IR be functions. Let x0 be
an interior point of A. If f is differentiable at x0 and g is differentiable at y0 = f(x0), then g ◦ f is
differentiable at x0, and

(g ◦ f)′(x0) = g′(f(x0))f ′(x0).

Proof. Let y0 = f(x0). For r ∈ IR such that (y0 + r) ∈ f(A), define

k(y0 + r) :=

{
g(y0+r)−g(y0)

r
if r �= 0

g′(y0) if r = 0.

Because g is differentiable at y0,
lim
r→0
k(y0 + r) = g

′(y0).

Furthermore, by definition,
g(y0 + r)− g(y0) = rk(y0 + r).

Therefore, for h ∈ IR \ {0} such that (x0 + h) ∈ A,

g(f(x0 + h))− g(f(x0)) = [f(x0 + h)− f(x0)]k(f(x0 + h)),

and hence,
g(f(x0 + h))− g(f(x0))

h
=
f(x0 + h)− f(x0)

h
k(f(x0 + h)).

Taking limits, we obtain

(g ◦ f)′(x0) = lim
h→0

g(f(x0 + h))− g(f(x0))
h

= lim
h→0

f(x0 + h)− f(x0)
h

k(f(x0 + h))

= g′(f(x0))f
′(x0). ‖

Again, it is straightforward to obtain analogous theorems for boundary points of A by considering one-
sided limits.
As an example for the application of the chain rule, let

f : IR �→ IR, x �→ 2x− 3x2

and
g : IR �→ IR, y �→ y3.

Then
g ◦ f : IR �→ IR, x �→ (2x− 3x2)3.

We obtain
f ′(x) = 2− 6x ∀x ∈ IR

and
g′(y) = 3y2 ∀y ∈ IR.

According to the chain rule,

(g ◦ f)′(x) = g′(f(x))f ′(x) = 3(2x− 3x2)2(2− 6x) ∀x ∈ IR.

The following theorem (which we state without a proof) provides a relationship between the derivative
of a bijective function and its inverse.

Theorem 3.2.7 Let A,B ⊆ IR, where A = (a, b) with a, b ∈ IR, a < b. Furthermore, let f : A �→ B be
bijective and continuous. If f is differentiable at x0 ∈ A = (a, b) and f ′(x0) �= 0, then f−1 is differentiable
at y0 = f(x0), and

(f−1)′(y0) =
1

f ′(x0)
.
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To conclude this section, we introduce some important functions and their properties. First, we define
the exponential function.

Definition 3.2.8 The function

E : IR �→ IR++, x �→
∞∑
n=0

xn

n!

is called the exponential function.

The definition of E involves an infinite sum, but it can be shown that this sum converges for all x ∈ IR,
and therefore, E is a well-defined function. Another (equivalent) definition of E is given by the following
theorem, which is stated without a proof.

Theorem 3.2.9 For all x ∈ IR,
E(x) = lim

n→∞

(
1 +
x

n

)n
.

The exponential function is used, for example, to describe certain growth processes. Before discussing
an application, we introduce some important properties of E and related functions. We only prove part
(i) of the following theorem.

Theorem 3.2.10 (i) The function E is differentiable on IR, and E′(x) = E(x) ∀x ∈ IR.
(ii) E is increasing, limx↑∞E(x) =∞, limx↓−∞E(x) = 0, and E(IR) = IR++.
(iii) E(0) = 1.
(iv) E(1) = e = 2.71828 . . ..
(v) E(x+ y) = E(x)E(y) ∀x, y ∈ IR.

Proof of (i). For x ∈ IR, we obtain (using the rules of differentiation for polynomials)

E′(x) =
∞∑
n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)! =
∞∑
m=0

xm

m!
= E(x). ‖

Part (i) of this theorem is quite remarkable. It states that for any x ∈ IR, the derivative of E at x is
equal to the value of E at x.
Parts (iv) and (v) of Theorem 3.2.10 imply

E(2) = E(1 + 1) = E(1)E(1) = e2,

and, in general, for n ∈ IN,
E(n) = en.

Furthermore, we obtain

E(−n) = 1

E(n)
= e−n ∀n ∈ IN.

Now let y ∈ IR. For a rational number x = p/q with p ∈ Z and q ∈ IN, we obtain

(E(xy))q = E(qxy) = E(py) = (E(y))p ,

and therefore,
E(xy) = q

√
(E(y))p = (E(y))p/q = (E(y))x.

For y = 1, this implies
E(x) = (E(1))x = ex ∀x ∈ Q.

More generally, we can define
ex := E(x) ∀x ∈ IR,

that is, ex is defined by E(x), even if x is an irrational number.
The graph of the exponential function can be illustrated as in Figure 3.4.
Part (ii) of Theorem 3.2.10 implies that E is bijective, and therefore, E has an inverse. We call the

inverse of the exponential function the natural logarithm.
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Figure 3.4: The exponential function.

Definition 3.2.11 The natural logarithm ln : IR++ �→ IR is defined as the inverse function of the
exponential function, that is, ln = E−1.

By definition of an inverse, we have

E(ln(x)) = eln(x) = x ∀x ∈ IR++

and
ln(E(x)) = ln(ex) = x ∀x ∈ IR.

From the properties of E, it follows that ln must have certain properties. Some of them are summarized
in the following theorem.

Theorem 3.2.12 (i) The function ln is differentiable on IR++, and ln
′(x) = 1/x ∀x ∈ IR++.

(ii) ln is increasing, limx↑∞ ln(x) =∞, limx↓0 ln(x) = −∞, and ln(IR++) = IR.
(iii) ln(1) = 0.
(iv) ln(e) = 1.
(v) ln(xy) = ln(x) + ln(y) ∀x, y ∈ IR++.

The natural logarithm can also be written as an infinite sum, namely,

ln(x) =
∞∑
n=1

(−1)n−1
n

(x− 1)n ∀x ∈ IR++.

An important implication of part (v) of Theorem 3.2.12 is

ln(xn) = n ln(x) ∀x ∈ IR++, ∀n ∈ IN.

Because ln = E−1, we obtain

xn = E(ln(xn)) = E(n ln(x)) ∀x ∈ IR++, ∀n ∈ IN.

Therefore, the power function xn can be expressed in terms of exponential and logarithmic functions.
More generally, we can define generalized powers in the following way. For x ∈ IR++ and y ∈ IR, we define

xy := E(y ln(x)).

This allows us to define generalizations of power functions such as

f : IR++ �→ IR, x �→ xα
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where α ∈ IR (note that α is not restricted to natural or rational numbers). Functions of this type are
called generalized power functions. Similarly, we can define functions such as

f : IR �→ IR++, x �→ αx

where α ∈ IR++. Note that the variable x appears in the exponent. These functions are called generalized
exponential functions. Clearly, a special case is the function E, which is obtained by setting α = e.
Using the properties of E and ln, it is now easy to find the derivatives of generalized power functions

and generalized exponential functions. Let

f : IR++ �→ IR, x �→ xα

with α ∈ IR. By definition,
f(x) = E(α ln(x)) ∀x ∈ IR++.

Using the chain rule, we obtain, for x ∈ IR++,

f ′(x) = E′(α ln(x))α
1

x
= E(α ln(x))α

1

x
= xαα

1

x
= αxα−1,

and therefore, the differentiation rule for power functions generalizes naturally.
For the function

f : IR �→ IR++, x �→ αx

with α ∈ IR++, we have
f(x) = E(x ln(α)) ∀x ∈ IR.

Applying the chain rule, it follows that

f ′(x) = E′(x ln(α)) ln(α) = E(x ln(α)) ln(α) = αx ln(α)

for all x ∈ IR.
The inverse of a generalized exponential function is a logarithmic function, which generalizes the

natural logarithm.

Definition 3.2.13 Let α ∈ IR++ \ {1}, and let Eα : IR �→ IR++ be a generalized exponential function.
The logarithm to the base α, logα : IR++ �→ IR, is the inverse of Eα, that is, logα = E−1α .

By definition of the generalized exponential functions, we obtain, for all x ∈ IR++,

x = E(ln(x)) = Eα(logα(x)) = α
logα(x) = E(logα(x) ln(α)).

Taking logarithms on both sides, we obtain

ln(x) = ln(E(logα(x) ln(α))) = logα(x) ln(α),

and therefore,

logα(x) =
ln(x)

ln(α)
∀x ∈ IR++.

Therefore, the logarithm to any base α ∈ IR++ \ {1} can be expressed in terms of the natural logarithm.
As was mentioned earlier, exponential functions play an important role in growth models. Suppose,

for example, the real national income in an economy is described by a function

Y : IN ∪ {0} �→ IR++, t �→ Y (t)

where t is a variable that represents time, and hence, Y (t) is the national income in period t = 0, 1, 2, . . ..
A standard formulation of a model describing economic growth is to use functions involving exponential
growth. For example, define

Y : IN ∪ {0} �→ IR++, t �→ y0(1 + r)t

where y0 ∈ IR++, and r ∈ IR++ is the growth rate. By setting t = 0, we see that y0 = Y (0), that is, y0 is
the initial value for the growth process described by Y .
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In discussing economic growth, one should keep in mind that exponential growth (that is, growth
involving a growth rate at or above a given positive rate) cannot be expected to be sustainable in the
long run. Consider the following example. Suppose the annual growth rate is 5%. How long will it take,
given this growth rate, to double the initial national income? To answer this question, we have to find
t ∈ IN such that

Y (t) ≥ 2Y (0). (3.8)

For an exponential growth process with r = 0.05, we obtain

Y (t) = Y (0)(1.05)t,

and therefore, (3.8) is equivalent to

(1.05)t ≥ 2.

Taking logarithms on both sides, we obtain

t ln(1.05) ≥ ln(2),

or

t ≥ ln(2)

ln(1.05)
= 14.2067.

Therefore, if a growth process is described by an exponential function with a growth rate of 5%, it takes
only 14 years to double the existing national income. If no further assumptions on how and in which
sectors this growth comes about are made, this clearly could lead to rather undesirable results (such as
irreparable environmental damage), and therefore, the growth rate of real national income alone is not a
useful indicator for the societal well-being in an economy.
We conclude this section with a discussion of the two basic trigonometric functions.

Definition 3.2.14 The function

sin : IR �→ IR, x �→
∞∑
n=0

(−1)n x
2n+1

(2n+ 1)!

is called the sine function.

Definition 3.2.15 The function

cos : IR �→ IR, x �→
∞∑
n=0

(−1)n x
2n

(2n)!

is called the cosine function.

A geometric interpretation of those two functions is provided in Figure 3.5. Consider a circle around
the origin of IR2 with radius r = 1. Starting at the point (1, 0), let x be the distance travelled counter-
clockwise along the circle. The first coordinate of the resulting point is the value of the cosine function
at x and its second coordinate is the value of the sine function at x.
The following theorem states some important properties of the sine and cosine functions.

Theorem 3.2.16 (i) The function sin is differentiable on IR, and sin′(x) = cos(x) ∀x ∈ IR.
(ii) The function cos is differentiable on IR, and cos′(x) = − sin(x) ∀x ∈ IR.
(iii) (sin(x))2 + (cos(x))2 = 1 ∀x ∈ IR.
(iv) sin(x+ y) = sin(x) cos(y) + cos(x) sin(y) ∀x, y ∈ IR.
(v) cos(x+ y) = cos(x) cos(y) − sin(x) sin(y) ∀x, y ∈ IR.

Proof. (i) and (ii) follow immediately from applying the rules of differentiation for polynomials to the
definitions of sin and cos.
(iii) Define

f : IR �→ IR, x �→ (sin(x))2 + (cos(x))2.
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Figure 3.5: Trigonometric functions.

Using parts (i) and (ii), differentiating f yields

f ′(x) = 2 sin(x) cos(x)− 2 cos(x) sin(x) = 0 ∀x ∈ IR.

This means that the function f is constant, and we obtain

f(x) = f(0) = (sin(0))2 + (cos(0))2 = 0 + 1 = 1 ∀x ∈ IR.

To prove (iv) and (v), an argument analogous to the one employed in the proof of (iii) can be employed;
as an exercise, provide the details. ‖
Given the geometric interpretation illustrated in Figure 3.5, part (iii) of the above theorem is a variant

of Pythagoras’s theorem.
In order to provide an illustration of the graphs of sin and cos, we state (without proof) the following

theorem which summarizes how some important values of those functions are obtained.

Theorem 3.2.17 (i) sin(π/2) = 1 and cos(π/2) = 0.
(ii) sin((n + 1/2)π) = cos(nπ) = (−1)n and sin(nπ) = cos((n + 1/2)π) = 0 ∀n ∈ IN.
(iii) sin(x+ π/2) = cos(x) and cos(x+ π/2) = − sin(x) ∀x ∈ IR.
(iv) sin(x+ nπ) = (−1)n sin(x) and cos(x+ nπ) = (−1)n cos(x) ∀x ∈ IR, ∀n ∈ IN.
(v) sin(−x) = − sin(x) and cos(−x) = cos(x) ∀x ∈ IR.
(vi) sin(x) ∈ [−1, 1] and cos(x) ∈ [−1, 1] ∀x ∈ IR.

Using Theorem 3.2.17, the graphs of sin and cos are illustrated in Figures 3.6 and 3.7.

3.3 Optimization

The maximization and minimization of functions plays an important role in economic models. We will
discuss an economic example at the end of the next section.
To introduce general optimization methods, we first define what is meant by global and local maxima

and minima of real-valued functions.

Definition 3.3.1 Let A ⊆ IR be an interval, let f : A �→ IR, and let x0 ∈ A.
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Figure 3.6: The graph of sin.

−1

1

−π/2 π/2 π 3π/2 2π x

cos(x)

• • • • •

•

•

Figure 3.7: The graph of cos.
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Figure 3.8: Local and global maxima.

(i) f has a global maximum at x0 ⇔ f(x0) ≥ f(x) ∀x ∈ A.
(ii) f has a local maximum at x0⇔ ∃ε ∈ IR++ such that f(x0) ≥ f(x) ∀x ∈ Uε(x0) ∩A.
(iii) f has a global minimum at x0 ⇔ f(x0) ≤ f(x) ∀x ∈ A.
(iv) f has a local minimum at x0 ⇔ ∃ε ∈ IR++ such that f(x0) ≤ f(x) ∀x ∈ Uε(x0) ∩A.

If a function has a global maximum (minimum) at a point x0 in its domain, the value of f cannot be larger
(smaller) than f(x0) at any point in its domain. For a local maximum (minimum), x0 leads to a maximal
(minimal) value of f within a neighborhood of x0. Clearly, if f has a global maximum (minimum) at x0,
then f has a local maximum (minimum) at x0, but a local maximum (minimum) need not be a global
maximum (minimum).
As an example, consider the function f : [a, b] �→ IR with a graph as illustrated in Figure 3.8.
The function f has a global maximum at x0, because f(x0) ≥ f(x) for all x ∈ A = [a, b]. Clearly, f

also has a local maximum at x0—if f(x0) ≥ f(x) for all x ∈ A, it must be true that f(x0) ≥ f(x) for all
x ∈ A that are in a neighborhood of x0. Furthermore, f has a local maximum at y0, but this maximum
is not a global maximum, because f(x0) > f(y0).
It should be noted that a global (local) maximum (minimum) need not exist, and if a local (global)

maximum (minimum) exists, it need not be unique. For example, consider the function

f : IR �→ IR, x �→ x.

This function has no local maximum and no local minimum (and therefore, no global maximum and no
global minimum). To show that f cannot have a local maximum, suppose, by way of contradiction, there
exists x0 ∈ IR and ε ∈ IR++ such that

f(x0) ≥ f(x) ∀x ∈ Uε(x0). (3.9)

Let x̄ := x0 + ε/2. Clearly, x̄ ∈ Uε(x0) and x̄ > x0. By definition of f , f(x̄) = x̄ > x0 = f(x0), and
therefore, we obtain a contradiction to (3.9). That f cannot have a local minimum is shown analogously.
Now consider the function

f : IR �→ IR, x �→ 1.
This function is constant, and it has infinitely many maxima and minima—f has a maximum and a
minimum at all points x0 ∈ IR, because

f(x0) = 1 ≥ 1 = f(x) ∀x ∈ IR and f(x0) = 1 ≤ 1 = f(x) ∀x ∈ IR.

Therefore, f has a maximum and a minimum, but not a unique maximum or a unique minimum.
A very important theorem concerning maxima and minima states that a continuous function f must

have a global maximum and a global minimum, if the domain of f is closed and bounded. To prove this
theorem, we first state a result concerning bounded functions. Bounded functions are defined in
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Definition 3.3.2 Let A ⊆ IR be an interval, and let B ⊆ A. Furthermore, let f : A �→ IR. f is bounded
on B if and only if the set

{f(x) | x ∈ B} (3.10)

is bounded.

Note that boundedness of f on B implies that the set given by (3.10) has an infimum and a supremum.
We obtain

Theorem 3.3.3 Let A = [a, b] with a, b ∈ IR and a < b, and let f : A �→ IR. If f is continuous on [a, b],
then f is bounded on [a, b].

Proof. Because f is continuous on A = [a, b], for any δ ∈ IR++, there exists ε ∈ IR++ such that
f(x) ∈ Uδ(f(a)) for all x ∈ [a, a+ ε). Letting ξ ∈ (a, a + ε), it follows that f is bounded on [a, ξ]. Now
define

X := {γ ∈ (a, b] | f is bounded on [a, γ]}.
We have already shown that there exists ξ ∈ (a, b] such that f is bounded on [a, ξ], and therefore, X is
nonempty. Clearly, if ξ ∈ X, it follows that γ ∈ X for all γ ∈ (a, ξ]. We now show that b ∈ X, and
therefore, f is bounded on [a, b].
By way of contradiction, suppose b �∈ X. Let β := sup(X). This implies that ξ ∈ X for all ξ ∈ (a, β).

First, suppose β < b. Because f is continuous on [a, b], for any δ ∈ IR++, we can find ε ∈ IR++ such
that f(x) ∈ Uδ(f(β)) for all x ∈ (β − ε, β + ε). This means that f is bounded on [β − ξ, β + ξ] for
some ξ ∈ (0, ε). Because β − ξ < β, it follows that f is bounded on [a, β − ξ) and on [β − ξ, β + ξ], and
therefore, on [a, β+ ξ]. Therefore, (β+ ξ) ∈ X. But we assumed β = sup(X), and therefore, (β+ ξ) �∈ X,
a contradiction. If β = b, the above argument can be applied with β + ξ replaced by b. ‖
Now we can prove

Theorem 3.3.4 Let A = [a, b] with a, b ∈ IR and a < b, and let f : A �→ IR. If f is continuous on [a, b],
then there exist x0, y0 ∈ A such that f has a global maximum at x0 and f has a global minimum at y0.

Proof. By Theorem 3.3.3, f is bounded on [a, b]. Let M = sup({f(x) | x ∈ [a, b]}) and m = inf({f(x) |
x ∈ [a, b]}). We have to show that there exist x0, y0 ∈ [a, b] such that f(x0) =M and f(y0) =m.
We proceed by contradiction. Suppose there exists no x0 ∈ [a, b] such that f(x0) =M . By definition

of M , this implies
f(x) < M ∀x ∈ [a, b]. (3.11)

Because f is continuous, for any δ ∈ IR++, there exists α ∈ [a, b] such that M − f(α) < δ. Because
f(α) < M , this is equivalent to

1

M − f(α) >
1

δ
.

Therefore, the function

g : [a, b] �→ IR++, x �→
1

M − f(x)
is not bounded (because we can choose δ arbitrarily close to zero). Note that (3.11) guarantees that g
is well-defined, because M − f(x) > 0 for all x ∈ [a, b]. It follows that g cannot be continuous (because
continuity of g would, by Theorem 3.3.3, imply boundedness of g). But continuity of f implies continuity
of g, a contradiction. Therefore, there must exist x0 ∈ [a, b] such that f(x0) =M .
The existence of y0 ∈ [a, b] such that f(y0) = m is proven analogously. ‖
The assumption that A is closed and bounded is essential for Theorem 3.3.4. For example, consider

the function
f : (0, 1) �→ IR, x �→ x.

f is continuous on A = (0, 1), but A is not closed. It is easy to show that f has no local maximum and no
local minimum (Exercise: prove this), and therefore, f has no global maximum and no global minimum.
That boundedeness is important in Theorem 3.3.4 can be illustrated by the example

f : IR �→ IR, x �→ x.

We have already shown earlier that this continuous function has no maximum and no minimum. The
domain of f is closed, but not bounded.
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If the domain of a function is closed and bounded but f is not continuous, maxima and minima need
not exist. Consider the function

f : [−1, 1] �→ IR, x �→
{
1/x if x �= 0
0 if x = 0.

Clearly, this function has no global maximum and no global minimum (Exercise: provide a proof).
Theorem 3.3.4 allows us to show that the image of [a, b] under a function f : [a, b] �→ IR must be a

closed and bounded interval. This result is called the intermediate value theorem.

Theorem 3.3.5 Let A = [a, b] with a, b ∈ IR and a < b, and let f : A �→ IR. If f is continuous on A,
then

f(A) = [α, β],

where α := min(f(A)) and β := max(f(A)).

Proof. Note that, by Theorem 3.3.4, f has a global minimum and a global maximum, and therefore, α
and β are well-defined. Let c0 ∈ [α, β]. We have to show that there exists x0 ∈ [a, b] such that f(x0) = c0.
For c0 = α or c0 = β, we are done by the definition of α and β. Let c0 ∈ (α, β). Let x, y ∈ [a, b] be such
that f(x) = α and f(y) = β. Define the sequences {xn}, {yn}, {zn} by

x1 := x, y1 := y, z1 :=
x1 + y1
2
,

and, for n ≥ 2,
xn :=

{
xn−1 if f(zn−1) ≥ c0
zn−1 if f(zn−1) < c0,

yn :=

{
zn−1 if f(zn−1) ≥ c0
yn−1 if f(zn−1) < c0,

zn :=
xn + yn
2

.

By definition, {xn} is monotone nondecreasing, and {yn} is monotone nonincreasing. Furthermore,

f(xn) < c0 ≤ f(yn) ∀n ∈ IN (3.12)

and

|xn − yn| =
|x1 − y1|
2n−1

∀n ∈ IN.

This implies |xn − yn| −→ 0, and therefore, the sequences {xn} and {yn} converge to the same limit
x0 ∈ [a, b]. Because f is continuous, f(x0) = limn→∞ f(xn) = limn→∞ f(yn). By (3.12), limn→∞ f(xn) ≤
c0 ≤ limn→∞ f(yn), and therefore, f(x0) = c0. ‖
The intermediate value theorem can be generalized. In particular, if A is an interval (not necessarily

closed and bounded) and f is continuous, then f(A) must be an interval.
If a function is differentiable, the task of finding maxima and minima of this function can become

much easier. The following result provides a necessary condition for a local maximum (minimum) at an
interior point of A.

Theorem 3.3.6 Let A ⊆ IR be an interval, and let f : A �→ IR. Furthermore, let x0 be an interior point
of A, and suppose f is differentiable at x0.

(i) f has a local maximum at x0 ⇒ f ′(x0) = 0.
(ii) f has a local minimum at x0 ⇒ f ′(x0) = 0.

Proof. (i) Suppose f has a local maximum at an interior point x0 ∈ A. Then there exists ε ∈ IR++ such
that f(x0) ≥ f(x) for all x ∈ Uε(x0). Therefore,

f(x0 + h)− f(x0) ≤ 0 (3.13)

for all h ∈ IR such that (x0 + h) ∈ Uε(x0).
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First, let h > 0. Then (3.13) implies

f(x0 + h)− f(x0)
h

≤ 0.

Because f is differentiable at x0, we obtain

lim
h↓0

f(x0 + h)− f(x0)
h

≤ 0 (3.14)

(note that differentiability of f at x0 ensures that this limit exists).
Now let h < 0. By (3.13), we obtain

f(x0 + h)− f(x0)
h

≥ 0,

and hence,

lim
h↑0

f(x0 + h)− f(x0)
h

≥ 0. (3.15)

Because f is differentiable at x0,

lim
h↓0

f(x0 + h) − f(x0)
h

= lim
h↑0

f(x0 + h)− f(x0)
h

= lim
h→0

f(x0 + h)− f(x0)
h

= f ′(x0).

Therefore, (3.14) implies f ′(x0) ≤ 0, and (3.15) implies f ′(x0) ≥ 0, which is only possible if f ′(x0) = 0.
The proof of (ii) is analogous and is left as an exercise. ‖
Theorem 3.3.6 says that if f has a local maximum or minimum at an interior point x0, then we

must have f ′(x0) = 0. Therefore, this theorem provides a necessary condition for a local maximum or
minimum, but this condition is, in general, not sufficient. This means that if we find an interior point
x0 ∈ A such that f ′(x0) = 0, this does not imply that f has a local maximum or a local minimum at x0.
To illustrate that, consider the function

f : IR �→ IR, x �→ x3.

We have f ′(x) = 3x2 for all x ∈ IR, and therefore, f ′(0) = 0. But f does not have a local maximum or
minimum at x0 = 0, because, for any ε ∈ IR++, we have ε/2 ∈ Uε(0) and −ε/2 ∈ Uε(0), and furthermore,

f
( ε
2

)
=
ε3

8
> 0 = f(0) (3.16)

and

f

(
−ε
2

)
= −ε

3

8
< 0 = f(0). (3.17)

(3.16) implies that f cannot have a local maximum at x0 = 0, and (3.17) establishes that f cannot have
a local minimum at x0 = 0.
Theorem 3.3.6 applies to interior points of A only. If f is defined on an interval including one or both

of its endpoints, a zero derivative is not necessary for a maximum at an endpoint. For example, consider
a function f : [a, b] �→ IR with a graph as illustrated in Figure 3.9.
Clearly, f has local maxima at a and at b. Because a and b are not interior points, Theorem 3.3.6

cannot be applied. However, if the right-side derivative of f exists at a, we can conclude that this
derivative cannot be positive if f has a local maximum at a. Analogously, if f has a local maximum at
b and the left-side derivative of f exists at b, this derivative must be nonnegative. Similar considerations
apply to minima at the endpoints of [a, b]. This is summarized in

Theorem 3.3.7 Let A = [a, b], where a, b ∈ IR and a < b. Furthermore, let f : A �→ IR.

(i) If f has a local maximum at a and the right-side derivative of f at a exists, then f ′(a) ≤ 0.
(ii) If f has a local maximum at b and the left-side derivative of f at b exists, then f ′(b) ≥ 0.
(iii) If f has a local minimum at a and the right-side derivative of f at a exists, then f ′(a) ≥ 0.
(iv) If f has a local minimum at b and the left-side derivative of f at b exists, then f ′(b) ≤ 0.



68 CHAPTER 3. FUNCTIONS OF ONE VARIABLE
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Figure 3.9: Maxima at endpoints.

The proof of Theorem 3.3.7 is analogous to the proof of Theorem 3.3.6 and is left as an exercise.
The necessary conditions for local maxima and minima presented in Theorems 3.3.6 and 3.3.7 are

sometimes called first-order conditions for local maxima and minima, because they involve the first-order
derivatives of the function f . Points x0 ∈ A satisfying these first-order conditions are called critical
points.
As was mentioned earlier, the first-order conditions only provide necessary, but not sufficient con-

ditions for local maxima and minima. Once we have found a critical point satisfying the first-order
conditions, we have to do some more work to find out whether this point is a local maximum, minimum,
or neither a maximum nor a minimum.
Next, we formulate some results that will be useful in determining the nature of critical points. The

following result is usually referred to as Rolle’s theorem.

Theorem 3.3.8 Let [a, b] ⊆ A, where A ⊆ IR is an interval, a, b ∈ IR, and a < b. Furthermore, let
f : A �→ IR be continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), then there exists x0 ∈ (a, b)
such that f ′(x0) = 0.

Proof. Suppose f(a) = f(b). By Theorem 3.3.4, there exist x0, y0 ∈ [a, b] such that

f(x0) ≥ f(x) ≥ f(y0) ∀x ∈ [a, b]. (3.18)

If f(x0) = f(y0), (3.18) implies that f has a local maximum and a local minimum at any point x ∈ (a, b).
By Theorem 3.3.6, it follows that f ′(x) = 0 for all x ∈ (a, b).
Now suppose f(x0) > f(y0). If f(x0) > f(a), it follows that x0 �= a and x0 �= b (because, by

assumption, f(a) = f(b)). Therefore, x0 ∈ (a, b), and by Theorem 3.3.6, f ′(x0) = 0.
If f(x0) = f(a), it follows that f(y0) < f(a), and therefore, y0 �= a and y0 �= b. This implies that

y0 is an interior point, that is, y0 ∈ (a, b). Because f has a local minimum at y0, Theorem 3.3.6 implies
f ′(y0) = 0, which completes the proof. ‖
The next theorem is the mean-value theorem.

Theorem 3.3.9 Let [a, b] ⊆ A, where A ⊆ IR is an interval, a, b ∈ IR, and a < b. Furthermore, let
f : A �→ IR be continuous on [a, b] and differentiable on (a, b). There exists x0 ∈ (a, b) such that

f ′(x0) =
f(b) − f(a)
b− a .

The mean-value theorem can be generalized. The following result is the generalized mean-value theorem.
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Figure 3.10: The mean-value theorem.

Theorem 3.3.10 Let [a, b] ⊆ A, where A ⊆ IR is an interval, a, b ∈ IR, and a < b. Furthermore, let
f : A �→ IR and g : A �→ IR be continuous on [a, b] and differentiable on (a, b), and suppose g′(x) �= 0 for
all x ∈ (a, b). There exists x0 ∈ (a, b) such that

f ′(x0)

g′(x0)
=
f(b) − f(a)
g(b)− g(a) .

Proof. Because g′(x) �= 0 for all x ∈ (a, b), we must have g(a) �= g(b)—otherwise, we would obtain a
contradiction to Rolle’s theorem. Therefore, g(b) − g(a) �= 0, and we can define the function

k : [a, b] �→ IR, x �→ f(x) − f(b) − f(a)
g(b)− g(a) (g(x)− g(a)).

Because f and g are continuous on [a, b] and differentiable on (a, b), k is continuous on [a, b] and differ-
entiable on (a, b). Furthermore, k(a) = k(b) = f(a). By Theorem 3.3.8, there exists x0 ∈ (a, b) such
that

k′(x0) = 0. (3.19)

By definition of k,

k′(x) = f ′(x)− f(b) − f(a)
g(b)− g(a) g

′(x) ∀x ∈ (a, b),

and therefore, (3.19) implies
f ′(x0)

g′(x0)
=
f(b) − f(a)
g(b) − g(a) . ‖

The mean-value theorem is obtained as a special case of Theorem 3.3.10, where g(x) = x for all x ∈ A.
See Figure 3.10 for an illustration of the mean-value theorem. The mean-value theorem says that there
must exist a point x0 ∈ (a, b) such that the slope of the tangent to the graph of f at x0 is equal to the
slope of the secant through (a, f(a)) and (b, f(b)), given that f is continuous on [a, b] and differentiable
on (a, b).
The mean-value theorem can be used to provide criteria for the monotonicity properties introduced

in Definition 3.1.12.

Theorem 3.3.11 Let A,B ⊆ IR be intervals with B ⊆ A, and let f : A �→ IR be differentiable on B.

(i) f ′(x) ≥ 0 ∀x ∈ B ⇔ f is nondecreasing on B.
(ii) f ′(x) > 0 ∀x ∈ B ⇒ f is increasing on B.
(iii) f ′(x) ≤ 0 ∀x ∈ B ⇔ f is nonincreasing on B.
(iv) f ′(x) < 0 ∀x ∈ B ⇒ f is decreasing on B.
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Proof. (i) “⇒”: Suppose f ′(x) ≥ 0 for all x ∈ B. Let x, y ∈ B with x > y. By the mean-value theorem,
there exists x0 ∈ (y, x) such that

f ′(x0) =
f(x) − f(y)
x− y .

Because f ′(x0) ≥ 0 and x > y, this implies f(x) ≥ f(y).
“⇐”: Suppose f is nondecreasing on B. Let x0 ∈ B be such that (x0, x0+ ε) ⊆ B for some ε ∈ IR++.

For h ∈ (0, ε), nondecreasingness implies f(x0 + h) − f(x0) ≥ 0, and therefore,

f(x0 + h)− f(x0)
h

≥ 0.

This implies

lim
h↓0

f(x0 + h) − f(x0)
h

≥ 0.

Because f is differentiable at x0,

f ′(x0) = lim
h↓0

f(x0 + h)− f(x0)
h

≥ 0.

If x0 ∈ B is the right-side endpoint of B, there exists ε ∈ IR++ such that (x0 − ε, x0) ⊆ B, and the same
argument as above can be applied with h ∈ (−ε, 0).
(ii) Suppose f ′(x) > 0 for all x ∈ B. Let x, y ∈ B with x > y. As in part (i), the mean-value theorem

implies that there exists x0 ∈ (y, x) such that

f ′(x0) =
f(x) − f(y)
x− y .

Because f ′(x0) > 0 and x > y, we obtain f(x) > f(y).
The proofs of parts (iii) and (iv) are analogous. ‖
Note that the reverse implications of (ii) and (iv) in Theorem 3.3.11 are not true. For example,

consider the function
f : IR �→ IR, x �→ x3.

This function is increasing on its domain, but f ′(0) = 0.
Furthermore, the assumption that B is an interval is essential in Theorem 3.3.11. To see this, consider

the function

f : (0, 1)∪ (1, 2) �→ IR, x �→
{
x if x ∈ (0, 1)
x− 1 if x ∈ (1, 2).

This function is differentiable on its domain A = (0, 1)∪ (1, 2). Furthermore, f ′(x) = 1 > 0 for all x ∈ A,
but f is not increasing (not even nondecreasing) on A, because, for example, f(3/4) = 3/4 > 1/4 =
f(5/4).
The next result can be very useful in finding limits of functions. It is called l’Hôpital’s rule.

Theorem 3.3.12 Let A ⊆ IR, and let f : A �→ IR and g : A �→ IR be functions. Let α ∈ IR ∪ {−∞,∞}.
(i) Let x0 ∈ IR ∪ {−∞}, and suppose (x0, x0 + h) ⊆ A for some h ∈ IR++. Furthermore, suppose f

and g are differentiable on (x0, x0 + h), and g(x) �= 0, g′(x) �= 0 for all x ∈ (x0, x0 + h). If

lim
x↓x0
f(x) = lim

x↓x0
g(x) = 0 ∨ lim

x↓x0
g(x) = −∞ ∨ lim

x↓x0
g(x) =∞,

then

lim
x↓x0

f ′(x)

g′(x)
= α ⇒ lim

x↓x0

f(x)

g(x)
= α.

(ii) Let x0 ∈ IR ∪ {∞}, and suppose (x0 − h, x0) ⊆ A for some h ∈ IR++. Furthermore, suppose f
and g are differentiable on (x0 − h, x0), and g(x) �= 0, g′(x) �= 0 for all x ∈ (x0 − h, x0). If

lim
x↑x0
f(x) = lim

x↑x0
g(x) = 0 ∨ lim

x↑x0
g(x) = −∞ ∨ lim

x↑x0
g(x) =∞,

then

lim
x↑x0

f ′(x)

g′(x)
= α ⇒ lim

x↑x0

f(x)

g(x)
= α.
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Proof. We provide a proof of (i) in the case where x0 ∈ IR, α ∈ IR, and limx↓x0 f(x) = limx↓x0 g(x) = 0;
the other cases are similar. Suppose

lim
x↓x0
f(x) = lim

x↓x0
g(x) = 0. (3.20)

Let δ ∈ IR++. Because
lim
x↓x0

f ′(x)

g′(x)
= α,

there exists ε ∈ IR++ such that

f ′(x)

g′(x)
∈ Uδ/2(α) ∀x ∈ (x0, x0 + ε).

Let y ∈ (x0, x0 + ε). By (3.20),
f(y)

g(y)
= lim
x↓x0

f(y) − f(x)
g(y) − g(x) .

By the generalized mean-value theorem, for any x ∈ (x0, y), there exists y0 ∈ (x, y)—which may depend
on x—such that

f ′(y0)

g′(y0)
=
f(y) − f(x)
g(y) − g(x) .

Therefore,
f(y)

g(y)
= lim
x↓x0

f ′(y0)

g′(y0)
.

Because
f ′(y0)

g′(y0)
∈ Uδ/2(α),

it follows that
f(y)

g(y)
∈ Uδ(α),

and therefore,

lim
x↓x0

f(x)

g(x)
= α. ‖

To illustrate the application of l’Hôpital’s rule, consider the following example. Let

f : (1, 2) �→ IR, x �→ x2 − 1

and
g : (1, 2) �→ IR, x �→ x− 1.

We obtain limx↓1 f(x) = limx↓1 g(x) = 0. Furthermore, f
′(x) = 2x and g′(x) = 1 for all x ∈ (1, 2).

Therefore,

lim
x↓1

f ′(x)

g′(x)
= lim
x↓1
2x = 2.

According to l’Hôpital’s rule,

lim
x↓1

f(x)

g(x)
= 2.

Next, we present a result that can be used to approximate the value of a function by means of a
polynomial. For functions with a complex structure, this can be a substantial simplification, because the
values of polynomials are relatively easy to compute. We obtain

Theorem 3.3.13 Let A ⊆ IR, and let f : A �→ IR. Let n ∈ IN, and let x0 be an interior point of A. If f
is n+ 1 times differentiable on Uε(x0) for some ε ∈ IR++, then

f(x) = f(x0) +
n∑
k=1

f(k)(x0)(x− x0)k
k!

+ R(x)
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for all x ∈ Uε(x0), where

R(x) =
f(n+1)(ξ)(x − x0)n+1

(n + 1)!
(3.21)

for some ξ between x and x0.

Proof. For x ∈ Uε(x0), let

R(x) := f(x) − f(x0) −
n∑
k=1

f(k)(x0)(x− x0)k
k!

.

We have to show that R(x) must be of the form (3.21). By definition, R(x0) = 0, and

R′(x0) = f
′(x0)−

n∑
k=1

f(k)(x0)
k(x− x0)k−1

k!
= 0,

and analogously, R(k)(x0) = 0 for all k = 1, . . . , n. Furthermore,

R(n+1)(x) = f(n+1)(x) ∀x ∈ Uε(x0). (3.22)

We obtain
R(x)

(x− x0)n+1
=
R(x)− R(x0)
(x− x0)n+1 − 0

.

By the generalized mean-value theorem, it follows that there exists ξ1 between x0 and x such that

R(x)− R(x0)
(x− x0)n+1 − 0

=
R′(ξ1)

(n+ 1)(ξ1 − x0)n
.

Again, by definition of R,
R′(ξ1)

(n + 1)(ξ1 − x0)n
=

R′(ξ1) −R′(x0)
(n+ 1)(ξ1 − x0)n − 0

,

and by the generalized mean-value theorem, there exists ξ2 between x0 and ξ1 such that

R′(ξ1)− R′(x0)
(n+ 1)(ξ1 − x0)n − 0

=
R′′(ξ2)

n(n+ 1)(ξ2 − x0)n−1
.

By repeated application of this argument, we eventually obtain

R(n)(ξn)− R(n)(x0)
(n+ 1)!(ξn − x0) − 0

=
R(n+1)(ξ)

(n + 1)!

where ξ is between x0 and ξn. Combining all these equalities, we obtain

R(x)

(x− x0)n+1
=
R(n+1)(ξ)

(n + 1)!

and, using (3.22),

R(x) =
f(n+1)(ξ)(x− x0)n+1

(n+ 1)!
. ‖

Theorem 3.3.13 says that, in a neighborhood of a point x0, the value of f(x) can be approximated
with a polynomial, where R(x)—the remainder—describes the error that is made in this approximation.
The polynomial

f(x0) +
n∑
k=1

f(k)(x0)(x− x0)k
k!

is called a Taylor polynomial of order n around x0. The approximation is a “good” approximation if the
error term R(x) is “small”. If limn→∞R(x) = 0, the approximation approaches the true value of f(x) as
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n approaches infinity. If R(x) approaches zero as n approaches infinity and the nth-order derivative of f
at x0 exists for all n ∈ IN, it follows that

f(x) = f(x0) +
∞∑
k=1

f(k)(x0)(x− x0)k
k!

(3.23)

for all x ∈ Uε(x0). (3.23) is a Taylor series expansion of f around x0.
Consider the following example. Let

f : IR �→ IR, x �→ x3 + 3x2 + 2.

To find Taylor polynomials of f around x0 = 1, note first that we have f
′(x) = 3x2+6x, f ′′(x) = 6x+6,

f(3)(x) = 6, and f(n)(x) = 0 for all n ≥ 4, for all x ∈ IR. Therefore, f(1) = 6, f ′(1) = 9, f ′′(1) = 12,
f(3)(1) = 6, and f(n)(1) = 0 for all n ≥ 4. Furthermore, R(x) = 0 for all x ∈ IR and all n ≥ 3. The
Taylor polynomial of order one around x0 = 1 is

f(x0) + f
′(x0)(x− x0) = 6 + 9(x− 1),

and the Taylor polynomial of order two is

f(x0) + f
′(x0)(x − x0) +

f ′′(x0)(x− x0)2
2

= 6 + 9(x− 1) + 6(x− 1)2.

For n ≥ 3, the Taylor polynomial of order n gives the exact value of f at x because, in this case, R(x) = 0.
We now return to the problem of finding maxima and minima of functions. The following theorem

provides sufficient conditions for maxima and minima of differentiable functions.

Theorem 3.3.14 Let A ⊆ IR be an interval, let f : A �→ IR, and let x0 ∈ A. Suppose there exists
ε ∈ IR++ such that f is continuous on Uε(x0) ∩A and differentiable on Uε(x0) ∩A \ {x0}.

(i) If f ′(x) ≥ 0 for all x ∈ (x0 − ε, x0) ∩A and f ′(x) ≤ 0 for all x ∈ (x0, x0 + ε) ∩A, then f
has a local maximum at x0.
(ii) If f ′(x) ≤ 0 for all x ∈ (x0 − ε, x0) ∩A and f ′(x) ≥ 0 for all x ∈ (x0, x0 + ε) ∩A, then f
has a local minimum at x0.

Proof. (i) First, we show

f(x0) ≥ f(x) ∀x ∈ (x0 − ε, x0) ∩A. (3.24)

If (x0 − ε, x0) ∩A = ∅, (3.24) is trivially true. Now let x ∈ (x0 − ε, x0)∩A. By the mean-value theorem,
there exists y ∈ (x, x0) such that

f(x0)− f(x)
x0 − x

= f ′(y) ≥ 0,

and therefore, because x0 > x, f(x0) − f(x) ≥ 0, which completes the proof of (3.24).
Next, we prove

f(x0) ≥ f(x) ∀x ∈ (x0, x0 + ε) ∩A. (3.25)

If (x0, x0+ ε) ∩A = ∅, (3.25) is trivially true. Now let x ∈ (x0, x0+ ε) ∩A. By the mean-value theorem,
there exists y ∈ (x0, x) such that

f(x) − f(x0)
x− x0

= f ′(y) ≤ 0,

and therefore, because x > x0, f(x) − f(x0) ≤ 0. This proves (3.25). Combining (3.24) and (3.25), the
proof of (i) is complete.
Part (ii) is proven analogously. ‖
Note that Theorem 3.3.14 only requires f to be continuous at x0—f need not be differentiable at x0.

Therefore, this result can be applied to functions such as

f : IR �→ IR, x �→ |x|.
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This function is not differentiable at x0 = 0, but it is continuous at x0 = 0 and differentiable at all points
in IR \ {0}. We obtain

f ′(x) =

{
1 if x > 0
−1 if x < 0,

and therefore, according to Theorem 3.3.14, f has a local minimum at x0 = 0.
For boundary points of A, the following theorem provides further sufficient conditions for maxima

and minima.

Theorem 3.3.15 Let A = [a, b], where a, b ∈ IR and a < b. Furthermore, let f : A �→ IR.

(i) f is right-side differentiable at a and f ′(a) < 0 ⇒ f has a local maximum at a.
(ii) f is right-side differentiable at a and f ′(a) > 0 ⇒ f has a local minimum at a.
(iii) f is left-side differentiable at b and f ′(b) > 0 ⇒ f has a local maximum at b.
(iv) f is left-side differentiable at b and f ′(b) < 0 ⇒ f has a local minimum at b.

Proof. (i) Suppose

f ′(a) = lim
h↓0

f(a + h) − f(a)
h

< 0.

Then there exists ε ∈ IR++ such that

f(a + h)− f(a)
h

< 0 ∀h ∈ (0, ε).

Because h > 0, this implies f(a + h)− f(a) < 0 for all h ∈ (0, ε), and therefore,

f(x) < f(a) ∀x ∈ (a, a+ ε),

which implies that f has a local maximum at a.
The proofs of parts (ii) to (iv) are analogous. ‖
If f is twice differentiable at a point x0, the following conditions for local maxima and minima at

interior points can be established. We already know that at a local interior maximum (minimum) of a
differentiable function, the derivative of this function must be equal to zero. If we combine this condition
with a condition involving the second derivative of f , we obtain another set of sufficient conditions for
local maxima and minima.

Theorem 3.3.16 Let A ⊆ IR be an interval, let f : A �→ IR, and let x0 be an interior point of A. Suppose
f is twice differentiable at x0, and there exists ε ∈ IR++ such that f is differentiable on Uε(x0).

(i) f ′(x0) = 0 ∧ f ′′(x0) < 0 ⇒ f has a local maximum at x0.
(ii) f ′(x0) = 0 ∧ f ′′(x0) > 0 ⇒ f has a local minimum at x0.

Proof. (i) Let f ′(x0) = 0 and f
′′(x0) < 0. Then

0 > f ′′(x0) = lim
h→0

f ′(x0 + h)− f ′(x0)
h

= lim
h→0

f ′(x0 + h)

h
.

Therefore, there exists δ ∈ (0, ε) such that, with x = x0 + h,

f ′(x) > 0 ∀x ∈ (x0 − δ, x0)

and

f ′(x) < 0 ∀x ∈ (x0, x0 + δ).

By Theorem 3.3.14, this implies that f has a local maximum at x0.
The proof of part (ii) is analogous. ‖
Analogous sufficient conditions for maxima and minima at boundary points can be formulated.
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Theorem 3.3.17 Let A = [a, b], where a, b ∈ IR and a < b. Furthermore, let f : A �→ IR.
(i) Suppose f is twice right-side differentiable at a, and there exists ε ∈ IR++ such that f is differen-

tiable on (a, a+ ε). If f ′(a) ≤ 0 and f ′′(a) < 0, then f has a local maximum at a.
(ii) Suppose f is twice left-side differentiable at b, and there exists ε ∈ IR++ such that f is differentiable

on (b − ε, b). If f ′(b) ≥ 0 and f ′′(b) < 0, then f has a local maximum at b.
(iii) Suppose f is twice right-side differentiable at a, and there exists ε ∈ IR++ such that f is differ-

entiable on (a, a+ ε). If f ′(a) ≥ 0 and f ′′(a) > 0, then f has a local minimum at a.
(iv) Suppose f is twice left-side differentiable at b, and there exists ε ∈ IR++ such that f is differentiable

on (b − ε, b). If f ′(b) ≤ 0 and f ′′(b) > 0, then f has a local minimum at b.

The proof of Theorem 3.3.17 is analogous to the proof of Theorem 3.3.16 and is left as an exercise.
The above theorems provide sufficient conditions for local maxima and minima. These conditions are

not necessary. For example, consider
f : IR �→ IR, x �→ x4.

The function f has a local minimum at x0 = 0, but f
′′(0) = 0.

The conditions formulated in Theorems 3.3.16 and 3.3.17 involving the second derivatives of f are
called sufficient second-order conditions.
For maxima and minima at interior points, we can also formulate necessary second-order conditions.

Theorem 3.3.18 Let A ⊆ IR be an interval, let f : A �→ IR, and let x0 be an interior point of A. Suppose
f is twice differentiable at x0, and there exists ε ∈ IR++ such that f is differentiable on Uε(x0).

(i) f has a local maximum at x0 ⇒ f ′′(x0) ≤ 0.
(ii) f has a local minimum at x0 ⇒ f ′′(x0) ≥ 0.

Proof. (i) Suppose f has a local maximum at an interior point x0. Then there exists ε ∈ IR++ such that

f(x0) ≥ f(x) ∀x ∈ Uε(x0).

By way of contradiction, suppose f ′′(x0) > 0. Therefore,

lim
h↓0

f ′(x0 + h) − f ′(x0)
h

> 0.

This implies that we can find δ ∈ (0, ε) such that

f ′(x) > f ′(x0) ∀x ∈ (x0, x0 + δ).

Because f has a local maximum at the interior point x0, it follows that f
′(x0) = 0, and therefore, we

obtain
f ′(x) > 0 ∀x ∈ (x0, x0 + δ). (3.26)

Let x ∈ (x0, x0 + δ). By the mean-value theorem, there exists y ∈ (x0, x) such that

f(x) − f(x0)
x− x0

= f ′(y).

By (3.26), f ′(y) > 0, and because x > x0, we obtain f(x) > f(x0), contradicting the assumption that f
has a local maximum at x0.
The proof of (ii) is analogous. ‖
Theorem 3.3.18 applies to interior points of A only. For boundary points, the second derivative

being nonpositive (nonnegative) is not necessary for a maximum (minimum). For example, consider the
function

f : [0, 1] �→ IR, x �→ x2.
This function has a local maximum at x0 = 1, but f

′′(1) = 2 > 0.
To conclude this section, we work through an example for finding local maxima and minima. Define

f : [0, 3] �→ IR, x �→ (x − 1)2.
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f is twice differentiable on its domain A = [0, 3], and we obtain

f ′(x) = 2(x− 1), f ′′(x) = 2 ∀x ∈ A.

Because f ′(0) = −2 < 0, f has a local maximum at the boundary point 0 (see Theorem 3.3.15). Similarly,
because f ′(3) = 4 > 0, f has a local maximum at the boundary point 3. Furthermore, the only possibility
for a local maximum or minimum at an interior point is at x0 = 1, because this is the only interior point
x0 such that f

′(x0) = 0. The function f has a local minimum at x0 = 1, because f
′′(1) = 2 > 0.

Because the domain of f is a closed and bounded interval, f must have a global maximum and a
global minimum (see Theorem 3.3.4). The global minimum must be at x0 = 1, because this is the only
local minimum, and a global minimum must be a local minimum. There are two local maxima of f . To
find out at which of these f has a global maximum, we calculate the values of f at the corresponding
points. We obtain f(0) = 1 and f(3) = 4, and therefore, the function f has a global maximum at x0 = 3.

3.4 Concave and Convex Functions

The conditions introduced in the previous section provide criteria for local maxima and minima of func-
tions. It would, of course, be desirable to have conditions that allow us to determine whether a point is
a global maximum or minimum. This can be done with the help of concavity and convexity of functions.
The definition of these properties is

Definition 3.4.1 Let A ⊆ IR be an interval, and let f : A �→ IR.
(i) f is concave if and only if

f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y) ∀x, y ∈ A such that x �= y, ∀λ ∈ (0, 1).

(ii) f is strictly concave if and only if

f(λx + (1− λ)y) > λf(x) + (1− λ)f(y) ∀x, y ∈ A such that x �= y, ∀λ ∈ (0, 1).

(iii) f is convex if and only if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ A such that x �= y, ∀λ ∈ (0, 1).

(iv) f is strictly convex if and only if

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y) ∀x, y ∈ A such that x �= y, ∀λ ∈ (0, 1).

Be careful to distinguish between the convexity of a set (see Chapter 1) and the convexity of a function
as defined above. Note that the assumption that A is an interval is very important in this definition.
Because intervals are convex sets, this assumption ensures that f is defined at points λx + (1 − λ)y for
x, y ∈ A and λ ∈ (0, 1).
Figure 3.11 gives a diagrammatic illustration of the graph of a concave function.
Concavity requires that the value of f at a convex combination of two points x, y ∈ A is greater than

or equal to the corresponding convex combination of the values of f at these two points. Geometrically,
concavity says that the line segment joining the points (x, f(x)) and (y, f(y)) can never be above the
graph of the function.
Convexity has an analogous interpretation—see Figure 3.12 for an illustration of the graph of a convex

function.
Clearly, a function f is concave if and only if the function −f is convex (Exercise: prove this).
Concavity and convexity are global properties of a function, because they apply to the whole domain

A rather than a neighborhood of a point only.
There are several necessary and sufficient conditions for concavity and convexity that will be useful

for our purposes. First, we show
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Figure 3.11: A concave function.
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Figure 3.12: A convex function.
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Theorem 3.4.2 Let A ⊆ IR be an interval, and let f : A �→ IR.
(i) f is concave if and only if

f(y) − f(x)
y − x ≥ f(z) − f(y)

z − y ∀x, y, z ∈ A such that x < y < z.

(ii) f is strictly concave if and only if

f(y) − f(x)
y − x >

f(z) − f(y)
z − y ∀x, y, z ∈ A such that x < y < z.

(iii) f is convex if and only if

f(y) − f(x)
y − x ≤ f(z) − f(y)

z − y ∀x, y, z ∈ A such that x < y < z.

(iv) f is strictly convex if and only if

f(y) − f(x)
y − x <

f(z) − f(y)
z − y ∀x, y, z ∈ A such that x < y < z.

Proof. (i) “Only if”: Suppose f is concave. Let x, y, z ∈ A be such that x < y < z. Define

λ :=
z − y
z − x.

Then it follows that

1− λ = y − x
z − x,

and y = λx+ (1− λ)z. Because f is concave,

f(y) ≥ z − y
z − xf(x) +

y − x
z − xf(z). (3.27)

This is equivalent to

(z − x)f(y) ≥ (z − y)f(x) + (y − x)f(z)
⇔ (z − y)(f(y) − f(x)) ≥ (y − x)(f(z) − f(y))

⇔ f(y) − f(x)
y − x ≥ f(z) − f(y)

z − y . (3.28)

“If”: Let λ ∈ (0, 1) and x, z ∈ A be such that x �= z. Define y := λx + (1− λ)z. Then we have

z − y
z − x = λ ∧

y − x
z − x = 1− λ.

As was shown above, (3.27) is equivalent to (3.28), and therefore,

f(λx + (1− λ)z) ≥ λf(x) + (1− λ)f(z).

The proofs of (ii) to (iv) are analogous. ‖
A diagrammatic illustration of Theorem 3.4.2 is given in Figure 3.13.
The slope of the line segment joining (x, f(x)) and (y, f(y)) is greater than or equal to the slope

of the line segment joining (y, f(y)) and (z, f(z)) whenever x < y < z for a concave function f . The
interpretation of parts (ii) to (iv) of the theorem is analogous.
For differentiable functions, there are some convenient criteria for concavity and convexity.

Theorem 3.4.3 Let A ⊆ IR be an interval, and let f : A �→ IR be differentiable.
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Figure 3.13: The secant inequality.

(i) f is concave ⇔ f ′ is nonincreasing.
(ii) f is strictly concave ⇔ f ′ is decreasing.
(iii) f is convex ⇔ f ′ is nondecreasing.
(iv) f is strictly convex ⇔ f ′ is increasing.

Proof. (i) “⇒”: Suppose f is concave. Let x, y ∈ A be such that x < y. Let x0 ∈ (x, y). For
k ∈ (0, x0 − x) and h ∈ (x0 − y, 0), we have

x < x+ k < x0 < y + h < y.

By Theorem 3.4.2,

f(x + k)− f(x)
k

≥ f(x0)− f(x + k)
x0 − x− k

≥ f(y + h) − f(x0)
y + h − x0

≥ f(y + h) − f(y)
h

. (3.29)

Because f is differentiable, taking limits as k and h approach zero yields

f ′(x) = lim
k↓0

f(x + k) − f(x)
k

≥ f(x0)− f(x)
x0 − x

≥ f(y) − f(x0)
y − x0

≥ lim
h↑0

f(y + h)− f(y)
h

= f ′(y), (3.30)

and therefore, f ′(x) ≥ f ′(y), which proves that f ′ is nonincreasing.
“⇐”: Suppose f ′ is nonincreasing. Let x, y, z ∈ A be such that x < y < z. By the mean-value

theorem, there exist x0 ∈ (x, y) such that

f ′(x0) =
f(y) − f(x)
y − x

and y0 ∈ (y, z) such that
f ′(y0) =

f(z) − f(y)
z − y .

Because x0 < y0, nonincreasingness of f
′ implies

f ′(x0) ≥ f ′(y0), (3.31)

and therefore,
f(y) − f(x)
y − x ≥ f(z) − f(y)

z − y , (3.32)

which, by Theorem 3.4.2, shows that f is concave.
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(ii) The proof of (ii) is similar to the proof of part (i). To prove “⇒”, note that in the case of strict
concavity, the inequalities in (3.29) are strict, and therefore, (3.30) becomes

f ′(x) = lim
k↓0

f(x+ k)− f(x)
k

≥ f(x0) − f(x)
x0 − x

>
f(y) − f(x0)
y − x0

≥ lim
h↑0

f(y + h)− f(y)
h

= f ′(y),

which implies f ′(x) > f ′(y).
To establish “⇐”, note that decreasingness of f ′ implies that (3.31) is replaced by

f ′(x0) > f
′(y0),

and hence, the weak inequality in (3.32) is replaced by a strict inequality, proving that f is strictly
concave.
The proofs of (iii) and (iv) are analogous. ‖
If f is twice differentiable, Theorem 3.4.3 can be combined with Theorem 3.3.11 to obtain

Theorem 3.4.4 Let A ⊆ IR be an interval, and let f : A �→ IR be twice differentiable.

(i) f ′′(x) ≤ 0 ∀x ∈ A ⇔ f is concave.
(ii) f ′′(x) < 0 ∀x ∈ A ⇒ f is strictly concave.
(iii) f ′′(x) ≥ 0 ∀x ∈ A ⇔ f is convex.
(iv) f ′′(x) > 0 ∀x ∈ A ⇒ f is strictly convex.

As in Theorem 3.3.11, it is important to note that the reverse implications in parts (ii) and (iv) of
Theorem 3.4.4 are not true.
For concave functions, any local maximummust also be a global maximum. Similarly, a local minimum

of a convex function must be a global minimum.

Theorem 3.4.5 Let A ⊆ IR be an interval, and let f : A �→ IR. Furthermore, let x0 ∈ A.

(i) If f is concave and f has a local maximum at x0, then f has a global maximum at x0.
(ii) If f is convex and f has a local minimum at x0, then f has a global minimum at x0.

Proof. (i) Suppose f is concave and has a local maximum at x0 ∈ A. By way of contradiction, suppose
f does not have a global maximum at x0. Then there exists y ∈ A such that

f(y) > f(x0). (3.33)

Because f has a local maximum at x0, there exists ε ∈ IR++ such that

f(x0) ≥ f(x) ∀x ∈ Uε(x0) ∩A. (3.34)

Clearly, there exists λ ∈ (0, 1) such that

z := λy + (1− λ)x0 ∈ Uε(x0) ∩A (3.35)

(just choose λ sufficiently close to zero for given ε). By concavity of f ,

f(z) ≥ λf(y) + (1− λ)f(x0),

and by (3.33),
λf(y) + (1− λ)f(x0) > f(x0),

and therefore, f(z) > f(x0). Because of (3.35), this is a contradiction to (3.34).
The proof of (ii) is analogous. ‖
If a function f is strictly concave and has a (local and global) maximum, this maximum is unique.

Similarly, a strictly convex function has at most one (local and global) minimum.

Theorem 3.4.6 Let A ⊆ IR be an interval, and let f : A �→ IR.

(i) If f is strictly concave, then f has at most one local (and global) maximum.
(ii) If f is strictly convex, then f has at most one local (and global) minimum.
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Proof. (i) Suppose f is strictly concave, and therefore concave. By Theorem 3.4.5, all local maxima of
f are global maxima. By way of contradiction, suppose f has two local, and therefore, global maxima
at x ∈ A and at y ∈ A, where x �= y. By definition of a global maximum, we must have f(x) ≥ f(y)
and f(y) ≥ f(x), and therefore, f(x) = f(y). Let z := λx + (1 − λ)y for some λ ∈ (0, 1). Clearly,
z ∈ A. Because f is strictly concave, it follows that f(z) > λf(x) + (1 − λ)f(y) = f(x), contradicting
the assumption that f has a maximum at x.
The proof of (ii) is analogous. ‖
For differentiable functions, we can use concavity and convexity to state sufficient conditions for global

maxima and minima.

Theorem 3.4.7 Let A ⊆ IR be an interval, and let f : A �→ IR. Furthermore, let x0 be an interior point
of A, and suppose f is differentiable at x0.

(i) f ′(x0) = 0 ∧ f is concave ⇒ f has a global maximum at x0.
(ii) f ′(x0) = 0 ∧ f is convex ⇒ f has a global minimum at x0.

Proof. (i) Suppose f ′(x0) = 0 and f is concave. Let y ∈ A, y �= x0. We have to show f(x0) ≥ f(y).
First, suppose y > x0. Because f is concave,

f(λy + (1− λ)x0) ≥ λf(y) + (1− λ)f(x0) ∀λ ∈ (0, 1).

This is equivalent to

f(x0 + λ(y − x0))− f(x0) ≥ λ(f(y) − f(x0)) ∀λ ∈ (0, 1).

Because y > x0,
f(x0 + λ(y − x0)) − f(x0)

λ(y − x0)
≥ f(y) − f(x0)

y − x0
∀λ ∈ (0, 1).

Defining h := λ(y − x0), this can be written as

f(x0 + h)− f(x0)
h

≥ f(y) − f(x0)
y − x0

∀h ∈ (0, y − x0).

Because f is differentiable at x0, we obtain

f ′(x0) = lim
h↓0

f(x0 + h) − f(x0)
h

≥ f(y) − f(x0)
y − x0

.

Because f ′(x0) = 0 and y > x0, this implies f(y) − f(x0) ≤ 0, which proves that f(x0) ≥ f(y) for all
y ∈ A such that y > x0. The case y < x0 is proven analogously (prove that as an exercise).
The proof of (ii) is analogous. ‖
Theorem 3.4.7 applies to interior points only, but it is easy to generalize the result to boundary points.

We obtain

Theorem 3.4.8 Let A = [a, b], where a, b ∈ IR and a < b, and let f : A �→ IR.

(i) If f is right-side differentiable at a, f ′(a) ≤ 0, and f is concave, then f has a global
maximum at a.
(ii) If f is left-side differentiable at b, f ′(b) ≥ 0, and f is concave, then f has a global
maximum at b.
(iii) If f is right-side differentiable at a, f ′(a) ≥ 0, and f is convex, then f has a global
minimum at a.
(iv) If f is left-side differentiable at b, f ′(b) ≤ 0, and f is convex, then f has a global minimum
at b.

The proof of Theorem 3.4.8 is analogous to the proof of Theorem 3.4.7 and is left as an exercise.
As an economic example for the application of optimization techniques, consider the following profit

maximization problem of a competitive firm. Suppose a firm produces a good which is sold in a competitive
market. The cost function of this firm is a function

C : IR+ �→ IR, y �→ C(y),



82 CHAPTER 3. FUNCTIONS OF ONE VARIABLE

where C(y) is the cost of producing y ∈ IR+ units of output. The market price for the good produced by
the firm is p ∈ IR++. The assumption that the market is a perfectly competitive market implies that the
firm has to take the market price as given and can only choose the quantity of output to be produced
and sold.
Suppose the firm wants to maximize profit, that is, the difference between revenue and cost. If the

firm produces and sells y ∈ IR+ units of output, the revenue of the firm is py, and the cost is C(y).
Therefore, profit maximization means that the firm wants to maximize the function

π : IR+ �→ IR, y �→ py − C(y).

We denote this maximization problem by

max
y
{py −C(y)},

where the subscript indicates that y is the choice variable of the firm. Note that the price p is a parameter
which cannot be chosen by the firm.
Suppose C is differentiable, which implies that π is differentiable. If C is convex, π is concave, and

therefore, if a critical point can be found, the function π must have a global maximum at this point.
For example, let p = 1 and consider the cost function C : IR+ �→ IR, y �→ y2. We obtain the profit

maximization problem maxy{y − y2}. Because π′′(y) = −2 < 0 for all y ∈ IR+, π is strictly concave.
If π has an interior maximum at a point y0 ∈ IR++, we must have π′(y0) = 0, which is equivalent to
1 − 2y0 = 0, and therefore, y0 = 1/2. By Theorem 3.4.6, π has a unique global maximum at y0 = 1/2,
and the maximal value of π is π(1/2) = 1/4.
More generally, consider the maximization problem maxy{py−y2}. The same steps as in the previous

example lead to the conclusion that π has a unique global maximum at y0 = p/2 for any p ∈ IR++. Note
that this defines the solution y0 as a function

ȳ : IR++ �→ IR, p �→
p

2

of the market price. We call this function a supply function, because it answers the question how much
of the good a firm with the above cost function would want to sell at the market price p ∈ IR++. If we
substitute y0 = ȳ(p) into the objective function, we obtain the maximal possible profit of the firm as a
function of the market price. In this example, we obtain the maximal possible profit

π0 = π(ȳ(p)) = π
(p
2

)
= p
p

2
−C
(p
2

)
=
p2

2
−
(p
2

)2
=
(p
2

)2
.

Therefore, the maximal possible profit of the firm is given by the function

π̄ : IR++ �→ IR, p �→
(p
2

)2
.

We call the function π̄ a profit function.
Now suppose the cost function is C : IR+ �→ IR, y �→ y. We obtain the profit maximization problem

maxy{py − y}. The function to be maximized is concave, because π′′(y) = 0 for all y ∈ IR++. For an
interior solution, the necessary first-order condition is

p− 1 = 0,

which means that we have an interior maximum at any y0 ∈ IR++ if p = 1. To see under which
circumstances we can have a boundary solution at y0 = 0, we have to use the condition

π′(0) ≤ 0,

which, in this example, leads to p− 1 ≤ 0. Therefore, π has a global maximum at any y0 ∈ IR+ if p = 1,
π has a unique maximum at y0 = 0 if p < 1, and π has no maximum if p > 1.



Chapter 4

Functions of Several Variables

4.1 Sequences of Vectors

As is the case for functions of one variable, limits of functions of several variables can be related to limits
of sequences, where the elements of these sequences are vectors. This section provides an introduction to
sequences in IRn.

Definition 4.1.1 Let n ∈ IN. A sequence of n-dimensional vectors is a function a : IN �→ IRn, m �→ a(m).
To simplify notation, we will write am instead of a(m) form ∈ IN, and use {am} to denote such a sequence.

Note that we use superscripts to denote elements of a sequence rather than subscripts. This is done to
avoid confusion with components of vectors.
The notion of convergence of a sequence of vectors can be defined analogously to the convergence of

sequences of real numbers, once we have a definition of distance in IRn, which, in turn, can be used to
define the notion of a neighborhood in IRn.
There are several possibilities to define distances in IRn which could be used for our applications.

One example is the Euclidean distance defined in Chapter 2. For our purposes, it will be convenient
to use the following definition. For n ∈ IN and x, y ∈ IRn, define the distance between x and y as
d(x, y) := max({|xi − yi| | i ∈ {1, . . . , n}}). Clearly, for n = 1, we obtain the usual distance between real
numbers. This distance function leads to the following definition of a neighborhood.

Definition 4.1.2 Let n ∈ IN. For x0 ∈ IRn and ε ∈ IR++, the ε-neighborhood of x0 is defined by

Uε(x0) :=
{
x ∈ IRn

∣∣∣ |xi − x0i | < ε ∀i ∈ {1, . . . , n}} . (4.1)

Figure 4.1 illustrates the ε-neighborhood of x0 = (1, 1) in IR2 for ε = 1/2.
Once neighborhoods are defined, interior points, openness in IRn, and closedness in IRn can be defined

analogously to the corresponding definitions in Chapter 1—all that needs to be done is to replace IR with
IRn in these definitions. The corresponding formulations of these definitions are given below.

Definition 4.1.3 Let n ∈ IN, and let A ⊆ IRn. x0 ∈ A is an interior point of A if and only if there exists
ε ∈ IR++ such that Uε(x0) ⊆ A.

Definition 4.1.4 Let n ∈ IN. A set A ⊆ IRn is open in IRn if and only if

x ∈ A⇒ x is interior point of A.

Definition 4.1.5 Let n ∈ IN. A set A ⊆ IRn is closed in IRn if and only if A is open in IRn.

Note that, as an alternative to Definition 4.1.2, we could define neighborhoods in terms of the Eu-
clidean distance. This would lead to the following definition of an ε-neighborhood in IRn.

Uε(x0) :=


x ∈ IRn

∣∣∣
√√√√ n∑
i=1

(xi − x0i )2 < ε


 . (4.2)
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Figure 4.1: A neighborhood in IR2.

Geometrically, a neighborhood Uε(x0) as defined in (4.2) can be represented as an open disc with center
x0 and radius ε for n = 2.
For our purposes, it does not matter whether (4.1) or (4.2) is used. This is the case because any set

A ⊆ IRn is open according to the notion of a neighborhood defined in (4.1) if and only if A is open if we
use (4.2) to define neighborhoods. That we use (4.1) rather than (4.2) is merely a matter of convenience,
because some proofs are simplified by this choice.
We can now define convergence of sequences in IRn.

Definition 4.1.6 Let n ∈ IN.
(i) A sequence of vectors {am} converges to α ∈ IRn if and only if

∀ε ∈ IR++, ∃m0 ∈ IN such that am ∈ Uε(α) ∀m ≥m0.

(ii) If {am} converges to α ∈ IRn, α is the limit of {am}, and we write

lim
m→∞

am = α.

The convergence of a sequence {am} to α = (α1, . . . , αn) ∈ IRn is equivalent to the convergence of the
sequences of the components {ami } of {am} to αi for all i ∈ {1, . . . , n}. This result—which is stated in
the following theorem—considerably simplifies the task of checking sequences of vectors for convergence,
because the problem can be reduced to the convergence of sequences of real numbers.

Theorem 4.1.7 Let n ∈ IN, and let {am} be a sequence in IRn. If α ∈ IRn, then

lim
m→∞

am = α ⇔ lim
m→∞

ami = αi ∀i = 1, . . . , n.

Proof. “⇒”: Suppose {am} converges to α ∈ IRn. Let ε ∈ IR++. By the definition of convergence, there
exists m0 ∈ IN such that am ∈ Uε(α) for all m ≥m0. By Definition 4.1.2, this is equivalent to

|ami − αi| < ε ∀m ≥ m0, ∀i = 1, . . . , n,

which implies ami ∈ Uε(αi) for all m ≥ m0, for all i = 1, . . . , n. This means that {ami } converges to αi
for all i = 1, . . . , n.
“⇐”: Suppose limm→∞ ami = αi for all i = 1, . . . , n. This means that, for any ε ∈ IR++, there exist

m01, . . . , m
0
n ∈ IN such that

|ami − αi| < ε ∀m ≥ m0i , ∀i = 1, . . . , n.
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Figure 4.2: The set A.

Let m0 := max({m0i | i ∈ {1, . . . , n}}). The we have

|ami − αi| < ε ∀m ≥ m0, ∀i = 1, . . . , n,

which means that {am} converges to α. ‖
As an example, consider the sequence defined by

am =

(
1

m
, 1− 1

m

)
∀m ∈ IN.

We obtain

lim
m→∞

am1 = lim
m→∞

1

m
= 0

and

lim
m→∞

am2 = lim
m→∞

(
1− 1
m

)
= 1,

and therefore, limm→∞ a
m = (0, 1).

4.2 Continuity

A real-valued function of several variables is a function f : A �→ B, where A ⊆ IRn with n ∈ IN and
B ⊆ IR, that is, the domain of f is a set of n-dimensional vectors. Throughout this chapter, we assume
that the domain A is a convex set, and the range B will usually be the set IR.
Convexity of a subset of IRn is defined analogously to the convexity of subsets of IR. We define

Definition 4.2.1 Let n ∈ IN. A set A ⊆ IRn is convex if and only if

[λx+ (1 − λ)y] ∈ A ∀x, y ∈ A, ∀λ ∈ [0, 1].

Here are some examples for n = 2. Let A = {x ∈ IR2 | (1 ≤ x1 ≤ 2) ∧ (0 ≤ x2 ≤ 1)}, B = {x ∈ IR2 |
(x1)

2+(x2)
2 ≤ 1}, C = A∪{x ∈ IR2 | (0 ≤ x1 ≤ 2)∧ (1 ≤ x2 ≤ 2)}. The sets A, B, and C are illustrated

in Figures 4.2, 4.3, and 4.4, respectively. As an exercise, show that A and B are convex, but C is not.
For functions of two variables, it is often convenient to give a graphical illustration by means of their

level sets.

Definition 4.2.2 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR be a function. Furthermore, let
c ∈ f(A). The level set of f for c is the set {x ∈ A | f(x) = c}.
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Figure 4.3: The set B.
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Figure 4.4: The set C.
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Figure 4.5: A level set.

Therefore, the level set of f for c ∈ f(A) is the set of all points x in the domain of f such that the value
of f at x is equal to c.
For example, let

f : IR2++ �→ IR, x �→ x1x2.

We obtain f(A) = f(IR2++) = IR++, and, for any c ∈ IR++, the level set of f for c is given by {x ∈ IR2++ |
x1x2 = c}. Figure 4.5 illustrates the level set of f for c = 1.
The definition of continuity of a function of several variables is analogous to the definition of continuity

of a function of one variable.

Definition 4.2.3 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR be a function. Furthermore, let
x0 ∈ A.
(i) The function f is continuous at x0 if and only if

∀δ ∈ IR++, ∃ε ∈ IR++ such that f(x) ∈ Uδ(f(x0)) ∀x ∈ Uε(x0) ∩A.

(ii) The function f is continuous on B ⊆ A if and only if f is continuous at each x0 ∈ B. If f is
continuous on A, we will often simply say that f is continuous.

A useful criterion for the continuity of a function of several variables can be given in terms of convergent
sequences.

Theorem 4.2.4 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR be a function. Furthermore, let
x0 ∈ A. f is continuous at x0 if and only if, for all sequences {xm} such that xm ∈ A for all m ∈ IN,

lim
m→∞

xm = x0⇒ lim
m→∞

f(xm) = f(x0).

The proof of Theorem 4.2.4 is analogous to the proof of Theorem 3.1.2.
Analogously to Theorems 3.1.8 and 3.1.9, we obtain

Theorem 4.2.5 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR and g : A �→ IR be functions.
Furthermore, let α ∈ IR. If f and g are continuous at x0 ∈ A, then

(i) f + g is continuous at x0.
(ii) αf is continuous at x0.
(iii) fg is continuous at x0.
(iv) If g(x) �= 0 for all x ∈ A, f/g is continuous at x0.
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Theorem 4.2.6 Let n ∈ IN, and let A ⊆ IRn be convex. Furthermore, let f : A �→ IR and g : f(A) �→ IR
be functions, and let x0 ∈ A. If f is continuous at x0 and g is continuous at y0 = f(x0), then g ◦ f is
continuous at x0.

Suppose f is a function of n ≥ 2 variables. If we fix n− 1 components of the vector of variables x, we
can define a function of one variable. This function of one variable is continuous if the original function
f is continuous.

Theorem 4.2.7 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR be a function. Furthermore, let
x0 ∈ A. For i ∈ {1, . . . , n}, let

Ai := {y ∈ IR | ∃x ∈ A such that xi = y ∧ xj = x0j ∀j ∈ {1, . . . , n} \ {i}},

and define a function
f i : Ai �→ IR, xi �→ f(x01, . . . , x0i−1, xi, x0i+1, . . . , x0n). (4.3)

If f is continuous at x0, then f i is continuous at x0i .

Proof. Suppose f is continuous at x0 ∈ A. Let i ∈ {1, . . . , n}, and let {xmi } be a sequence of real
numbers such that xmi ∈ Ai for all m ∈ IN and limm→∞ xmi = x0i . Furthermore, for j ∈ {1, . . . , n} \ {i},
let xmj = x

0
j for all m ∈ IN. Therefore, limm→∞ xm = x0, and, because f is continuous at x0,

lim
m→∞

f(xm) = f(x0). (4.4)

By definition, f(xm) = f i(xmi ) for all m ∈ IN, and f(x0) = f i(x0i ). Therefore, equation (4.4) implies
limm→∞ f

i(xmi ) = f
i(x0i ), which proves that f

i is continuous at x0i . ‖
It is important to note that continuity of the restrictions of f to its ith component as defined in

(4.3) does not imply that f is continuous. It is possible that, for x0 ∈ A, f i is continuous at x0i for all
i = 1, . . . , n, but f is not continuous at x0. For example, consider the function

f : IR2 �→ IR, x �→
{ x1x2
(x1)2+(x2)2

if x �= (0, 0)
0 if x = (0, 0).

Let x0 = (0, 0). We obtain f1(x1) = f(x1, 0) = 0 for all x1 ∈ IR and f2(x2) = f(0, x2) = 0 for all x2 ∈ IR.
Therefore, f1 is continuous at x01 = 0 and f

2 is continuous at x02 = 0. However, f is not continuous at
x0 = (0, 0). To see why this is the case, consider the sequence {xm} defined by

xm =

(
1

m
,
1

m

)
∀m ∈ IN.

Clearly, limm→∞ x
m = (0, 0). We obtain

f(xm) =
1
m
1
m(

1
m

)2
+
(
1
m

)2 = 12 ∀m ∈ IN,
which implies

lim
m→∞

f(xm) =
1

2
�= 0 = f(0, 0),

and therefore, f is not continuous at x0 = (0, 0).

4.3 Differentiation

In Chapter 3, we introduced the derivative of a function of one variable in order to make statements
about the change in the value of the function caused by a change in the argument of the function. If we
consider functions of several variables, there are basically two possibilities of generalizing this approach.
The first possibility is to consider the effect of a change in one variable, keeping all other variables at a

constant value. This leads to the concept of partial differentiation. Second, we could allow all variables to
change and examine the effect on the value of the function, which is done by means of total differentiation.
Partial differentiation is very similar to the differentiation of functions of one variable.
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Definition 4.3.1 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR be a function. Furthermore,
let x0 be an interior point of A, and let i ∈ {1, . . . , n}. The function f is partially differentiable with
respect to xi at x

0 if and only if

lim
h→0

f(x01, . . . , x
0
i−1, x

0
i + h, x

0
i+1, . . . , x

0
n)− f(x0)

h
(4.5)

exists and is finite. If f is partially differentiable with respect to xi at x
0, we call the limit in (4.5) the

partial derivative of f with respect to xi at x0 and denote it by fxi(x
0) or

∂f(x0)

∂xi
.

For simplicity, we restrict attention to interior points of A in this chapter. Let B ⊆ A be an open set.
We say that f is partially differentiable with respect to xi on B if and only if f is partially differentiable
with respect to xi at all points in B. If f is partially differentiable with respect to xi on A, the function

fxi : A �→ IR, x �→ fxi(x)

is called the partial derivative of f with respect to xi.
Note that partial differentiation is very much like differentiation of a function of one variable, because

the remaining n − 1 variables are held fixed. Therefore, the same differentiation rules as introduced in
Chapter 3 apply—we only have to treat all variables other than xi as constants when differentiating with
respect to xi. For example, consider the function

f : IR2 �→ IR, x �→ x1(x2)2 + 2(x1)3. (4.6)

f is partially differentiable with respect to both arguments, and we obtain the partial derivatives

fx1 : IR
2 �→ IR, x �→ (x2)2 + 6(x1)2

and
fx2 : IR

2 �→ IR, x �→ 2x1x2.
Again, we can find higher-order partial derivatives of functions with partially differentiable partial deriva-
tives. For a function f : A �→ IR of n ∈ IN variables, there are n2 second-order partial derivatives at a
point x0 ∈ A (assuming that these derivatives exist), namely,

∂2f(x0)

∂xi∂xj
= fxixj(x

0) :=
∂fxi (x

0)

∂xj
∀i, j ∈ {1, . . . , n}.

If we arrange these second-order partial derivatives in an n × n matrix, we obtain the so-called Hessian
matrix of second-order partial derivatives of f at x0, which we denote by H(f(x0)), that is,

H(f(x0)) :=



fx1x1(x

0) fx1x2(x
0) . . . fx1xn(x

0)
fx2x1(x

0) fx2x2(x
0) . . . fx2xn(x

0)
...

...
...

fxnx1(x
0) fxnx2(x

0) . . . fxnxn(x
0)


 .

As an example, consider the function f defined in (4.6). For any x ∈ IR2, we obtain the Hessian matrix

H(f(x)) =

(
12x1 2x2
2x2 2x1

)
.

Note that in this example, we have fx1x2(x) = fx2x1(x) for all x ∈ IR2, that is, the order of differentiation
is irrelevant in finding the mixed second-order partial derivatives fx1x2 and fx2x1 . This is not the case
for all functions. For example, consider

f : IR2 �→ IR, x �→
{
x1x2

(x1)
2−(x2)2

(x1)2+(x2)2
if x �= (0, 0)

0 if x = (0, 0).
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For x2 ∈ IR, we obtain

fx1(0, x2) = lim
h→0

hx2
h2−(x2)2
h2+(x2)2

h
= −(x2)

3

(x2)2
= −x2.

For x1 ∈ IR, it follows that

fx2(x1, 0) = lim
h→0

x1h
(x1)

2−h2
(x1)2+h2

h
=
(x1)

3

(x1)2
= x1.

We now obtain fx1x2(0, 0) = −1 �= 1 = fx2x1(0, 0), and therefore, in this example, the order of differ-
entiation does matter. However, this can only happen if the second-order mixed partial derivatives are
not continuous. The following theorem (which is often referred to as Young’s theorem) states conditions
under which the order of differentiation is irrelevant for finding second-order mixed partial derivatives.
We will state this result without a proof.

Theorem 4.3.2 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR be a function. Furthermore, let
x0 be an interior point of A, and let i, j ∈ {1, . . . , n}. If there exists ε ∈ IR++ such that fxi (x), fxj(x),
and fxixj(x) exist for all x ∈ Uε(x0) and these partial derivatives are continuous at x0, then fxjxi(x0)
exists, and fxjxi(x

0) = fxixj(x
0).

Therefore, if all first-order and second-order partial derivatives of a function f : A �→ IR are continuous
at x0 ∈ A, it follows that the Hessian matrix of f at x0 is a symmetric matrix.
We now define total differentiability of a function of several variables. Recall that 0 denotes the origin

(0, . . . , 0) of IRn.

Definition 4.3.3 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR be a function. Furthermore,
let x0 be an interior point of A. f is totally differentiable at x0 if and only if there exist ε ∈ IR++ and
functions εi : IR

n �→ IR for i = 1, . . . , n such that, for all h = (h1, . . . , hn) ∈ Uε(0),

f(x0 + h)− f(x0) =
n∑
i=1

fxi (x
0)hi +

n∑
i=1

εi(h)hi

and

lim
h→0

εi(h) = 0 ∀i = 1, . . . , n.

For example, consider the function

f : IR2 �→ IR, x �→ (x1)2 + (x2)2.

For x0 ∈ IR2 and h ∈ IR2, we obtain

f(x0 + h)− f(x0) = (x01 + h1)
2 + (x02 + h2)

2 − (x01)2 − (x02)2

= 2x01h1 + (h1)
2 + 2x02h2 + (h2)

2

= fx1(x
0)h1 + fx2(x

0)h2 + h1h1 + h2h2

= fx1(x
0)h1 + fx2(x

0)h2 + ε1(h)h1 + ε2(h)h2

where ε1(h) := h1 and ε2(h) := h2. Because limh→0 εi(h) = 0 for i = 1, 2, it follows that f is totally
differentiable at any point x0 in its domain.
In general, the partial differentiability of f with respect to all variables at an interior point x0 in the

domain of f is not sufficient for the total differentiability of f at x0. However, if all partial derivatives
exist in a neighborhood of x0 and are continuous at x0, it follows that f is totally differentiable at x0. We
state this result—which is very helpful in checking functions for total differentiability—without a proof.

Theorem 4.3.4 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR be a function. Furthermore, let
x0 be an interior point of A. If there exists ε ∈ IR++ such that, for all i ∈ {1, . . . , n}, fxi(x) exists for
all x ∈ Uε(x0) and fxi is continuous at x0, then f is totally differentiable at x0.
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The total differential is used to approximate the change in the value of a function caused by changes
in its arguments. We define

Definition 4.3.5 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR be a function. Furthermore, let
x0 be an interior point of A, let f be totally differentiable at x0, and let h = (h1, . . . , hn) ∈ IRn be such
that (x0 + h) ∈ A. The total differential of f at x0 and h is defined by

df(x0, h) :=
n∑
i=1

fxi(x
0)hi.

If f is totally differentiable, the total differential of f at x0 and h can be used as an approximation of the
change in f , f(x0 + h)− f(x0), for small h1, . . . , hn, because, in this case, the values of the functions εi
(see Definition 4.3.3) approach zero, and therefore, df(x0, h) is “close” to the true value of this difference.
The following theorem generalizes the chain rule to functions of several variables.

Theorem 4.3.6 Let m, n ∈ IN, and let A ⊆ IRn and B ⊆ IRm. Furthermore, let fj : A �→ IR, j ∈
{1, . . . , m}, be such that (f1(x), . . . , fm(x)) ∈ B for all x ∈ A, let g : B �→ IR, and let x0 ∈ A. Define the
function k by

k : A �→ IR, x �→ g(f1(x), . . . , fm(x)).
Let i ∈ {1, . . . , n}. If g is totally differentiable at y0 = (f1(x0), . . . , fm(x0)) and, for all j ∈ {1, . . . , m},
fj is partially differentiable with respect to xi at x

0, then k is partially differentiable with respect to xi,
and

kxi(x
0) =

m∑
j=1

gyj(f
1(x0), . . . , fm(x0))fjxi(x

0).

For example, consider the functions

f1 : IR2 �→ IR, x �→ x1x2,
f2 : IR2 �→ IR, x �→ ex1 + x2,
g : IR2 �→ IR, y �→ (y1 + y2)2.

We obtain
f1x1(x) = x2, f

1
x2
(x) = x1, f

2
x1
(x) = ex1 , f2x2(x) = 1 ∀x ∈ IR

2

and
gy1(y) = gy2(y) = 2(y1 + y2) ∀y ∈ IR2.

The function
k : IR2 �→ IR, x �→ g(f1(x), f2(x))

is partially differentiable with respect to both variables, and its partial derivatives are given by

kx1(x) = gy1(f
1(x), f2(x))f1x1(x) + gy2(f

1(x), f2(x))f2x1(x)

= 2(x1x2 + e
x1 + x2)x2 + 2(x1x2 + e

x1 + x2)e
x1

= 2(x1x2 + e
x1 + x2)(e

x1 + x2)

and

kx2(x) = gy1(f
1(x), f2(x))f1x2(x) + gy2(f

1(x), f2(x))f2x2(x)

= 2(x1x2 + e
x1 + x2)x1 + 2(x1x2 + e

x1 + x2)

= 2(x1x2 + e
x1 + x2)(x1 + 1)

for all x ∈ IR2.
Functions of several variables can be used to describe relationships between a dependent variable and

independent variables. If the relationship between a dependent variable y and n independent variables
x1, . . . , xn is explicitly given, we can write

y = f(x1, . . . , xn) (4.7)
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with a function f : A �→ IR, where A ⊆ IRn. For example, the equation

−(x1)2 + ((x2)2 + 1)y = 0

can be solved for y as a function of x = (x1, x2), namely, y = f(x) with

f : IR2 �→ IR, x �→ (x1)
2

(x2)2 + 1
.

However, it is not always the case that a relationship between a dependent variable and several
independent variables can be solved explicitly as in (4.7). Consider, for example, the relationship described
by the equation

− y + 1 + (x1)2 + (x2)2 − ey = 0. (4.8)

This equation cannot easily be solved for y as a function of x = (x1, x2)—in fact, it is not even clear
whether this equation defines y as a function of x at all.
Under certain circumstances, it is possible to find the partial derivatives of a function that is implicitly

defined by an equation as in the above example, even if the function is not known explicitly. We first
define implicit functions.

Definition 4.3.7 Let n ∈ IN, let B ⊆ IRn+1, A ⊆ IRn, and let F : B �→ IR. The equation

F (x1, . . . , xn, y) = 0 (4.9)

defines an implicit function f : A �→ IR if and only if for all x0 ∈ A, there exists a unique y0 ∈ IR such
that (x01, . . . , x

0
n, y

0) ∈ B and F (x01, . . . , x0n, y0) = 0.

The implicit function theorem (which we state without a proof) provides us with conditions under which
equations of the form (4.9) define an implicit function and a method of finding partial derivatives of such
an implicit function.

Theorem 4.3.8 Let n ∈ IN, let B ⊆ IRn+1, and let F : B �→ IR. Let C ⊆ IRn and D ⊆ IR be such that
C×D ⊆ B. Let x0 be an interior point of C and let y0 be an interior point of D such that F (x0, y0) = 0.
Let i ∈ {1, . . . , n}. Suppose the partial derivatives Fxi(x, y) and Fy(x, y) exist and are continuous for all
x ∈ C and all y ∈ D. If Fy(x0, y0) �= 0, then there exists ε ∈ IR++ such that, with A := Uε(x0), there
exists a function f : A �→ IR such that

(i) f(x0) = y0,
(ii) F (x, f(x)) = 0 ∀x ∈ A,
(iii) f is partially differentiable with respect to xi on A, and

fxi(x) = −
Fxi(x, f(x))

Fy(x, f(x))
∀x ∈ A. (4.10)

Note that (4.10) follows from the chain rule. By (ii), we have

F (x, f(x)) = 0 ∀x ∈ A,

and differentiating with respect to xi, we obtain

Fxi(x, f(x)) + Fy(x, f(x))fxi (x) = 0 ∀x ∈ A,

which is equivalent to (4.10).
For example, consider (4.8). We have

F (x1, x2, y) = −y + 1 + (x1)2 + (x2)2 − ey,

and, for x0 = (0, 0) and y0 = 0, we obtain F (x0, y0) = 0. Furthermore, Fx1(x, y) = 2x1, Fx2(x, y) = 2x2,
and Fy(x, y) = −1 − ey for all (x, y) ∈ IR3. Because Fy(x0, y0) �= 0, (4.8) defines an implicit function f
in a neighborhood of x0, and we obtain

fx1(x
0) = − 2x01

−1 − ey0 = 0, fx2(x
0) = − 2x02

−1 − ey0 = 0.
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The implicit function theorem can be used to determine the slope of the tangent to a level set of a
function f : A �→ IR where A ⊆ IR2 is convex. Letting c ∈ f(A), the level set of f for c is the set of all
points x ∈ A satisfying

f(x) − c = 0.
Under the assumptions of the implicit function theorem, this equation defines x2 as an implicit function
of x1 in a neighborhood of a point x

0 in this level set, and the derivative of this implicit function at x0

is given by −fx1(x0)/fx2(x0).

4.4 Unconstrained Optimization

The definition of unconstrained maximization and minimization of functions of several variables is anal-
ogous to the corresponding definition for functions of one variable.

Definition 4.4.1 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR. Furthermore, let x0 ∈ A.

(i) f has a global maximum at x0 ⇔ f(x0) ≥ f(x) ∀x ∈ A.
(ii) f has a local maximum at x0⇔ ∃ε ∈ IR++ such that f(x0) ≥ f(x) ∀x ∈ Uε(x0) ∩A.
(iii) f has a global minimum at x0 ⇔ f(x0) ≤ f(x) ∀x ∈ A.
(iv) f has a local minimum at x0 ⇔ ∃ε ∈ IR++ such that f(x0) ≤ f(x) ∀x ∈ Uε(x0) ∩A.

We will restrict attention to interior maxima and minima in this section. For functions that are partially
differentiable with respect to all variables, we can again formulate necessary first-order conditions for
local maxima and minima.

Theorem 4.4.2 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR. Furthermore, let x0 be an
interior point of A, and suppose f is partially differentiable with respect to all variables at x0.

(i) f has a local maximum at x0 ⇒ fxi(x0) = 0 ∀i = 1, . . . , n.
(ii) f has a local minimum at x0 ⇒ fxi(x0) = 0 ∀i = 1, . . . , n.

Proof. (i) Suppose f has a local maximum at an interior point x0 ∈ A. For i ∈ {1, . . . , n}, let f i be
defined as in (4.3). Then the function f i must have a local maximum at x0i (otherwise, f could not have a
local maximum at x0). By Theorem 3.3.6, we must have (f i)′(x0) = 0. By definition, (f i)′(x0) = fxi (x

0),
and therefore, fxi(x

0) = 0 for all i = 1, . . . , n.
The proof of (ii) is analogous. ‖
Note that, as is the case for functions of one variable, Theorem 4.4.2 provides necessary, but not

sufficient conditions for local maxima and minima. Points that satisfy these conditions are often called
critical points or stationary points.
To obtain sufficient conditions for maxima and minima, we again examine second-order derivatives

of f at an interior critical point x0. If all first-order and second-order partial derivatives of f exist in a
neighborhood of x0 and these partial derivatives are continuous at x0, the second-order changes in f can,
in a neighborhood of x0, be approximated by a second-order total differential

d2f(x0, h) := d(df(x0, h)) =
n∑
j=1

n∑
i=1

fxixj (x
0)hihj .

Note that the above double sum can be written as

h′H(f(x0))h (4.11)

where h′ is the transpose vector of h and H(f(x0)) is the Hessian matrix of f at x0. Analogously to
the case of functions of one variable, a sufficient condition for a local maximum is that this second-order
change in f is negative for small h. Because of (4.11), we therefore obtain as a sufficient condition for a
local maximum that the Hessian matrix of f at x0 is negative definite. Similar considerations apply to
local minima, and we obtain

Theorem 4.4.3 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR. Furthermore, let x0 be an interior
point of A. Suppose f is twice partially differentiable with respect to all variables in a neighborhood of
x0, and these partial derivatives are continuous at x0.
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(i) If fxi(x
0) = 0 for all i = 1, . . . , n and H(f(x0)) is negative definite, then f has a local

maximum at x0.
(ii) If fxi(x

0) = 0 for all i = 1, . . . , n and H(f(x0)) is positive definite, then f has a local
minimum at x0.
(iii) If fxi(x

0) = 0 for all i = 1, . . . , n and H(f(x0)) is indefinite, then f has neither a local
maximum nor a local minimum at x0.

The conditions formulated in Theorem 4.4.3 (i) and (ii) are called sufficient second-order conditions for
unconstrained maxima and minima.
Here is an example for an optimization problem with a function of two variables. Let

f : IR2 �→ IR, x �→ (x1)2 + (x2)2 + (x1)3.

The necessary first-order conditions for a maximum or minimum at x0 ∈ IR2 are

fx1(x
0) = 2x01 + 3(x

0
1)
2 = 0

and
fx2(x

0) = 2x02 = 0.

Therefore, we have two stationary points, namely, (0, 0) and (−2/3, 0). For x ∈ IR2, the Hessian matrix
of f at x is

H(f(x)) =

(
2 + 6x1 0
0 2

)
.

Therefore,

H(f(0, 0)) =

(
2 0
0 2

)
which is a positive definite matrix. Therefore, f has a local minimum at (0, 0). Furthermore,

H(f(−2/3, 0)) =
(
−2 0
0 2

)

which is an indefinite matrix. This implies that f has neither a maximum nor a minimum at (−2/3, 0).
To formulate sufficient conditions for global maxima and minima, we define concavity and convexity

of functions of several variables.

Definition 4.4.4 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR.
(i) f is concave if and only if

f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y) ∀x, y ∈ A such that x �= y, ∀λ ∈ (0, 1).

(ii) f is strictly concave if and only if

f(λx + (1− λ)y) > λf(x) + (1− λ)f(y) ∀x, y ∈ A such that x �= y, ∀λ ∈ (0, 1).

(iii) f is convex if and only if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ A such that x �= y, ∀λ ∈ (0, 1).

(iv) f is strictly convex if and only if

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y) ∀x, y ∈ A such that x �= y, ∀λ ∈ (0, 1).

For open domains A, we obtain the following conditions for concavity and convexity if f has certain
differentiability properties (we only consider open sets, because we restrict attention to interior points in
this chapter).

Theorem 4.4.5 Let n ∈ IN, let A ⊆ IRn be open and convex, and let f : A �→ IR. Suppose all first-order
and second-order partial derivatives of f exist and are continuous.
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(i) H(f(x)) is negative semidefinite ∀x ∈ A ⇔ f is concave.
(ii) H(f(x)) is negative definite ∀x ∈ A ⇒ f is strictly concave.
(iii) H(f(x)) is positive semidefinite ∀x ∈ A ⇔ f is convex.
(iv) H(f(x)) is positive definite ∀x ∈ A ⇒ f is strictly convex.

Again, note that the reverse implications in parts (ii) and (iv) of Theorem 4.4.5 are not true.
Now we can state results that parallel Theorems 3.4.5 to 3.4.7 concerning global maxima and minima.

The proofs of the following three theorems are analogous to the proofs of the above mentioned theorems
for functions of one variable and are left as exercises.

Theorem 4.4.6 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR. Furthermore, let x0 ∈ A.

(i) If f is concave and f has a local maximum at x0, then f has a global maximum at x0.
(ii) If f is convex and f has a local minimum at x0, then f has a global minimum at x0.

Theorem 4.4.7 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR.

(i) If f is strictly concave, then f has at most one local (and global) maximum.
(ii) If f is strictly convex, then f has at most one local (and global) minimum.

Theorem 4.4.8 Let n ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR. Furthermore, let x0 be an
interior point of A, and suppose f is partially differentiable with respect to all variables at x0.

(i) fxi (x0) = 0 ∀i = 1, . . . , n ∧ f is concave ⇒ f has a global maximum at x0.
(ii) fxi(x0) = 0 ∀i = 1, . . . , n ∧ f is convex ⇒ f has a global minimum at x0.

We conclude this section with an economic example. Suppose a firm produces a good which is sold
in a competitive market. The firm uses n ∈ IN factors of production that can be bought in competitive
factor markets. A production function f : IRn++ �→ IR is used to describe the production technology of
the firm. If we interpret x ∈ IRn++ as a vector of inputs (or a factor combination), f(x) is the maximal
amount of output that can be produced with this factor combination according to the firm’s technology.
Suppose w ∈ IRn++ is the vector of factor prices, where wi is the price of factor i, i = 1, . . . , n.

Furthermore, suppose p ∈ IR++ is the price of the good produced by the firm.
If the firm uses the factor combination x ∈ IRn++, the profit of the firm is pf(x) − wx, and therefore,

the profit maximization problem of the firm is

max
x
{pf(x)− wx}.

Suppose f is concave and partially differentiable with respect to all variables. Therefore, the objective
function is concave, and by Theorem 4.4.8, the conditions

pfxi (x
0)− wi = 0 ∀i = 1, . . . , n

are sufficient for a global maximum at x0 ∈ IRn++.
For example, let

f : IR2++ �→ IR, x �→ (x1x2)1/4.
We obtain the profit maximization problem

max
x
{p(x1x2)1/4 −w1x1 − w2x2}.

First, we show that the function f is concave. The Hessian matrix of f at x ∈ IR2++ is

H(f(x)) =

(
− 316(x1)−7/4(x2)1/4

1
16(x1x2)

−3/4
1
16(x1x2)

−3/4 − 316(x1)1/4(x2)−7/4
)
.

The leading principal minor of order one is

− 3
16
(x1)

−7/4(x2)
1/4,
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which is negative for all x ∈ IR2++, and the determinant of the Hessian matrix is

|H(f(x))| = 1
32
(x1x2)

−3/2 > 0

for all x ∈ IR2++, and therefore, H(f(x)) is negative definite for all x ∈ IR2++. This implies that f is
strictly concave, and therefore, the objective function is strictly concave. Hence, the first-order conditions

p

4
(x01)

−3/4(x02)
1/4 −w1 = 0 (4.12)

p

4
(x01)

1/4(x02)
−3/4 −w2 = 0 (4.13)

are sufficient for a global maximum at x0 ∈ IR2++. From (4.13), it follows that

x02 = (w2)
−4/3
(p
4

)4/3
(x01)

1/3. (4.14)

Using (4.14) in (4.12), we obtain

p

4
(x01)

−3/4
(
(w2)

−4/3
(p
4

)4/3
(x01)

1/3

)1/4
−w1 = 0. (4.15)

Solving (4.15) for x01, we obtain

x01 =
(p)2

16(w1)3/2(w2)1/2
, (4.16)

and using (4.16) in (4.14), it follows that

x02 =
(p)2

16(w1)1/2(w2)3/2
. (4.17)

(4.16) and (4.17) give us the optimal choices of the amounts used of each factor as functions of the prices,
namely,

x̄1 : IR
3
++ �→ IR, (p, w) �→

(p)2

16(w1)3/2(w2)1/2

x̄2 : IR
3
++ �→ IR, (p, w) �→

(p)2

16(w1)1/2(w2)3/2
.

These functions are called the factor demand functions corresponding to the technology described by
the production function f . By substituting x0 into f , we obtain the optimal amount of output to be
produced, y0, as a function ȳ of the prices, namely,

ȳ : IR3++ �→ IR, (p, w) �→
p

4
√
w1w2

.

ȳ is the supply function corresponding to f . Finally, substituting x0 into the objective function yields the
maximal profit of the firm π0 as a function π̄ of the prices. In this example, this profit function is given
by

π̄ : IR3++ �→ IR, (p, w) �→
(p)2

8
√
w1w2

.

4.5 Optimization with Equality Constraints

In many applications, optimization problems involving constraints have to be solved. A typical economic
example is the cost minimzation problem of a firm, where production costs have to be minimized subject
to the constraint that a certain amount is produced. We will discuss this example in more detail at the
end of this section. First, general methods for solving constrained optimization problems are developed.
We will restrict attention to maximization and minimization problems involving functions of n ≥ 2

variables and one equality constraint (it is possible to extend the results discussed here to problems with
more than one constraint, as long as the number of constraints is smaller than the number of variables).
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Suppose we have an objective function f : A �→ IR such that A ⊆ IRn is convex, where n ∈ IN and
n ≥ 2. Furthermore, suppose we have to satisfy an equality constraint that requires g(x) = 0, where
g : A �→ IR. Note that any equality constraint can be expressed in this form. We now define constrained
maxima and minima.

Definition 4.5.1 Let n ∈ IN, n ≥ 2, let A ⊆ IRn be convex, and let f : A �→ IR and g : A �→ IR.
Furthermore, let x0 ∈ A.

(i) f has a global constrained maximum subject to the constraint g(x) = 0 at x0 if and only
if g(x0) = 0 and f(x0) ≥ f(x) for all x ∈ A such that g(x) = 0.
(ii) f has a local constrained maximum subject to the constraint g(x) = 0 at x0 if and only
if there exists ε ∈ IR++ such that g(x0) = 0 and f(x0) ≥ f(x) for all x ∈ Uε(x0)∩A such that
g(x) = 0.
(iii) f has a global constrained minimum subject to the constraint g(x) = 0 at x0 if and only
if g(x0) = 0 and f(x0) ≤ f(x) for all x ∈ A such that g(x) = 0.
(iv) f has a local constrained minimum subject to the constraint g(x) = 0 at x0 if and only
if there exists ε ∈ IR++ such that g(x0) = 0 and f(x0) ≤ f(x) for all x ∈ Uε(x0)∩A such that
g(x) = 0.

Again, we only discuss interior constrained maxima and minima in this section. To obtain necessary
conditions for local constrained maxima and minima, we first give an illustration for the case of a function
of two variables. Suppose a function f : A �→ IR has a local constrained maximum (or minimum) subject
to the constraint g(x) = 0 at an interior point x0 of A, where A ⊆ IR2 is convex, f and g are twice
partially differentiable with respect to all variables, and all partial derivatives are continuous at x0.
Furthermore, suppose gx2(x

0) �= 0 (assuming gx1(x0) �= 0 would work as well). We will see shortly
why such a condition—sometimes called a constraint qualification condition—is needed. We now derive
an unconstrained optimization problem from this problem and then use the results for unconstrained
optimization to draw conclusions about the solution of the constrained problem.
Because gx2(x

0) �= 0, the implicit function theorem implies that the equation g(x) = 0 defines, in a
neighborhood Uε(x01), an implicit function k : Uε(x01) �→ IR, where x2 = k(x1) for all x1 ∈ Uε(x01). Because
f has a local constrained maximum at x0, it follows that the function

f̂ : Uε(x01) �→ IR, x1 �→ f(x1, k(x1)) (4.18)

has a local unconstrained maximum at x01. Note that the constraint g(x1, x2) = 0 is already taken into

account by definition of the (implicit) function k. Because f̂ has a local interior maximum at x01, it
follows that

f̂ ′(x01) = 0

which, by definition of f̂ and application of the chain rule, is equivalent to

fx1(x
0
1, k(x

0
1)) + fx2(x

0
1, k(x

0
1))k

′(x01) = 0. (4.19)

By the implicit function theorem,

k′(x01) = −
gx1(x

0
1, k(x

0
1))

gx2(x
0
1, k(x

0
1))
. (4.20)

Defining

λ0 :=
fx2(x

0
1, k(x

0
1))

gx2(x
0
1, k(x

0
1))
, (4.21)

(4.19) and (4.20) imply
fx1(x

0
1, k(x

0
1)) − λ0gx1(x01, k(x01)) = 0,

and (4.21) is equivalent to
fx2(x

0
1, k(x

0
1)) − λ0gx2(x01, k(x01)) = 0.

Because x02 = k(x
0
1) and g(x

0) = 0 (which is equivalent to −g(x0) = 0), we obtain the following necessary
conditions for an interior local constrained maximum or minimum at x0.

−g(x01, x02) = 0 (4.22)

fx1(x
0
1, x

0
2)− λ0gx1(x01, x02) = 0 (4.23)

fx2(x
0
1, x

0
2)− λ0gx2(x01, x02) = 0. (4.24)
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Therefore, if f has an interior local constrained maximum (minimum) at x0, it follows that there exists
a real number λ0 such that (λ0, x01, x

0
2) satisfies the above system of equations. We can express these

conditions in terms of the derivatives of the Lagrange function of this optimization problem.
The Lagrange function is defined by

L : IR×A �→ IR, (λ, x) �→ f(x) − λg(x),

and the conditions (4.22), (4.23), and (4.24) are obtained by setting the partial derivatives of L with
respect to its arguments λ, x1, x2, respectively, equal to zero. The additional variable λ ∈ IR is called
the Lagrange multiplier for this problem. Therefore, at a local constrained maximum or minimum, the
point (λ0, x0) must be a stationary point of the Lagrange function L.
This procedure generalizes easily to functions of n ≥ 2 variables. We obtain

Theorem 4.5.2 Let n ∈ IN, n ≥ 2, let A ⊆ IRn be convex, and let f : A �→ IR, g : A �→ IR. Furthermore,
let x0 be an interior point of A. Suppose f and g are partially differentiable with respect to all variables in a
neighborhood of x0, and these partial derivatives are continuous at x0. Suppose there exists i ∈ {1, . . . , n}
such that gxi(x

0) �= 0.
(i) If f has a local constrained maximum subject to the constraint g(x) = 0 at x0, then there exists

λ0 ∈ IR such that
g(x0) = 0 ∧ fxi (x0) − λ0gxi(x0) = 0 ∀i = 1, . . . , n.

(ii) If f has a local constrained minimum subject to the constraint g(x) = 0 at x0, then there exists
λ0 ∈ IR such that

g(x0) = 0 ∧ fxi (x0) − λ0gxi(x0) = 0 ∀i = 1, . . . , n.

Figure 4.6 provides a graphical illustration of a solution to a constrained optimization problem. Sup-
pose we want to maximize f : IR2++ �→ IR subject to the constraint g(x) = 0, where g : IR2++ �→ IR.
The unique solution to this problem is at the point x0. Note that, at that point, the level set of the
objective function f passing through x0 is tangent to the level set of g passing through x0. Therefore,
the slope of the tangent to the level set of f has to be equal to the slope of the tangent to the level
set of g at x0. Applying the implicit function theorem, these slopes are given by −fx1(x0)/fx2(x0) and
−gx1(x0)/gx2(x0), respectively. Therefore, we obtain the condition

fx1(x
0)

fx2(x
0)
=
gx1(x

0)

gx2(x
0)
,

in addition to the requirement that g(x0) = 0. For solutions where the value of the Lagrange multiplier
λ0 is different from zero, the above conditions are an immediate consequence of the first-order conditions
stated in Theorem 4.5.2.
To obtain sufficient conditions for local constrained maxima and minima at interior points, we again

have to use second-order derivatives. Whereas the definiteness properties of the Hessian matrix are
important for unconstrained optimization problems, the so-called bordered Hessian matrix is relevant for
constrained maxima and minima. The bordered Hessian matrix is the Hessian matrix of second-order
partial derivatives of the Lagrange function L. By definition of the Lagrange function, the bordered
Hessian at (λ0, x0) is given by

H(L(λ0, x0)) :=




0 −gx1(x0) . . . −gxn(x0)
−gx1(x0) fx1x1(x

0)− λ0gx1x1(x0) . . . fx1xn(x0)− λ0gx1xn(x0)
...

...
...

−gxn(x0) fxnx1(x0)− λ0gxnx1(x0) . . . fxnxn(x0)− λ0gxnxn(x0)


 .

The sufficient second-order conditions for local constrained maxima and minima can be expressed in
terms of the signs of the principal minors of this matrix. Note that the leading principal minor of order
one is always equal to zero, and the leading principal minor of order two is always nonpositive. Therefore,
only the higher-order leading principal minors will be of relevance.
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Figure 4.6: A constrained optimization problem.

To state these second-order conditions, we introduce the following notation. For r ∈ {2, . . . , n}, let

Hr(L(λ0, x0)) :=




0 −gx1(x0) . . . −gxr (x0)
−gx1(x0) fx1x1(x0) − λ0gx1x1(x0) . . . fx1xr(x0)− λ0gx1xr (x0)
...

...
...

−gxr (x0) fxrx1(x0) − λ0gxrx1(x0) . . . fxrxr(x0)− λ0gxrxr(x0)


 .

The following theorem (which is proven for the case n = 2) gives sufficient conditions for local constrained
optima at interior points.

Theorem 4.5.3 Let n ∈ IN, n ≥ 2, let A ⊆ IRn be convex, and let f : A �→ IR, g : A �→ IR. Let x0 be
an interior point of A. Suppose f and g are twice partially differentiable with respect to all variables in a
neighborhood of x0, and these partial derivatives are continuous at x0. Suppose there exists i ∈ {1, . . . , n}
such that gxi(x

0) �= 0. Furthermore, suppose g(x0) = 0 and fxi (x0) − λ0gxi(x0) = 0 for all i = 1, . . . , n.

(i) If (−1)r |Hr(L(λ0, x0))| > 0 for all r = 2, . . . , n, then f has a local constrained maximum
subject to the constraint g(x) = 0 at x0.
(ii) If |Hr(L(λ0, x0))| < 0 for all r = 2, . . . , n, then f has a local constrained minimum subject
to the constraint g(x) = 0 at x0.

Proof (for n = 2). Theorem 4.5.3 is true for any n ≥ 2, but for simplicity of exposition, we only prove
the case n = 2 here.
(i) Consider the function f̂ defined in (4.18). The sufficient second-order condition for a local maximum

of f̂ at x01 is

f̂ ′′(x01) < 0. (4.25)

Recall that f̂ ′(x01) is given by the left side of (4.19). Using (4.20), we obtain

f̂ ′(x01) = fx1(x
0
1, k(x

0
1)) − fx2(x01, k(x01))

gx1(x
0
1, k(x

0
1))

gx2(x
0
1, k(x

0
1))
.

Differentiating again and using (4.20) and (4.21), we obtain

f̂ ′′(x01) = fx1x1(x
0
1, k(x

0
1)) + fx2x2(x

0
1, k(x

0
1))

(
gx1(x

0
1, k(x

0
1))

gx2(x
0
1, k(x

0
1))

)2
− fx1x2(x

0
1, k(x

0
1))
gx1(x

0
1, k(x

0
1))

gx2(x
0
1, k(x

0
1))
− fx2x1(x01, k(x01))

gx1(x
0
1, k(x

0
1))

gx2(x
0
1, k(x

0
1))
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− λ0
(
gx1x1(x

0
1, k(x

0
1)) − gx1x2(x01, k(x01))

gx1(x
0
1, k(x

0
1))

gx2(x
0
1, k(x

0
1))

)

+ λ0
gx1(x

0
1, k(x

0
1))

gx2(x
0
1, k(x

0
1))

(
gx2x1(x

0
1, k(x

0
1))− gx2x2(x01, k(x01))

gx1(x
0
1, k(x

0
1))

gx2(x
0
1, k(x

0
1))

)
,

which is equivalent to

f̂ ′′(x01) = fx1x1(x
0
1, k(x

0
1))− λ0gx1x1(x01, k(x01))

+
(
fx2x2(x

0
1, k(x

0
1))− λ0gx2x2(x01, k(x01))

)(gx1(x01, k(x01))
gx2(x

0
1, k(x

0
1))

)2
−
(
fx1x2(x

0
1, k(x

0
1))− λ0gx1x2(x01, k(x01))

) gx1(x01, k(x01))
gx2(x

0
1, k(x

0
1))

−
(
fx2x1(x

0
1, k(x

0
1))− λ0gx2x1(x01, k(x01))

) gx1(x01, k(x01))
gx2(x

0
1, k(x

0
1))
.

Because gx2(x
0
1, k(x

0
1)) �= 0,

(
gx2(x

0
1, k(x

0
1))
)2
is positive, and therefore, multiplying the inequality (4.25)

by
(
gx2(x

0
1, k(x

0
1))
)2
yields

0 >
(
fx1x1(x

0
1, k(x

0
1)) − λ0gx1x1(x01, k(x01))

) (
gx2(x

0
1, k(x

0
1))
)2

+
(
fx2x2(x

0
1, k(x

0
1)) − λ0gx2x2(x01, k(x01))

) (
gx1(x

0
1, k(x

0
1))
)2

−
(
fx1x2(x

0
1, k(x

0
1)) − λ0gx1x2(x01, k(x01))

)
gx1(x

0
1, k(x

0
1))gx2(x

0
1, k(x

0
1))

−
(
fx2x1(x

0
1, k(x

0
1)) − λ0gx2x1(x01, k(x01))

)
gx1(x

0
1, k(x

0
1))gx2(x

0
1, k(x

0
1)). (4.26)

The right side of (4.26) is equal to −|H(L(λ0, x0))|, and therefore, (4.25) is equivalent to

|H(L(λ0, x0))| > 0,

which, for n = 2, is the second-order sufficient condition stated in (i).
The proof of (ii) is analogous. ‖
For example, suppose we want to find all local constrained maxima and minima of the function

f : IR2++ �→ IR, x �→ x1x2

subject to the constraint x1 + x2 = 1. The Lagrange function for this problem is

L : IR× IR2++ �→ IR, (λ, x) �→ x1x2 − λ(x1 + x2 − 1).

Differentiating the Lagrange function with respect to all variables and setting these partial derivatives
equal to zero, we obtain the following necessary conditions for a constrained optimum.

−x1 − x2 + 1 = 0

x2 − λ = 0

x1 − λ = 0.

The unique solution to this system of equations is λ0 = 1/2, x0 = (1/2, 1/2). To determine the nature of
this stationary point, consider the bordered Hessian matrix

H(L(λ0, x0)) =


 0 −1 −1
−1 0 1
−1 1 0


 .

The determinant of this matrix is |H(L(λ0, x0))| = 2 > 0, and therefore, according to Theorem 4.5.3,
f has a local constrained maximum at x0. The maximal value of the objective function subject to the
constraint is f(x0) = 1/4.
As an economic example, consider the following cost minimization problem of a competitive firm.

Suppose f : IRn++ �→ IR is the production function of a firm. The firm wants to produce y ∈ IR++ units
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of output in a way such that production costs are minimized. If all factors are variable and the factor
prices are w ∈ IRn++, the costs to be minimized are given by

wx =
n∑
i=1

wixi

where x ∈ IR2++ is a vector of factors of production. The constraint requires that x is chosen such that
f(x) = y, or, equivalently, f(x) − y = 0.
Suppose the production function is given by

f : IR2++ �→ IR, x �→ (x1x2)1/4

(this is the same production function as in Section 4.4). Therefore, the firm wants to minimize the
production costs w1x1 + w2x2 subject to the constraint (x1x2)

1/4 − y = 0. The Lagrange function for
this problem is

L : IR× IR2++ �→ IR, (λ, x) �→ w1x1 + w2x2 − λ
(
(x1x2)

1/4 − y
)
.

According to Theorem 4.5.2, the necessary first-order conditions for a minimum at x0 ∈ IR2++ are

−(x01x02)1/4 + y = 0 (4.27)

w1 −
λ0

4
(x01)

−3/4(x02)
1/4 = 0 (4.28)

w2 −
λ0

4
(x01)

1/4(x02)
−3/4 = 0. (4.29)

(4.28) and (4.29) are quivalent to

w1 =
λ0

4
(x01)

−3/4(x02)
1/4 (4.30)

and

w2 =
λ0

4
(x01)

1/4(x02)
−3/4, (4.31)

respectively. Dividing (4.30) by (4.31) yields

w1

w2
=
x02
x01
,

and therefore,

x02 =
w1

w2
x01. (4.32)

Using (4.32) in (4.27), we obtain (
x01
w1

w2
x01

)1/4
= y,

which implies

x01 = (y)
2

√
w2

w1
. (4.33)

Substituting (4.33) in (4.32), it follows that

x02 = (y)
2

√
w1
w2
. (4.34)

Substituting (4.33) and (4.34) into (4.28) (or (4.29)), we obtain λ0 = 4y
√
w1w2 > 0. The bordered

Hessian matrix at (λ0, x0) is given by

H(L(λ0, x0)) =


 0 −14 (x01)−3/4(x02)1/4 −14 (x01)1/4(x02)−3/4
−14(x01)−3/4(x02)1/4

3
16λ

0(x01)
−7/4(x02)

1/4 − 116λ0(x01x02)−3/4
−1
4
(x01)

1/4(x02)
−3/4 − 1

16
λ0(x01x

0
2)
−3/4 3

16
λ0(x01)

1/4(x02)
−7/4


 .
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The determinant of H(L(λ0, x0)) is |H(L(λ0, x0))| = −λ0(x01x02)−5/4/32 < 0, and therefore, the sufficient
second-order conditions for a constrained minimum are satisfied.
The components of the solution vector (x01, x

0
2) can be written as functions of w and y, namely,

x̂1 : IR
3
++ �→ IR, (w, y) �→ (y)2

√
w2
w1

and x̂2 : IR
3
++ �→ IR, (w, y) �→ (y)2

√
w1
w2
.

These functions are the conditional factor demand functions for the technology described by the produc-
tion function f . Substituting x0 into the objective function, we obtain the cost function

C : IR3++ �→ IR, (w, y) �→ 2(y)2
√
w1w2

of the firm, which gives us the minimal cost of producing y units of output if the factor prices are given
by the vector w. The profit of the firm is given by

py −C(w, y) = py− 2(y)2√w1w2,

which is a concave function of y (Exercise: prove this). If we want to maximize profit by choice of the
optimal amount of output y0, we obtain the first-order condition

p− 4y0√w1w2 = 0,

and it follows that
y0 =

p

4
√
w1w2

.

This defines the same supply function as the one we derived in Section 4.4 for this production function.
Substituting y0 into the objective function yields the same profit function as in Section 4.4.

4.6 Optimization with Inequality Constraints

The technique introduced in the previous section can be applied to many optimization problems which
occur in economic models, but there are others for which a more general methodology has to be employed.
In particular, it is often the case that constraints cannot be expressed as equalities, and inequalities have
to be used instead. In particular, if there are two or more inequality constraints, it cannot be expected
that all constraints are satisfied with an equality at a solution. Consider the example illustrated in Figure
4.7. Assume the objective function is f : IR2 �→ IR, and there are two constraint functions g1 and g2
where gj : IR2 �→ IR for all i = 1, 2. The straight lines in the diagram represent the points x ∈ IR2 such
that g1(x) = 0 and g2(x) = 0, respectively, and the area to the southwest of each line represents the
points x ∈ IR2 such that g1(x) < 0 and g2(x) < 0, respectively. If we want to maximize f subject to the
constraints g1(x) ≤ 0 and g2(x) ≤ 0, we obtain the solution x0. It is easy to see that g2(x0) < 0 and,
therefore, the second constraint is not binding at this solution—it is not satisfied with an equality.
First, we give a formal definition of constrained maxima and minima subject to m ∈ IN inequality

constraints. Note that the constraints are formulated as ‘≤’ constraints for a maximization problem and
as ‘≥’ constraints for a minimization problem. This is a matter of convention, but it is important for the
formulation of optimality conditions. Clearly, any inequality constraint can be written in the required
form.

Definition 4.6.1 Let n,m ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR and gj : A �→ IR for all
j = 1, . . . , m. Furthermore, let x0 ∈ A.

(i) f has a global constrained maximum subject to the constraints gj(x) ≤ 0 for all j =
1, . . . , m at x0 if and only if gj(x0) ≤ 0 for all j = 1, . . . , m and f(x0) ≥ f(x) for all x ∈ A
such that gj(x) ≤ 0 for all j = 1, . . . , m.
(ii) f has a local constrained maximum subject to the constraints gj(x) ≤ 0 for all j =
1, . . . , m at x0 if and only if there exists ε ∈ IR++ such that gj(x0) ≤ 0 for all j = 1, . . . , m
and f(x0) ≥ f(x) for all x ∈ Uε(x0) ∩A such that gj(x) ≤ 0 for all j = 1, . . . , m.
(iii) f has a global constrained minimum subject to the constraints gj(x) ≥ 0 for all j =
1, . . . , m at x0 if and only if gj(x0) ≥ 0 for all j = 1, . . . , m and f(x0) ≤ f(x) for all x ∈ A
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Figure 4.7: Two inequality constraints.

such that gj(x) ≥ 0 for all j = 1, . . . , m.
(iv) f has a local constrained minimum subject to the constraints gj(x) ≥ 0 for all j = 1, . . . , m
at x0 if and only if there exists ε ∈ IR++ such that gj(x0) ≥ 0 for all j = 1, . . . , m and
f(x0) ≤ f(x) for all x ∈ Uε(x0) ∩A such that gj(x) ≥ 0 for all j = 1, . . . , m.

To solve problems of that nature, we transform an optimization problem with inequality constraints
into a problem with equality constraints and apply the results of the previous section. For simplicity, we
provide a formal discussion only for problems involving two choice variables and one constraint and state
the more general result for any number of choice variables and constraints without a proof. We focus on
constrained maximization problems in this section—as usual, minimization problems can be viewed as
maximization problems with reversed signs and thus can be dealt with analogously (see the exercises).
Let A ⊆ IR2 be convex, and suppose we want to maximize f : A �→ IR subject to the constraint

g(x) ≤ 0, where g : A �→ IR. As before, we assume that the constraint-qualification condition gxi(x0) �= 0
for at least one i ∈ {1, 2} is satisfied at an interior point x0 ∈ A which we consider a candidate for a
solution. Without loss of generality, suppose gx2(x

0) �= 0. The inequality constraint g(x) ≤ 0 can be
transformed into an equality constraint by introducing a slack variable s ∈ IR. Given this additional
variable, the constraint can equivalently be written as g(x) + (s)2 = 0. Note that (s)2 = 0 if g(x) = 0
and (s)2 > 0 if g(x) < 0. We can now use the Lagrange method to solve the problem of maximizing f
subject to the constraint g(x)+ (s)2 = 0. Note that the Lagrange function now has four arguments—the
multiplier λ, the original choice variables x1 and x2, and the additional choice variable s. The necessary
first-order conditions for a local constrained maximum at an interior point x0 ∈ A are

−g(x0)− (s0)2 = 0 (4.35)

fx1(x
0)− λ0gx1(x0) = 0 (4.36)

fx2(x
0)− λ0gx2(x0) = 0 (4.37)

−2λ0s0 = 0. (4.38)

Now we can eliminate the slack variable from these conditions in order to obtain first-order conditions
in terms of the original variables. (4.35) is, of course, equivalent to the original constraint g(x0) ≤ 0.
Furthermore, if g(x) < 0, it follows that (s)2 > 0, and (4.38) requires that λ0 = 0. Therefore, if the
constraint is not binding at a solution, the corresponding value of the multiplier must be zero. This can
be expressed by replacing (4.38) with the condition

λ0g(x0) = 0.

Furthermore, the multiplier cannot be negative if we have a maximization problem with an inequality
constraint (note that no sign restriction on the multiplier is implied in the case of an equality constraint).
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To see why this is the case, suppose λ0 < 0. Using our constraint qualification condition, (4.37) implies
in this case that

fx2(x
0)

gx2(x
0)
= λ0 < 0.

This means that the two partial derivatives fx2(x
0) and gx2(x

0) have opposite signs. If fx2(x
0) > 0 and

gx2(x
0) < 0, it follows that if we increase the value of x2 from x

0
2 to x

0
2 + h with h ∈ IR++ sufficiently

small, the value of f increases and the value of g decreases. But this means that f(x01, x
0
2 + h) > f(x

0)
and g(x01, x

0
2 + h) < g(x

0) ≤ 0. Therefore, the point (x01, x02 + h) satisfies the inequality constraint and
leads to a higher value of the objective function f , contradicting the assumption that we have a local
constrained maximum at x0. Analogously, if fx2(x

0) < 0 and gx2(x
0) > 0, we can find a point satisfying

the constraint and yielding a higher value of f than x0 by decreasing the value of x2. Therefore, the
Lagrange multiplier must be nonnegative. To summarize these observations, if f has a local constrained
maximum subject to the constraint g(x) ≤ 0 at an interior point x0 ∈ A, it follows that there exists
λ0 ∈ IR+ such that

g(x0) ≤ 0

λ0g(x0) = 0

fx1(x
0)− λ0gx1(x0) = 0

fx2(x
0)− λ0gx2(x0) = 0.

This technique can be used to deal with nonnegativity constraints imposed on the choice variables
as well. Nonnegativity constraints appear naturally in economic models because the choice variables are
often interpreted as nonnegative quantities. For example, suppose we want to maximize f subject to the
constraint x2 ≥ 0. We can write this problem as a maximization problem with the equality constraint
−x2 + (s)2 = 0, where, as before, s ∈ IR is a slack variable. The Lagrange function for this problem is
given by

L : IR× A× IR �→ IR, (λ, x, s) �→ f(x) − λ(−x2 + (s)2).
We obtain the necessary first-order conditions

x02 − (s0)2 = 0 (4.39)

fx1(x
0) = 0 (4.40)

fx2(x
0) + λ0 = 0 (4.41)

−2λ0s0 = 0. (4.42)

Again, it follows that λ0 ∈ IR+. If λ0 < 0, (4.41) implies fx2(x0) = −λ0 > 0. Therefore, we can increase
the value of the objective function by increasing the value of x2, contradicting the assumption that we
have a local constrained maximum at x0. Therefore, (4.41) implies fx2(x

0) ≤ 0.
If x02 > 0, (4.39) and (4.42) imply λ

0 = 0, and by (4.41), it follows that fx2(x
0) = 0. Note that, in this

case, we simply obtain the first-order conditions for an unconstrained maximum—the constraint is not
binding. Therefore, in this special case of a single nonnegativity constraint, we can eliminate not only
the slack variable, but also the multiplier λ0. For that reason, nonnegativity constraints can be dealt
with in a more simple manner than general inequality constraints. We obtain the conditions

x02 ≥ 0

fx1(x
0) = 0

fx2(x
0) ≤ 0

x2fx2(x
0) = 0.

The above-described procedure can be generalized to problems involving any number of variables and
inequality constraints, and nonnegativity constraints for all choice variables. In order to state a general
result regarding necessary first-order conditions for these maximization problems, we first have to present
a generalization of the constraint qualification condition.
Let A ⊆ IRn be convex, and suppose we want to maximize f : A �→ IR subject to the nonnegativity

constraints xi ≥ 0 for all i = 1, . . . , n andm ∈ IN constraints g1(x) ≤ 0, . . . , gm(x) ≤ 0, where gj : A �→ IR
for all j = 1, . . . , m. The Jacobian matrix of the functions g1, . . . , gm at the point x0 ∈ A is an m × n
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matrix J(g1(x0), . . . , gm(x0)), where, for all j = 1, . . . , m and all i = 1, . . . , n, the element in row j and
column i is the partial derivative of gj with respect to xi. Therefore, this matrix can be written as

J(g1(x0), . . . , gm(x0)) :=



g1x1(x

0) g1x2(x
0) . . . g1xn(x

0)
g2x1(x

0) g2x2(x
0) . . . g2xn(x

0)
...

...
...

gmx1(x
0) gmx2(x

0) . . . gmxn(x
0)


 .

Let J̄(g1(x0), . . . , gm(x0)) be the submatrix of J(g1(x0), . . . , gm(x0)) which is obtained by removing all
rows j such that gj(x0) < 0 and all columns i such that x0i = 0. That is, J̄(g

1(x0), . . . , gm(x0)) is
the matrix of partial derivatives of all constraint functions such that the corresponding constraint is
binding at x0 with respect to all variables whose value is positive at x0. The constraint qualification
condition requires that J̄(g1(x0), . . . , gm(x0)) has its maximal possible rank. Notice that, in the case of
a single constraint satisfied with an equality and no nonnegativity constraint, we get back the constraint
qualification condition used earlier—at least one of the partial derivatives of the constraint function at
x0 must be nonzero.
The method to obtain necessary first-order conditions for a problem involving one inequality constraint

can now be generalized. This is done by introducing a Lagrange multiplier for each constraint (except
for the nonnegativity constraints which can be dealt with as described above), and then defining the
Lagrange function by subtracting, for each constraint, the product of the multiplier and the constraint
function from the objective function. Letting λ = (λ1, . . . , λm) ∈ IRm be the vector of multipliers, the
Lagrange function is defined as

L : IRm × A �→ IR, (λ, x) �→ f(x) −
m∑
j=1

λjg
j(x).

The necessary first-order conditions for a local constrained maximum at an interior point x0 ∈ A require
the existence of a vector of multipliers λ0 ∈ IRm such that

Lλj (λ
0, x0) ≥ 0 ∀j = 1, . . . , m

λjLλj (λ
0, x0) = 0 ∀j = 1, . . . , m

Lxi (λ
0, x0) ≤ 0 ∀i = 1, . . . , n

xiLxi (λ
0, x0) = 0 ∀i = 1, . . . , n
λ0j ≥ 0 ∀j = 1, . . . , m
x0i ≥ 0 ∀i = 1, . . . , n.

Substituting the definition of the Lagrange function into these conditions, we obtain the following result.

Theorem 4.6.2 Let n,m ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR, gj : A �→ IR for all
j = 1, . . . , m. Furthermore, let x0 be an interior point of A. Suppose f and g1, . . . , gm are partially
differentiable with respect to all variables in a neighborhood of x0, and these partial derivatives are con-
tinuous at x0. Suppose J̄(g1(x0), . . . , gm(x0)) has maximal rank. If f has a local constrained maximum
subject to the constraints gj(x) ≤ 0 for all j = 1, . . . , m and xi ≥ 0 for all i = 1, . . . , n at x0, then there
exists λ0 ∈ IRm such that

gj(x0) ≤ 0 ∀j = 1, . . . , m
λ0jg

j(x0) = 0 ∀j = 1, . . . , m

fxi(x
0)−

m∑
j=1

λ0jg
j
xi(x

0) ≤ 0 ∀i = 1, . . . , n

x0i


fxi(x0)− m∑

j=1

λ0jg
j
xi(x

0)


 = 0 ∀i = 1, . . . , n

λ0j ≥ 0 ∀j = 1, . . . , m
x0i ≥ 0 ∀i = 1, . . . , n.
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The conditions stated in Theorem 4.6.2 are call the Kuhn-Tucker conditions for a maximization problem
with inequality constraints.
Note that these first-order conditions are, in general, only necessary for a local constrained maxi-

mum. The following theorem states sufficient conditions for a global maximum. These conditions involve
curvature properties of the objective function and the constraint functions. We obtain

Theorem 4.6.3 Let n,m ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR, gj : A �→ IR for all
j = 1, . . . , m. Let x0 be an interior point of A. Suppose f and g1, . . . , gm are twice partially differentiable
with respect to all variables in a neighborhood of x0, and these partial derivatives are continuous at x0.
Suppose J̄(g1(x0), . . . , gm(x0)) has maximal rank. If f is concave and gj is convex for all j = 1, . . . , m,
then the Kuhn-Tucker conditions are necessary and sufficient for a global constrained maximum of f
subject to the constraints gj(x) ≤ 0 for all j = 1, . . . , m and xi ≥ 0 for all i = 1, . . . , n at x0.

If the objective function f is strictly concave and the constraint functions are convex, it follows that f
must have a unique global constrained maximum at a point satisfying the Kuhn-Tucker conditions. This
is a consequence of the following theorem.

Theorem 4.6.4 Let n,m ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR, gj : A �→ IR for all
j = 1, . . . , m. Let x0 ∈ A. If f is strictly concave and gj is convex for all j = 1, . . . , m and f has a
global constrained maximum subject to the constraints gj(x) ≤ 0 for all j = 1, . . . , m and xi ≥ 0 for all
i = 1, . . . , n at x0, then f has a unique global constrained maximum at x0.

Proof. Suppose f has a global constrained maximum at x0. By way of contradiction, suppose f has a
global constrained maximum at y ∈ A with y �= x0. By definition of a global constrained maximum, it
follows that

f(x0) ≥ f(x) ∀x ∈ A
gj(x0) ≤ 0 ∀j = 1, . . . , m
x0i ≥ 0 ∀i = 1, . . . , n

and

f(y) ≥ f(x) ∀x ∈ A
gj(y) ≤ 0 ∀j = 1, . . . , m
yi ≥ 0 ∀i = 1, . . . , n.

Therefore, f(x0) ≥ f(y) and f(y) ≥ f(x0) and hence f(x0) = f(y). Let z = x0/2+y/2. By the convexity
of A, z ∈ A. Because x0i ≥ 0 and yi ≥ 0 for all i = 1, . . . , n, it follows that zi ≥ 0 for all i = 1, . . . , n.
Furthermore, because gj is convex, we obtain gj(z) ≤ gj(x0)/2 + gj(y)/2 and, because gj(x0) ≤ 0 and
gj(y) ≤ 0, gj(z) ≤ 0 for all j = 1, . . . , m. Therefore, all required constraints are satisfied at z. Because f
is strictly concave, it follows that f(z) > f(x0)/2 + f(y)/2 = f(x0), contradicting the assumption that f
has a global constrained maximum at x0. ‖



Chapter 5

Difference Equations and
Differential Equations

5.1 Complex Numbers

It is often desirable to have a richer set of numbers than IR available. For example, the equation

x2 + 1 = 0 (5.1)

does not have a solution in IR: there exists no real number x such that the square of x is equal to −1.
In order to obtain solutions to equations of that type, we introduce the complex numbers. The idea is
to define a number such that the square of this number is equal to −1. We call this number i and it is
characterized by the property

i2 = (−i)2 = −1.

Now we can define the set of complex numbers IC as

IC := {z | ∃a, b ∈ IR such that z = a+ bi}.

The number a in this definition is the real part of the complex number z and b is the imaginary part.
Clearly, IR ⊆ IC because a real number is obtained whenever b = 0. Addition and multiplication of
complex numbers is defined as follows.

Definition 5.1.1 Let z = (a+ bi) ∈ IC and z′ = (a′ + b′i) ∈ IC.
(i) The sum of z and z′ is defined as z + z′ := (a+ a′) + (b+ b′)i.
(ii) The product of z and z is defined as zz′ := (aa′ − bb′) + (ab′ + a′b)i.

For any complex number z ∈ IC, there exists a conjugated complex number z, defined as follows.

Definition 5.1.2 Let z = (a+ bi) ∈ IC. The conjugated complex number of z is defined as z := a− bi.

The absolute value of a complex number is defined a the Euclidean norm of the two-dimensional vector
composed of the real and the imaginary part of that number.

Definition 5.1.3 Let z = (a+ bi) ∈ IC. The absolute value of z is defined as |z| :=
√
a2 + b2.

As an immediate consequence of those definitions, we obain, for all z = (a+ bi) ∈ IC,

zz = (a + bi)(a − bi) = a2 + b2 = |z|2.

In particular, this implies that |z| = |z| for all z ∈ IC and

1

z
=
1

|z|2 z

for all z ∈ IC with z �= 0.

107



108 CHAPTER 5. DIFFERENCE EQUATIONS AND DIFFERENTIAL EQUATIONS
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Figure 5.1: Complex numbers and polar coordinates.

Figure 5.1 contains a diagrammatic illustration of complex numbers. Using the trigonometric functions
sin and cos, a representation of a complex number in terms of polar coordinates can be obtained. Given
a complex number z �= 0 represented by a vector (a, b) ∈ IR2 (where a is the real part of z and b is the
imaginary part of z), there exists a unique θ ∈ [0, 2π) such that a = |z| cos(θ) and b = |z| sin(θ). This θ
is called the argument of z �= 0. We define the argument of z = 0 as θ = 0. With this definition of θ, we
can write z = (a+ bi) ∈ IC as

z = |z|(cos(θ) + i sin(θ)). (5.2)

The formulation of z in (5.2) is called the representation of z in terms of polar coordinates.
Using the properties of the trigonometric functions, we obtain

z = |z|(cos(θ) − i sin(θ))
= |z|(cos(θ) + i sin(−θ))
= |z|(cos(−θ) − i sin(−θ))

for all z ∈ IC, where θ is the argument of z. Thus, for any complex number z, the argument of its
conjugated complex number z is obtained by multiplying the argument of z by −1.
We conclude this section with some important results regarding complex numbers, which we state

without proofs. The first of those is Moivre’s theorem. It is concerned with powers of complex numbers
represented in terms of polar coordinates.

Theorem 5.1.4 For all θ ∈ [0, 2π) and for all n ∈ IN,

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ).

Euler’s theorem establishes a relationship between the exponential function and the trigonometric
functions sin and cos.

Theorem 5.1.5 For all x ∈ IR,
eix = cos(x) + i sin(x).



5.2. DIFFERENCE EQUATIONS 109

The final result of this section returns to the question of the existence of solutions to specific equations.
It turns out that any polynomial equation of degree n ∈ IN has n (possibly multiple) solutions in IC. This
result is called the fundamental theorem of algebra.

Theorem 5.1.6 Let n ∈ IN, and let a0, . . . , an ∈ IC be such that an �= 0. The equation
n∑
j=0

ajzj = 0

has n solutions z∗1 , . . . , z
∗
n ∈ IC.

Multiple solutions are not ruled out by Theorem 5.1.6: it is possible to have z∗j = z
∗
k for some j, k ∈

{1, . . . , n} with j �= k.

5.2 Difference Equations

Many economic studies involve the behavior of economic variables over time. For example, macroeconomic
models designed to describe changes in national income, in interest rates or in the rate of unemployment
have to employ techniques that go beyond the static analysis carried out so far. If time is thought of
as a discrete variable (that is, the values of the variables in question are measured at discrete times),
difference equations can be used as important tools. If time is represented as a continuum, techniques
for the solution of differential equations are essential. We discuss difference equations in this section and
postpone our analysis of differential equations until the end of the chapter because the methods involved
in finding their solutions make use of integration, to be discussed in the following section.
Suppose we observe the value of a variable in each period (a period could be a month or a year, for

instance) starting at an initial period which we can, without loss of generality, call period zero. Formally,
the development of this variable over time can then be expressed by means of a function y : IN0 �→ IR
where, for each period t ∈ IN0, y(t) is the value of the variable in period t. Now we can define the notion
of a difference equation.

Definition 5.2.1 Let n ∈ IN. A difference equation of order n is an equation

y(t + n) = F (t, y(t), y(t+ 1), . . . , y(t+ n− 1)) (5.3)

where F : IN0 × IRn �→ IR is a given function which is non-constant in its second argument. A function
y : IN0 �→ IR is a solution of this difference equation if and only if (5.3) is satisfied for all t ∈ IN0.

In some sources, more general differential equations are considered, where the equation cannot necessarily
be solved explicitly for the value y(t+n) and, instead, the relationship between the different values of y is
expressed in implicit form only. However, the special case introduced in the above definition is sufficient
for our purposes.
Note that the function F is assumed to be non-constant in its second argument y(t). This is to ensure

that the equation is indeed of order n. If F is constant in y(t), the function is at most of order n − 1
because, in this case, the value of y at t + n depends (at most) on the values attained in the previous
n− 1 periods rather than in the previous n periods.
We begin with a simple observation regarding the solutions of difference equations. If we have a

difference equation of order n and the n initial values y(0), . . . , y(n − 1) are given, there exists a unique
solution that can be obtained recursively.

Theorem 5.2.2 If the values y(0), . . . , y(n − 1) are determined, then (5.3) has a unique solution.

Proof. Substituting y(0), . . . , y(n − 1) into (5.3) for t = 0, we obtain

y(n) = F (0, y(0), . . . , y(n − 1)).

Now that y(n) is determined, we have all the information necessary to calculate y(n+1) and, substituting
into (5.3) for t = 1, we obtain

y(n + 1) = F (1, y(1), . . . , y(n − 1), y(n)).
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This procedure can be repeated for n+2, n+3, . . . and the entire function y is uniquely determined. ‖
The recursive method illustrated in the above theorem is rather inconvenient when it comes to finding

the function y explicitly—note that an infinite number of steps are involved. Moreover, it does not allow
us to get a general idea about the relationship between t and the values of y described by the equation.
For these reasons, it is desirable to obtain general methods to obtain solutions of difference equations in
analytical form. Because this can be a rather difficult task for general functions F , we restrict attention
to specific types of equations. First, we consider the case where F has a linear structure.

Definition 5.2.3 Let n ∈ IN. A linear difference equation of order n is an equation

y(t + n) = b(t) + a0(t)y(t) + a1(t)y(t + 1) + . . .+ an−1(t)y(t + n− 1) (5.4)

where b : IN0 �→ IR and at : IN0 �→ IR for all t ∈ {0, . . . , n − 1} are given functions, and there exists
t ∈ IN0 such that a0(t) �= 0. If b(t) = 0 for all t ∈ IN0, the equation is a homogeneous linear difference
equation of order n. If there exists t ∈ IN0 such that b(t) �= 0, the equation (5.4) is an inhomogeneous
linear difference equation of order n.

The assumption that the function a0 is not identically equal to zero ensures that the equation is indeed
of order n.
The homogeneous equation associated with (5.4) is the equation

y(t + n) = a0(t)y(t) + a1(t)y(t + 1) + . . .+ an−1(t)y(t + n− 1). (5.5)

The following result establishes that, given a particular solution of a linear difference equation, any
solution of this equation can be obtained as the sum of the particular solution and a suitably chosen
solution of the homogeneous equation associated with the original equation. Conversely, any sum of the
particular solution and an arbitrary solution of the associated homogeneous equation is a solution of the
original equation.

Theorem 5.2.4 (i) Suppose ŷ is a solution of (5.4). For each solution y of (5.4), there exists a solution
z of the homogeneous equation (5.5) associated with (5.4) such that y = z + ŷ.
(ii) If ŷ is a solution of (5.4) and z is a solution of the homogeneous equation (5.5) associated with

(5.4), then the function y defined by y = z + ŷ is a solution of (5.4).

Proof. (i) Suppose ŷ is a solution of (5.4). For an arbitrary solution y of (5.4), define the function
z : IN0 �→ IR by

z(t) := y(t) − ŷ(t) ∀t ∈ IN0. (5.6)

This implies

z(t + n) = y(t + n)− ŷ(t + n)
= b(t) + a0(t)y(t) + a1(t)y(t + 1) + . . .+ an−1(t)y(t + n− 1)
− (b(t) + a0(t)ŷ(t) + a1(t)ŷ(t + 1) + . . .+ an−1(t)ŷ(t+ n− 1))
= a0(t)(y(t) − ŷ(t)) + a1(t)(y(t + 1) − ŷ(t+ 1)) + . . .+ an−1(t)(y(t + n− 1) − ŷ(t+ n− 1))
= a0(t)z(t) + a1(t)z(t + 1) + . . .+ an−1(t)z(t+ n− 1)

for all t ∈ IN. Therefore, z is a solution of the homogeneous equation associated with (5.4). By (5.6), we
have y = z + ŷ, which completes the proof of (i).
(ii) can be proven by substituting into (5.4). ‖
The methodology employed to identify solutions of linear difference equations makes use of Theorem

5.2.4. According to this theorem, it is sufficient to find one particular solution of the equation (5.4) and
the general solution (that is, the set of all solutions) of the associated homogeneous equation (5.5)—all
solutions of the (inhomogeneous) equation (5.4) can then be obtained according to the theorem. Our
next result establishes that with any n solutions z1, . . . , zn of the homogeneous equation (5.5), all linear
combinations of z1, . . . , zn are solutions of (5.5) as well.

Theorem 5.2.5 If z1, . . . , zn are n solutions of (5.5) and c = (c1, . . . , cn) ∈ IRn is a vector of arbitrary
coefficients, then the function z defined by z =

∑n
i=1 cizi is a solution of (5.5).
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Proof. Suppose z1, . . . , zn are n solutions of (5.5) and c = (c1, . . . , cn) ∈ IRn is a vector of arbitrary
coefficients. Let z =

∑n
i=1 cizi. Using this definition and (5.5), we obtain

z(t+ n) =
n∑
i=1

cizi(t+ n)

=
n∑
i=1

ci(a0(t)zi(t) + a1(t)zi(t+ 1) + . . .+ an−1(t)zi(t+ n− 1))

= a0(t)
n∑
i=1

cizi(t) + a1(t)
n∑
i=1

cizi(t + 1) + . . .+ an−1(t)
n∑
i=1

cizi(t+ n− 1)

= a0(t)z(t) + a1(t)z(t+ 1) + . . .+ an−1(t)z(t+ n− 1)

for all t ∈ IN0 and, therefore, z is a solution of (5.5). ‖
Conversely, we can establish a necessary and sufficient condition under which the entire set of solutions

of the homogeneous equation (5.5) can be obtained as a linear combination of n solutions. That is, given
this condition, finding n solutions of a homogeneous linear difference equation of order n is sufficient to
identify the general solution of this homogeneous equation. The condition requires that the n known
solutions z1, . . . , zn are linearly independent in the sense specified in the following theorem.

Theorem 5.2.6 Suppose z1, . . . , zn are n solutions of (5.5). The following two statements are equivalent.
(i) For every solution z of (5.5), there exists a vector of coefficients c ∈ IRn such that z =

∑n
i=1 cizi.

(ii) ∣∣∣∣∣∣∣∣∣
z1(0) z2(0) . . . zn(0)
z1(1) z2(1) . . . zn(1)
...

...
...

z1(n− 1) z2(n − 1) . . . zn(n − 1)

∣∣∣∣∣∣∣∣∣
�= 0. (5.7)

Proof. Suppose z1, . . . , zn are n solutions of (5.4). We first prove that (i) implies (ii). Suppose (ii) is
violated, that is, the determinant in (5.7) is equal to zero. This implies that the row vectors of this matrix
are linearly dependent and, thus, we can express one of them as a linear combination of the remaining
row vectors. Without loss of generality, suppose the first row vector is such a linear combination of the
others. Hence, there exist n − 1 coefficients α1, . . . , αn−1 ∈ IR such that

zi(0) =
n−1∑
t=1

αtzi(t) ∀i ∈ {1, . . . , n}. (5.8)

We complete the proof of this part by showing that (i) must be violated as well, that is, there exists a
solution z of (5.5) that cannot be expressed as a linear combination of the n solutions z1, . . . , zn. Define
z(0) = 1 and z(t) = 0 for all t ∈ {1, . . . , n− 1}, and let z(t + n) be determined by (5.5) for all t ∈ IN0.
By definition, this function is a solution of (5.5). In order for z to be a linear combination of z1, . . . , zn,
there must exist n coefficients c1, . . . , cn ∈ IR such that z(t) =

∑n
i=1 cizi(t) for all t ∈ IN0. This implies,

in particular, that
n∑
i=1

cizi(0) = 1 (5.9)

and
n∑
i=1

cizi(t) = 0 ∀t ∈ {1, . . . , n− 1}. (5.10)

Now successively add −α1 times (5.10) with t = 1, −α2 times (5.10) with t = 2,. . ., −αn−1 times (5.10)
with t = 2 to (5.9). By (5.8) and the definition of z, (5.9) becomes

0 = 1,

which means that the system given by (5.9) and (5.10) cannot have a solution and, hence, z cannot be
expressed as a linear combination of z1, . . . , zn.
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To prove that (ii) implies (i), suppose (5.7) is satisfied, and let z be an arbitrary solution of (5.5).
By Theorem 5.2.2, the values z(0), . . . , z(n − 1) are sufficient to determine all values of z. Thus, (i) is
established if we can find a vector c = (c1, . . . , cn) ∈ IRn such that

z(t) =
n∑
i=1

cizi(t) ∀t ∈ {0, . . . , n− 1}. (5.11)

(5.11) is a system of n linear equations in the n variables c1, . . . , cn, where the matrix of coefficients is
given by the entries in (5.7). By assumption, the determinant of this matrix of coefficients is different
from zero, which means that the matrix has full rank n. By Theorem 2.3.5, this implies that the system
of equations (5.11) has a unique solution (c1, . . . , cn). By definition, these coefficients are such that
z =
∑n
i=1 cizi. ‖

We now turn to a special case of linear difference equations, where the functions a0, . . . , an−1 in (5.4)
are constant.

Definition 5.2.7 Let n ∈ IN. A linear difference equation with constant coefficients of order n is an
equation

y(t + n) = b(t) + a0y(t) + a1y(t + 1) + . . .+ an−1y(t + n− 1) (5.12)

where b : IN0 �→ IR, a0 ∈ IR \ {0} and a1, . . . , an−1 ∈ IR. If b(t) = 0 for all t ∈ IN0, the equation is
a homogeneous linear difference equation with constant coefficients of order n. If there exists t ∈ IN0
such that b(t) �= 0, the equation (5.12) is an inhomogeneous linear difference equation with constant
coefficients of order n.

We only consider linear difference equations with constant coefficients of order one and of order two.
Moreover, in the case of equations of order two, we restrict attention to specific functional forms of
the inhomogeneity b. This is the case because solving higher-order equations is a complex task and
general methods are not easy to formulate. Using Theorem 5.2.4, we employ the following strategy. We
determine the general solution of the associated homogeneous equation and then find a particuar solution
of the inhomogeneous equation. By Theorem 5.2.4, this yields the general solution of the inhomogeneous
equation: any solution can be obtained as the sum of the particular solution and a suitably chosen solution
of the homogeneous equation.
We begin with equations of order one. As mentioned above, we first discuss methods for determining

all solutions of a homogeneous linear equation with constant coefficients of order one. Thus, the equations
to be solved at this stage are of the form

y(t + 1) = a0y(t) ∀t ∈ IN0 (5.13)

where a0 ∈ IR \ {0}.
An obvious solution is the function that assigns a value of zero to all t ∈ IN0. According to Theorem

5.2.6, in the case of an equation of order n = 1, it is sufficient to obtain one solution z1, provided that
the determinant in the theorem statement is non-zero for this solution. Clearly, this is not the case for
the solution that is identically equal to zero and, thus, it cannot be used to obtain the general solution
of (5.13). Therefore, we have to search for a solution with the independence property stated in Theorem
5.2.6.
Due to the nature of the equation, a generalized-exponential function turns out to be suitable. That

is, we assume that we have a solution z1 with z1(t) = λ
t for all t ∈ IN0 and determine whether we can

find a value of the parameter λ ∈ IR \ {0} such that (5.13) is satisfied. In that case, the equation requires
that

z1(t+ 1) = λ
t+1 = a0z1(t) = a0λ

t ∀t ∈ IN0.
Thus, we must have

λt+1 − a0λt = 0 ∀t ∈ IN0. (5.14)

Because λ �= 0 by assumption, we can divide both sides of (5.14) by λt to obtain

λ− a0 = 0. (5.15)

The left side of (5.15) is the characteristic polynomial of the equation (5.13), and (5.15) is the corre-
sponding characteristic equation. Solving, we obtain λ = a0 and, substituting into (5.13), it is easy to
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verify that the function z1 defined by z1(t) = a
t
0 for all t ∈ IN0 is indeed a solution of the homogeneous

equation. Furthermore, the determinant of the 1 × 1 matrix (z1(0)) is equal to one and, by Theorem
5.2.6, a function z : IN0 �→ IR is a solution of (5.13) if and only if there exists a constant c1 ∈ IR such that

z(t) = c1z1(t) = c1a
t
0 ∀t ∈ IN0. (5.16)

Now we consider inhomogeneous equations with constant coefficients of order one. The general form
of the equation is

y(t + 1) = b(t) + a0y(t) ∀t ∈ IN0 (5.17)

where a0 ∈ IR \ {0} and b : IN0 �→ IR is such that there exists t ∈ IN0 with b(t) �= 0. Because we already
have the general solution of the associated homogeneous equation, it is sufficient to find one particular
solution of (5.17). This is the case because, according to Theorem 5.2.4, any solution can be expressed
as the sum of this particular solution and a solution of the corresponding homogeneous equation.
We now verify that the function ŷ : IN0 �→ IR defined by

ŷ(t) =

{
0 if t = 0,∑t
k=1 a

t−k
0 b(k − 1) if t ∈ IN

satisfies (5.17). For t = 0, we obtain

ŷ(t+ 1) = ŷ(1) = b(0) = b(0) + a0 · 0 = b(0) + a0ŷ(0) = b(t) + a0ŷ(t)

and, thus, (5.17) is satisfied. For t ∈ IN, substitution into the definition of ŷ yields

ŷ(t + 1) =
t+1∑
k=1

at+1−k0 b(k − 1) =
t+1∑
k=1

a0a
t−k
0 b(k − 1)

= a0

t∑
k=1

at−k0 b(k − 1) + a0a−10 b(t)

= b(t) + a0ŷ(t)

and, again, (5.17) is satisfied. We have therefore found a particular solution of (5.17) and, according
to Theorem 5.2.4, we obtain the general solution as the sum of ŷ and the solution of the associated
homogeneous equation (5.16). Thus, we have established

Theorem 5.2.8 A function y : IN0 �→ IR is a solution of the linear difference equation with constant
coefficients of order one (5.17) if and only if there exists c1 ∈ IR such that

y(t) =

{
c1 if t = 0,

c1a
t
0 +
∑t
k=1 a

t−k
0 b(k − 1) if t ∈ IN

∀t ∈ IN0. (5.18)

If an initial value y0 for y(0) is specified, we obtain a unique solution because this initial value determines
the value of the parameter c1; see also Theorem 5.2.2. In particular, if the initial value is given by
y(0) = y0 ∈ IR, substitution into (5.18) yields c1 = y0 and, thus, we obtain the unique solution

y(t) =

{
y0 if t = 0,

y0a
t
0 +
∑t
k=1 a

t−k
0 b(k − 1) if t ∈ IN

∀t ∈ IN0.

This covers all possibilities that can arise in the case of linear difference equations with constant coefficients
of order one.
To solve linear difference equations with constant coefficients of order two, we again begin with a

procedure for finding the general solution of the associated homogeneous equation. Thus, we consider
equations of the form

y(t + 2) = a0y(t) + a1y(t + 1) ∀t ∈ IN0 (5.19)

where a0 ∈ IR \ {0} and a1 ∈ IR. Because n = 2, we now have to search for two solutions of (5.19) such
that the independence condition of Theorem 5.2.6 is satisfied. Again, a generalized exponential function
can be employed in the first stage. That is, we consider functions z of the form z(t) = λt for all t ∈ IN0
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and determine whether we can find values of the parameter λ ∈ IR \ {0} such that (5.19) is satisfied. We
obtain

z(t + 2) = λt+2 = a0λ
t + a1λ

t+1 = a0z(t) + a1z(t+ 1) ∀t ∈ IN0.
Thus, we must have

λt+2 − a0λt − a1λt+1 = 0 ∀t ∈ IN0.
Dividing both sides by λt, we obtain

λ2 − a0 − a1λ = 0. (5.20)

Again, (5.20) is called the characteristic equation and the left side of (5.20) is the characteristic polynomial
for the homogeneous differential equation under consideration. Because we have an equation of order
two, this polynomial is of order two as well.
Using the standard technique for finding the solution of a quadratic equation, we can distinguish three

cases.
Case I: a21/4 + a0 > 0. In this case, the characteristic polynomial has two distinct real roots given

by λ1 = a1/2 +
√
a21/4 + a0 and λ2 = a1/2 −

√
a21/4 + a0. Substituting back into the expression for a

possible solution, we obtain the two functions z1 and z2 defined by

z1(t) =

(
a1/2 +

√
a21/4 + a0

)t
∀t ∈ IN0

and

z2(t) =

(
a1/2−

√
a21/4 + a0

)t
∀t ∈ IN0.

We obtain z1(0) = z2(0) = 1, z1(1) = a1/2 +
√
a21/4 + a0 and z2(1) = a1/2−

√
a21/4 + a0. Therefore,∣∣∣∣ z1(0) z2(0)z1(1) z2(1)

∣∣∣∣ =
∣∣∣∣ 1 1

a1/2 +
√
a21/4 + a0 a1/2−

√
a21/4 + a0

∣∣∣∣ = −2√a21/4 + a0
which, by assumption, is negative and thus different from zero. Thus, according to Theorem 5.2.6, a
function z : IN0 �→ IR is a solution of the homogeneous equation (5.19) if and only if there exist constants
c1, c2 ∈ IR such that

z(t) = c1z1(t) + c2z2(t) = c1

(
a1/2 +

√
a21/4 + a0

)t
+ c2

(
a1/2−

√
a21/4 + a0

)t
∀t ∈ IN0. (5.21)

Case II: a21/4 + a0 = 0. Now the characteristic polynomial has a double root at λ = a1/2, and the
corresponding solution is given by z1(t) = (a1/2)

t for all t ∈ IN0. Because n = 2, we need a second
solution (which, together with z1, satisfies the required independence condition) in order to obtain the
set of all solutions. Clearly, the approach involving a generalized exponential function cannot be used for
that purpose—only the solution z1 can be obtained in this fashion. Therefore, we need to try another
functional form. In the case under discussion, it turns out that the product of t and z1 will work. By
substitution into (5.19), it can easily be verified that the function z2 defined by

z2(t) = t(a1/2)
t ∀t ∈ IN0

is another solution. To verify that the two solutions z1 and z2 satisfy the required independence condition,
note that we have z1(0) = 1, z2(0) = 0 and z1(1) = z2(1) = a1/2. Therefore,∣∣∣∣ z1(0) z2(0)z1(1) z2(1)

∣∣∣∣ =
∣∣∣∣ 1 0
a1/2 a1/2

∣∣∣∣ = a1/2.
By assumption, a21/4 = −a0 �= 0 and, therefore, a1/2 �= 0. Thus, according to Theorem 5.2.6, a function
z : IN0 �→ IR is a solution of the homogeneous equation (5.19) if and only if there exist constants c1, c2 ∈ IR
such that

z(t) = c1z1(t) + c2z2(t) = c1(a1/2)
t + c2t(a1/2)

t ∀t ∈ IN0. (5.22)

Case III: a21/4 + a0 < 0. The characteristic polynomial has two complex roots, namely, λ1 = a1/2 +
i
√
−a21/4− a0 and λ2 = a1/2−i

√
−a21/4− a0. Note that λ2 is the conjugated complex number associated
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with λ1. Substituting back into the expression for a possible solution, we obtain the two functions ẑ1 and
ẑ2 defined by

ẑ1(t) =

(
a1/2 + i

√
−a21/4− a0

)t
∀t ∈ IN0

and

ẑ2(t) =

(
a1/2− i

√
−a21/4− a0

)t
∀t ∈ IN0.

It would be desirable to obtain solutions that can be expressed without having to resort to complex
numbers. Especially if a solution represents the values of an economic variable, it is difficult to come up
with a reasonable interpretation of complex numbers. Fortunately, these solutions can be reformulated
in terms of real numbers by employing polar coordinates. Letting θ ∈ [0, 2π) be such that a1/2 =√
−a0 cos(θ) and

√
−a21/4− a0 =

√
−a0 sin(θ), the first root of the characteristic polynomial can be

written as λ1 =
√
−a0(cos(θ) + i sin(θ)). Analogously, we obtain λ2 = λ1 =

√
−a0(cos(θ) − i sin(θ)).

Thus, using Moivre’s theorem (Theorem 5.1.4), we obtain

ẑ1(t) = (
√
−a0)t ((cos(θ) + i sin(θ))t = (

√
−a0)t ((cos(tθ) + i sin(tθ))

and
ẑ2(t) = (

√
−a0)t ((cos(θ) − i sin(θ))t = (

√
−a0)t ((cos(tθ) − i sin(tθ))

for all t ∈ IN0. As can be verified easily, the result of Theorem 5.2.5 remains true if the possible values
of the solutions and the coefficients are extended to cover complex numbers as well. Thus, all linear
combinations (with complex coefficients) of the two solutions ẑ1 and ẑ2 are solutions of (5.19) as well. In
particular, choosing the vector of coefficients (1/2, 1/2), we obtain that the function z1 defined by

z1(t) = ẑ1(t)/2 + ẑ2(t)/2 =
√
−a0 cos(tθ) ∀t ∈ IN0

is a solution. Analogously, choosing the vector of coefficients (1/(2i),−1/(2i)), it follows that

z2(t) = ẑ1(t)/(2i) − ẑ2(t)/(2i) =
√
−a0 sin(tθ) ∀t ∈ IN0

is another solution. We have∣∣∣∣ z1(0) z2(0)z1(1) z2(1)

∣∣∣∣ =
∣∣∣∣ 1 0√
−a0 cos(θ)

√
−a0 sin(θ)

∣∣∣∣ = √−a0 sin(θ)
which, by assumption, is non-zero. Therefore, z is a solution of (5.19) if and only if there exist c1, c2 ∈ IR
such that

z(t) = c1z1(t) + c2z2(t) = c1(
√
−a0)t cos(tθ) + c2(

√
−a0)t sin(tθ) ∀t ∈ IN0. (5.23)

We summarize our observations regarding the solution of homogeneous linear difference equations
with constant coefficients of order two in the following theorem.

Theorem 5.2.9 (i) Suppose a0 ∈ IR \ {0} and a1 ∈ IR are such that a21/4 + a0 > 0. A function
z : IN0 �→ IR is a solution of the homogeneous linear difference equation with constant coefficients of order
two (5.19) if and only if there exist c1, c2 ∈ IR such that

z(t) = c1

(
a1/2 +

√
a21/4 + a0

)t
+ c2

(
a1/2−

√
a21/4 + a0

)t
∀t ∈ IN0.

(ii) Suppose a0 ∈ IR \ {0} and a1 ∈ IR are such that a21/4 + a0 = 0. A function z : IN0 �→ IR is a
solution of the homogeneous linear difference equation with constant coefficients of order two (5.19) if
and only if there exist c1, c2 ∈ IR such that

z(t) = c1(a1/2)
t + c2t(a1/2)

t ∀t ∈ IN0.

(iii) Suppose a0 ∈ IR \ {0} and a1 ∈ IR are such that a21/4 + a0 < 0. A function z : IN0 �→ IR is
a solution of the homogeneous linear difference equation with constant coefficients of order two (5.19) if
and only if there exist c1, c2 ∈ IR such that

z(t) = c1(
√
−a0)t cos(tθ) + c2(

√
−a0)t sin(tθ) ∀t ∈ IN0

where θ ∈ [0, 2π) is such that a1/2 =
√
−a0 cos(θ).
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To illustrate the technique used to obtain the general solution of (5.19), we consider a few examples.
Let y(t+2) = −2y(t)+4y(t+1) for all t ∈ IN0. We begin by trying to find two independent solutions

using a generalized-exponential functional form, that is, z(t) = λt for all t ∈ IN0 with λ ∈ IR \ {0} to
be determined. Substituting into our equation, we obtain λt+2 = −2λt + 4λt+1. Dividing by λt and
rearranging results in the characteristic equation λ2 − 4λ+ 2 = 0. This quadratic equation has the two
real solutions λ1 = 2 +

√
2 and λ2 = 2−

√
2. Therefore, we obtain the solutions

z1(t) = (2 +
√
2)t ∀t ∈ IN0

and
z2(t) = (2−

√
2)t ∀t ∈ IN0.

Because ∣∣∣∣ z1(0) z2(0)z1(1) z2(1)

∣∣∣∣ =
∣∣∣∣ 1 1

2 +
√
2 2−

√
2

∣∣∣∣ = −2√2 �= 0,
z is a solution if and only if there exist c1, c2 ∈ IR such that

z(t) = c1z1(t) + c2z2(t) = c1(2 +
√
2)t + c2(2−

√
2)t ∀t ∈ IN0.

In our next example, let y(t + 2) = −y(t)/16 + y(t + 1)/2 for all t ∈ IN0. The approach employing a
generalized exponential function now yields the characteristic polynomial λ2−λ/2+1/16 with the unique
root λ = 1/4. Thus, two independent solutions of our homogeneous difference equation are given by

z1(t) = (1/4)
t ∀t ∈ IN0

and
z2(t) = t(1/4)

t ∀t ∈ IN0.
To prove that these solutions indeed satisfy the required independence property, note that∣∣∣∣ z1(0) z2(0)z1(1) z2(1)

∣∣∣∣ =
∣∣∣∣ 1 0
1/4 1/4

∣∣∣∣ = 1/4 �= 0.
Thus, z is a solution if and only if there exist c1, c2 ∈ IR such that

z(t) = c1z1(t) + c2z2(t) = c1(1/4)
t + c2t(1/4)

t ∀t ∈ IN0.

As a final example, let y(t + 2) = −4y(t) for all t ∈ IN0. We obtain the characteristic polynomial
λ2 + 4 with the two complex roots λ1 = 2i and λ2 = −2i. Using polar coordinates, we obtain θ = π/2
and these solutions can be written as λ1 = 2(cos(π/2) + i sin(π/2)) and λ2 = 2(cos(π/2) − i sin(π/2)).
The corresponding solutions of our difference equation are given by

z1(t) = 2
t cos(tπ/2) ∀t ∈ IN0

and
z2(t) = 2

t sin(tπ/2) ∀t ∈ IN0.
We obtain ∣∣∣∣ z1(0) z2(0)z1(1) z2(1)

∣∣∣∣ =
∣∣∣∣ 1 00 2

∣∣∣∣ = 2 �= 0.
Thus, z is a solution if and only if there exist c1, c2 ∈ IR such that

z(t) = c1z1(t) + c2z2(t) = c12
t cos(tπ/2) + c22

t sin(tπ/2) ∀t ∈ IN0.

The general form of a linear difference equation with constant coefficients of order two is given by

y(t + 2) = b(t) + a0y(t) + a1y(t + 1) ∀t ∈ IN0 (5.24)

where a0 ∈ IR \ {0}, a1 ∈ IR and b : IN0 �→ IR is such that there exists t ∈ IN0 with b(t) �= 0. Depending
on the form of the inhomogeneity b, finding the solutions of inhomogeneous equations with constant
coefficients of order two can be a quite difficult task; in fact, general solution methods for arbitrary
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inhomogeneities are not known. For that reason, we only consider specific functional forms for the
inhomogeneity b : IN0 �→ IR.
First, we consider the case of a constant function b. That is, there exists b0 ∈ IR \ {0} such that

b(t) = b0 for all t ∈ IN0. The case b0 = 0 is ruled out because this reduces to a homogeneous equation.
Substituting this constant function b in (5.24), we obtain

y(t + 2) = b0 + a0y(t) + a1y(t + 1) ∀t ∈ IN0. (5.25)

Because we already have the general solution of the associated homogeneous equation, it is sufficient
to find one particular solution of (5.25). We try to obtain a particular solution by using a functional
structure that is analogous to that of the inhomogeneity. That is, in this case, we begin by attempting
to find a constant particular solution. Suppose c0 ∈ IR is a constant, and consider the function ŷ defined
by ŷ(t) = c0 for all t ∈ IN0. Substituting into (5.25), we obtain

c0 = b0 + a0c0 + a1c0. (5.26)

We can distinguish two cases.
Case I: a0+a1 �= 1. In this case, (5.26) can be solved for c0 to obtain c0 = b0/(1−a0−a1) and, thus,

ŷ(t) = b0/(1− a0 − a1) for all t ∈ IN0. The general solution of (5.25) is thus

y(t) = z(t) + b0/(1− a0 − a1) ∀t ∈ IN0

where z is a solution of the corresponding homogeneous equation.
Case II: a0 + a1 = 1. In this case, there exists no c0 ∈ IR such that (5.26) is satisfied because b0 �= 0.

Thus, we have to try another functional form for the desired particular solution ŷ. Given that a0+a1 = 1,
(5.25) becomes

y(t + 2) = b0 + a0y(t) + (1− a0)y(t + 1) ∀t ∈ IN0. (5.27)

We now attempt to find a particular solution using the functional form ŷ(t) = c0t for all t ∈ IN0 with the
value of the constant c0 ∈ IR to be determined. Substituting into (5.27), we obtain

c0(t+ 2) = b0 + a0c0t+ (1− a0)c0(t+ 1) ∀t ∈ IN0. (5.28)

There are two subcases.
Subcase II.A: a0 �= −1. In this case, we can solve (5.28) for c0 to obtain c0 = b0/(1 + a0) and, thus,

ŷ(t) = b0t/(1 + a0) for all t ∈ IN0. The general solution of (5.25) is

y(t) = z(t) + b0t/(1 + a0) ∀t ∈ IN0

where, again, z is a solution of the corresponding homogeneous equation.
Subcase II.B: a0 = −1. Because we are in case II, this implies a1 = 2 and our equation becomes

y(t + 2) = b0 − y(t) + 2y(t + 1) ∀t ∈ IN0

and the approach using a linear function given by ŷ = c0t for all t ∈ IN0 does not work—no c0 such that
(5.28) is satisfied exists. We therefore make an alternative attempt by setting ŷ(t) = c0t

2 for all t ∈ IN0,
where c0 ∈ IR is a constant to be determined. Substituting, we obtain

c0(t+ 2)
2 = b0 − c0t2 + 2c0(t+ 1)2 ∀t ∈ IN0

and, solving, c0 = b0/2. This gives us the particular solution ŷ(t) = b0t
2/2 for all t ∈ IN0 and, finally, the

general solution
y(t) = z(t) + b0t

2/2 ∀t ∈ IN0
where z is a solution of the corresponding homogeneous equation.
We summarize our observations in the following theorem.

Theorem 5.2.10 (i) Let b0 ∈ IR \ {0}, and suppose a0 ∈ IR \ {0} and a1 ∈ IR are such that a0 + a1 �= 1.
A function y : IN0 �→ IR is a solution of the linear difference equation with constant coefficients of order
two (5.25) if and only if

y(t) = z(t) + b0/(1− a0 − a1) ∀t ∈ IN0
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where z is a solution of the corresponding homogeneous equation (5.19).
(ii) Let b0 ∈ IR \ {0}, and suppose a0 ∈ IR \ {0} and a1 ∈ IR are such that a0 + a1 = 1 and a0 �= −1.

A function y : IN0 �→ IR is a solution of the linear difference equation with constant coefficients of order
two (5.25) if and only if

y(t) = z(t) + b0t/(1 + a0) ∀t ∈ IN0
where z is a solution of the corresponding homogeneous equation (5.19).
(iii) Let b0 ∈ IR \ {0}, a0 = −1 and a1 = 2. A function y : IN0 �→ IR is a solution of the linear

difference equation with constant coefficients of order two (5.25) if and only if

y(t) = z(t) + b0t
2/2 ∀t ∈ IN0

where z is a solution of the corresponding homogeneous equation (5.19).

The second inhomogeneity considered here is such that the function b is a generalized exponential
function. Let d0 ∈ IR \ {0} be a parameter, and suppose b : IN0 �→ IR is such that b(t) = dt0 for all t ∈ IN0.
Substituting this function b into (5.24), we obtain

y(t + 2) = dt0 + a0y(t) + a1y(t + 1) ∀t ∈ IN0. (5.29)

Our first attempt to obtain a particular solution proceeds, again, by using a functional structure that
is similar to that of the inhomogeneity. Suppose c0 ∈ IR is a constant, and consider the function ŷ defined
by ŷ(t) = c0d

t
0 for all t ∈ IN0. Substituting into (5.29), we obtain

c0d
t+2
0 = dt0 + a0c0d

t
0 + a1c0d

t+1
0 . (5.30)

We can distinguish two cases.
Case I: d20 − a0 − a1d0 �= 0. In this case, (5.30) can be solved for c0 to obtain c0 = 1/(d20− a0 − a1d0)

and, thus, ŷ(t) = dt0/(d
2
0 − a0 − a1d0) for all t ∈ IN0. The general solution of (5.29) is thus

y(t) = z(t) + dt0/(d
2
0 − a0 − a1d0) ∀t ∈ IN0

where z is a solution of the corresponding homogeneous equation.
Case II: d20 − a0 − a1d0 = 0. In this case, there exists no c0 ∈ IR such that (5.30) is satisfied because

d0 �= 0. Another functional form for the desired particular solution ŷ is thus required. Given that
d20 − a0 − a1d0 = 0, (5.29) becomes

y(t + 2) = dt0 + (d
2
0 − a1d0)y(t) + a1y(t + 1) ∀t ∈ IN0. (5.31)

We now attempt to find a particular solution using the functional form ŷ(t) = c0td
t
0 for all t ∈ IN0 with

the value of the constant c0 ∈ IR to be determined. Substituting into (5.31) and dividing both sides by
dt0 �= 0, we obtain

c0(t + 2)d
2
0 = 1 + (d

2
0 − a1d0)c0t+ a1c0(t+ 1)d0 ∀t ∈ IN0.

This can be simplified to
c0(2d0 − a1)d0 = 1 ∀t ∈ IN0, (5.32)

and there are two subcases.
Subcase II.A: 2d0 �= a1. In this case, we can solve (5.32) for c0 to obtain c0 = 1/[d0(2d0 − a1)] and,

thus, ŷ(t) = tdt−10 /(2d0 − a1) for all t ∈ IN0. The general solution of (5.29) is

y(t) = z(t) + tdt−10 /(2d0 − a1) ∀t ∈ IN0

where, again, z is a solution of the corresponding homogeneous equation.
Subcase II.B: 2d0 = a1. Because we are in case II, this implies a0 = −d20 and our equation becomes

y(t + 2) = dt0 − d0y(t) + 2d0y(t + 1) ∀t ∈ IN0

and the approach using ŷ(t) = c0d
t
0 for all t ∈ IN0 does not work—no c0 such that (5.32) is satisfied

exists. We therefore make an alternative attempt by setting ŷ(t) = c0t
2dt0 for all t ∈ IN0, where c0 ∈ IR

is a constant to be determined. Substituting, we obtain

c0(t+ 2)
2dt+20 = dt0 − d20c0t2dt0 + 2d0c0(t+ 1)2dt+10 ∀t ∈ IN0
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and, solving, c0 = 1/(2d
2
0). This gives us the particular solution ŷ(t) = t

2dt−20 /2 for all t ∈ IN0 and the
general solution

y(t) = z(t) + t2dt−20 /2 ∀t ∈ IN0
where z is a solution of the corresponding homogeneous equation.
Thus, we have established the following theorem.

Theorem 5.2.11 (i) Let d0 ∈ IR\{0}, and suppose a0 ∈ IR\{0} and a1 ∈ IR are such that d20−a0−a1d0 �=
0. A function y : IN0 �→ IR is a solution of the linear difference equation with constant coefficients of
order two (5.29) if and only if

y(t) = z(t) + dt0/(d
2
0 − a0 − a1d0) ∀t ∈ IN0

where z is a solution of the corresponding homogeneous equation (5.19).
(ii) Let d0 ∈ IR \ {0}, and suppose a0 ∈ IR \ {0} and a1 ∈ IR are such that d20 − a0 − a1d0 = 0 and

2d0 �= a1. A function y : IN0 �→ IR is a solution of the linear difference equation with constant coefficients
of order two (5.29) if and only if

y(t) = z(t) + tdt−10 /(2d0 − a1) ∀t ∈ IN0

where z is a solution of the corresponding homogeneous equation (5.19).
(iii) Let d0 ∈ IR \ {0}, a0 = −d20 and a1 = 2d0. A function y : IN0 �→ IR is a solution of the linear

difference equation with constant coefficients of order two (5.29) if and only if

y(t) = z(t) + t2dt−20 /2 ∀t ∈ IN0

where z is a solution of the corresponding homogeneous equation (5.19).

We conclude this section with some examples. Suppose a linear difference equation is given by

y(t + 2) = 2t + 3y(t) − 2y(t + 1) ∀t ∈ IN0.

The corresponding homogeneous equation is

y(t + 2) = 3y(t) − 2y(t + 1) ∀t ∈ IN0.

Using the generalized exponential approach, we attempt to find a solution z : IN0 �→ IR such that z(t) = λt
for all t ∈ IN0, where λ ∈ IR \ {0} is a parameter to be determined (if possible). Substituting, we obtain
the characteristic polynomial λ2 − 3 + 2λ which has the two real roots λ1 = 1 and λ2 = −3. Therefore,
we obtain the two solutions

z1(t) = 1 ∀t ∈ IN0
and

z2(t) = (−3)t ∀t ∈ IN0.
Because ∣∣∣∣ z1(0) z2(0)z1(1) z2(1)

∣∣∣∣ =
∣∣∣∣ 1 1
1 −3

∣∣∣∣ = −4 �= 0,
z is a solution if and only if there exist c1, c2 ∈ IR such that

z(t) = c1z1(t) + c2z2(t) = c1 + c2(−3)t ∀t ∈ IN0.

To solve the inhomogeneous equation with the generalized exponential inhomogeneity defined by
b(t) = 2t for all t ∈ IN0, we begin by trying to find a particular solution ŷ of the form ŷ(t) = c02t for all
t ∈ IN0, where c0 ∈ IR is a constant. Substituting into the original equation, we obtain

c02
t+2 = 2t + 3c02

t − 2c02t+1 ∀t ∈ IN0

and, solving, we obtain c0 = 1/5. Therefore, thew particular solution is given by ŷ(t) = 2
t/5 for all

t ∈ IN0 and, together with the solution of the associated homogeneous equation, we obtain the general
solution

y(t) = c1 + c2(−3)t + 2t/5 ∀t ∈ IN0
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Figure 5.2: Geometric interpretation of integrals.

with parameters c1, c2 ∈ IR.
Now consider the following modification of this example, given by the equation

y(t + 2) = (−3)t + 3y(t) − 2y(t + 1) ∀t ∈ IN0.

The associated homogeneous equation is the same as before, so we only need to find a particular solution
to the inhomogeneous equation. Trying ŷ(t) = c0(−3)t for all t ∈ IN0 and substituting yields the equation

c0(−3)t+2 = (−3)t + 3c0(−3)t − 2c0(−3)t+1 ∀t ∈ IN0

which does not have a solution. Therefore, we use the new functional form ŷ(t) = c0t(−3)t for all
t ∈ IN0 and, substituting again, we now obtain c0 = 1/12. Thus, our particular solution is given
by ŷ(t) = t(−3)t−1/4 for all t ∈ IN0. Combined with the solution of the corresponding homogeneous
equation, we obtain the general solution

y(t) = c1 + c2(−3)t + t(−3)t−1/4 ∀t ∈ IN0.

5.3 Integration

Integration provides us with a method of finding the areas of certain subsets of IR2. The subsets of IR2

that we will consider here can be described by functions of one variable. As an illustration, consider
Figure 5.2.
We will examine ways of finding the area of subsets of IR2 such as

{(x, y) | x ∈ [a, b] ∧ y ∈ [0, f(x)]}

where f : A �→ IR is a function such that [a, b]⊆ A, a < b. In Figure 5.2, V denotes such an area.
There are two basic problems that have to be solved. We have to specify what types of subsets of IR2

as discussed above can be assigned an area at all, and, for those subsets that do have a well-defined area,
we have to find a general method which allows us to calculate this area.
As a first step, we can try to approximate the area of a subset of IR2 (assuming this area is defined)

by the areas of other sets which we are familiar with. Subsets of IR2 that can be assigned an area
very easily are rectangles. Consider again Figure 5.2. To obtain an approximation of the area V that
underestimates the value of V , we could calculate the area of the rectangle formed by the points (a, 0),
(b, 0), (a, inf{f(x) | x ∈ [a, b]}), (b, inf{f(x) | x ∈ [a, b]}). Analogously, to get an approximation that
overestimates V , we could use the area of the rectangle given by the points (a, 0), (b, 0), (a, sup{f(x) |
x ∈ [a, b]}), (b, sup{f(x) | x ∈ [a, b]}). Clearly, the areas of these rectangles are given by

(b− a) inf{f(x) | x ∈ [a, b]} and (b− a) sup{f(x) | x ∈ [a, b]},



5.3. INTEGRATION 121

1/4 1/2 3/4 1 5/4
x

1/4

1/2

3/4

1

5/4

f(x)

Figure 5.3: Approximation of an area.

respectively. This gives us the inequalities

(b − a) inf{f(x) | x ∈ [a, b]} ≤ V ≤ (b− a) sup{f(x) | x ∈ [a, b]}.

These approximations of V can, of course, be very inaccurate. One possibility to obtain a more precise
approximation is to divide the interval [a, b] into smaller subintervals, approximate the areas corresponding
to these subintervals, and add up these approximations for all subintervals. The following example
illustrates this idea. Consider the function

f : IR �→ IR, x �→ x2,

and let a = 0, b = 1. Suppose we want to find the area V of the set {(x, y) | x ∈ [0, 1] ∧ y ∈ [0, x2]}.
We have inf{x2 | x ∈ [0, 1]} = 0 and sup{x2 | x ∈ [0, 1]} = 1. Therefore, 0 ≤ V ≤ 1. To obtain a better
approximation, we divide the interval [0, 1] into the two subintervals [0, 1/2] and [1/2, 1]. We now obtain

inf{x2 | x ∈ [0, 1/2]}= 0 and sup{x2 | x ∈ [0, 1/2]}= 1/4,

inf{x2 | x ∈ [1/2, 1]}= 1/4 and sup{x2 | x ∈ [1/2, 1]}= 1.

This gives us new approximations of V , namely, 1/8 ≤ V ≤ 5/8. See Figure 5.3 for an illustration.
In general, if we divide [0, 1] into n ∈ IN subintervals [0, 1/n], [1/n, 2/n], . . ., [(n − 1)/n, 1], we can

approximate V from below with the lower sum

Ln :=
n∑
i=1

(
i

n
− i− 1
n

)
inf{x2 | x ∈ [(i− 1)/n, i/n]} =

n∑
i=1

1

n

(
i− 1
n

)2
,

and an approximation from above is given by the upper sum

Un :=
n∑
i=1

(
i

n
− i− 1
n

)
sup{x2 | x ∈ [(i− 1)/n, i/n]}=

n∑
i=1

1

n

(
i

n

)2
.

For any n ∈ IN, we obtain Ln ≤ V ≤ Un. We can rewrite Ln as

Ln =
1

n3

n∑
i=1

(i− 1)2 = 1
n3

n−1∑
j=0

j2 =
1

n3
(n − 1)n(2n− 1)

6

=
(n− 1)(2n− 1)

6n2
=
2n2 − 3n+ 1

6n2
=
1

3
− 1
2n
+
1

6n2
,
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and the upper sum is equal to

Un =
1

n3

n∑
i=1

i2 =
1

n3
n(n+ 1)(2n+ 1)

6
=
(n+ 1)(2n+ 1)

6n2
=

=
2n2 + 3n+ 1

6n2
=
1

3
+
1

2n
+
1

6n2
.

Note that {Ln} and {Un} are convergent sequences, and we obtain limn→∞ Ln = limn→∞Un = 1/3.
Because {Ln} and {Un} converge to the same limit, it is natural to consider this limit the area V ,

which is therefore obtained as the limit of an approximation process.
This procedure can be generalized. First, we define partitions of intervals.

Definition 5.3.1 Let a, b ∈ IR, a < b.
(i) A partition of the interval [a, b] is a finite set of numbers P = {x0, x1, . . . , xn} such that

a = x0 < x1 < . . . < xn = b.

(ii) Suppose P and P̄ are partitions of [a, b]. P is finer than P̄ if and only if P̄ ⊆ P .

Using the notion of a partition, we can define lower and upper sums for functions defined on an interval.

Definition 5.3.2 Let A ⊆ IR be an interval, and let a, b ∈ IR be such that a < b and [a, b] ⊆ A.
Furthermore, let f : A �→ IR be bounded on [a, b], and let P = {x0, x1, . . . , xn} be a partition of [a, b].
(i) The lower sum of f with respect to P is defined by

L(P ) :=
n∑
i=1

(xi − xi−1) inf{f(x) | x ∈ [xi−1, xi]}.

(ii) The upper sum of f with respect to P is defined by

U(P ) :=
n∑
i=1

(xi − xi−1) sup{f(x) | x ∈ [xi−1, xi]}.

If we replace a partition by a finer partition, the lower sum cannot decrease, and the upper sum
cannot increase.

Theorem 5.3.3 Let A ⊆ IR be an interval, and let a, b ∈ IR be such that a < b and [a, b] ⊆ A. Further-
more, let f : A �→ IR be bounded on [a, b], and let P and P̄ be partitions of [a, b].

P is finer than P̄ ⇒ L(P ) ≥ L(P̄ ) ∧ U(P ) ≤ U(P̄ ).

Proof. Suppose P is finer than P̄ , that is, P̄ ⊆ P . If P = P̄ , the result follows trivially. Now suppose
P̄ = {x0, . . . , xn} and P = P̄ ∪ {y} with y �∈ P̄ . Let k ∈ {1, . . . , n} be such that xk−1 < y < xk (such a
k exists and is unique by the definition of a partition). Then we obtain

L(P ) =
k−1∑
i=1

(xi − xi−1) inf{f(x) | x ∈ [xi−1, xi]}+ (y − xk−1) inf{f(x) | x ∈ [xk−1, y]}

+ (xk − y) inf{f(x) | x ∈ [y, xk]}+
n∑

i=k+1

(xi − xi−1) inf{f(x) | x ∈ [xi−1, xi]}.

By definition of an infimum,

(y − xk−1) inf{f(x) | x ∈ [xk−1, y]}+ (xk − y) inf{f(x) | x ∈ [y, xk]} ≥
(xk − xk−1) inf{f(x) | x ∈ [xk−1, xk]}.
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Therefore,

L(P ) ≥
n∑
i=1

(xi − xi−1) inf{f(x) | x ∈ [xi−1, xi]} = L(P̄ ).

If P \ P̄ contains more than one element, the above argument can be applied repeatedly to conclude
L(P ) ≥ L(P̄ ).
The inequality U(P ) ≤ U(P̄ ) is proven analogously. ‖
For a given partition P , it is clear that

L(P ) ≤ U(P ) (5.33)

(by definition of the infimum and the supremum of a set). In addition, Theorem 5.3.3 implies that this
inequality holds even for lower and upper sums that are calculated for different partitions.

Theorem 5.3.4 Let A ⊆ IR be an interval, and let a, b ∈ IR be such that a < b and [a, b] ⊆ A. Fur-
thermore, let f : A �→ IR be bounded on [a, b]. If P and P̄ are partitions of [a, b], then L(P ) ≤ U(P̄ ).

Proof. Let P̃ := P ∪ P̄ . Then P̃ is finer than P , and P̃ is finer than P̄ . Therefore, Theorem 5.3.3 and
(5.33) imply

L(P ) ≤ L(P̃ ) ≤ U(P̃ ) ≤ U(P̄ ). ‖
An interesting consequence of Theorem 5.3.4 is that the set

L := {L(P ) | P is a partition of [a, b]}

is bounded from above, because for any partition P of [a, b], U(P ) is an upper bound for L. Similarly,
the set

U := {U(P ) | P is a partition of [a, b]}
is bounded from below, because, for any partition P of [a, b], L(P ) is a lower bound for U . Therefore, L
has a supremum, and U has an infimum. By Theorem 5.3.4, sup(L) ≤ inf(U).
We now define

Definition 5.3.5 Let A ⊆ IR be an interval, and let a, b ∈ IR be such that a < b and [a, b] ⊆ A.
Furthermore, let f : A �→ IR be bounded on [a, b].
(i) The function f is Riemann integrable on [a, b] if and only if sup(L) = inf(U).
(ii) If f is Riemann integrable on [a, b], the integral of f on [a, b] is defined by∫ b

a

f(x)dx := sup(L) = inf(U).

(iii) We define ∫ a
a

f(x)dx := 0 and

∫ a
b

f(x)dx := −
∫ b
a

f(x)dx.

Because Riemann integrability is the only form of integrability discussed here, we will simply use the
term “integrable” when referring to Riemann integrable functions.
We can now return to the problem of assigning an area to specific subsets of IR2. Consider first

the case of a function f : A �→ IR such that f([a, b]) ⊆ IR+, that is, on the interval [a, b], f assumes
nonnegative values only. If f is integrable on [a, b], we define the area V (see Figure 5.2) to be given by
the integral of f on [a, b].
If f assumes only nonpositive values on [a, b], the integral of f on [a, b] is a nonpositive number (we

will see why this is the case once we discuss methods to calculate integrals). Because we want areas
to have nonnegative values, we will, in this case, use the absolute value of the integral of f on [a, b] to
represent this area.
Not all functions that are bounded on an interval are integrable on this interval. Consider, for example,

the function

f : [0, 1] �→ IR, x �→
{
0 if x ∈ Q
1 if x �∈ Q.
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This function assigns the number zero to all rational numbers in the interval [0, 1] and the number one to
all irrational numbers in [0, 1]. To show that the function f is not integrable on [0, 1], let P = {x0, . . . , xn}
be an arbitrary partition of [0, 1]. Because any interval [a, b] with a < b contains rational and irrational
numbers, we obtain

inf{f(x) | x ∈ [xi−1, xi]} = 0 ∧ sup{f(x) | x ∈ [xi−1, xi]} = 1 ∀i = 1, . . . , n,

and therefore, because this is true for all partitions of [0, 1], sup(L) = 0 and inf(U) = 1, which shows
that f is not integrable on [0, 1].
Integrability is a condition that is weaker than continuity, that is, all functions that are continuous

on an interval are integrable on this interval. Furthermore, all monotone functions are integrable. We
summarize these observations in the following theorem, which we state without a proof.

Theorem 5.3.6 Let A ⊆ IR be an interval, and let a, b ∈ IR be such that a < b and [a, b] ⊆ A. Further-
more, let f : A �→ IR be bounded on [a, b].

(i) f is continuous on [a, b]⇒ f is integrable on [a, b].
(ii) f is nondecreasing on [a, b]⇒ f is integrable on [a, b].
(iii) f is nonincreasing on [a, b]⇒ f is integrable on [a, b].

The process of finding an integral can be expressed in terms of an operation that, in some sense, is
the “reverse” operation of differentiation. We define

Definition 5.3.7 Let A ⊆ IR be an interval, and let f : A �→ IR. A differentiable function F : A �→ IR
such that F ′(x) = f(x) for all x ∈ A is called an integral function of f.

Clearly, if F is an integral function of f and c ∈ IR, the function

G : A �→ IR, x �→ F (x) + c

also is an integral function of f . Furthermore, if F and G are integral functions of f , then there must
exist a constant c ∈ IR such that G(x) = F (x) + c for all x ∈ A. Therefore, integral functions—if they
exist—are unique up to additive constants. If an integral function F of f exists, the indefinite integral of
f is ∫

f(x)dx := F (x) + c

where c ∈ IR is a constant. Integrals of the form
∫ b
a

f(x)dx

with a, b ∈ IR are called definite integrals in order to distinguish them from indefinite integrals.
The following theorem is called the fundamental theorem of calculus. It describes how integral func-

tions can be used to find definite integrals. We state this theorem without a proof.

Theorem 5.3.8 Let A ⊆ IR be an interval, and let a, b ∈ IR be such that a < b and [a, b] ⊆ A. Further-
more, let f : A �→ IR be continuous on [a, b].
(i) The function

H : [a, b] �→ IR, y �→
∫ y
a

f(x)dx

is differentiable on (a, b), and H ′(y) = f(y) for all y ∈ (a, b).
(ii) If F is an integral function of f, then

∫ b
a

f(x)dx = F (b)− F (a).
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Theorem 5.3.8 (ii) shows how definite integrals can be obtained from indefinite integrals. Once an
integral function F of f is known, we just have to calculate the difference of the values of F at the limits
of integration. It is also common to use the notations∫ b

a

f(x)dx = F (x)|ba or
∫ b
a

f(x)dx = [F (x)]
b
a

for definite integrals, where F is an integral function of f .
We can now summarize some integration rules.

Theorem 5.3.9 Let c ∈ IR be a constant.
(i) Let A ⊆ IR be an interval, and let n ∈ IN. The integral function of

f : A �→ IR, x �→ xn

is given by

F : A �→ IR, x �→ x
n+1

n+ 1
+ c.

(ii) Let A ⊆ IR++ be an interval, and let α ∈ IR \ {−1}. The integral function of

f : A �→ IR, x �→ xα

is given by

F : A �→ IR, x �→ xα+1

α+ 1
+ c.

(iii) Let A ⊆ IR++ be an interval. The integral function of

f : A �→ IR, x �→ 1
x

is given by

F : A �→ IR, x �→ ln(x) + c.

(iv) Let A ⊆ IR be an interval. The integral function of

f : A �→ IR, x �→ ex

is given by

F : A �→ IR, x �→ ex + c.

(v) Let A ⊆ IR be an interval, and let α ∈ IR++ \ {1}. The integral function of

f : A �→ IR, x �→ αx

is given by

F : A �→ IR, x �→ αx

ln(α)
+ c.

The proof of Theorem 5.3.9 is obtained by differentiating the integral functions.
Furthermore, we obtain

Theorem 5.3.10 Let A ⊆ IR be an interval, and let α ∈ IR. Furthermore, let f : A �→ IR and g : A �→ IR.

(i) If F is an integral function of f, then αF is an integral function of αf.
(ii) If F is an integral function of f and G is an integral function of g, then F + G is an
integral function of f + g.
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The proof of Theorem 5.3.10 is left as an exercise.
Theorems 5.3.9 and 5.3.10 allow us to find integral functions for sums and multiples of given functions.

For example, for a polynomial function such as

f : IR �→ IR, x �→ 2 + x− 3x2,

we obtain the integral function

F : IR �→ IR, x �→ 2x+ 1
2
x2 − x3 + c.

Now we calculate the definite integral of the function f on [0, 1]. We obtain

∫ 1
0

f(x)dx = F (x)|10 = 2x+
1

2
x2 − x3 + c

∣∣∣∣1
0

= 2 +
1

2
− 1 = 3

2
.

Theorem 5.3.8 only applies to continuous functions, but we can also find definite integrals involving
noncontinuous functions, if it is possible to partition the interval under consideration into subintervals
on which the function is continuous.
The following theorems provide some useful rules for calculating certain definite integrals.

Theorem 5.3.11 Let A ⊆ IR be an interval, and let a, b, c ∈ IR be such that a < c < b and [a, b] ⊆ A.
Furthermore, let f : A �→ IR be bounded on [a, b]. If f is integrable on [a, b], then f is integrable on [a, c]
and on [c, b], and ∫ b

a

f(x)dx =

∫ c
a

f(x)dx +

∫ b
c

f(x)dx.

Theorem 5.3.12 Let A ⊆ IR be an interval, and let a, b ∈ IR be such that a < b and [a, b] ⊆ A.
Furthermore, let α, β ∈ IR, and let f : A �→ IR and g : A �→ IR be bounded on [a, b]. If f and g are
integrable on [a, b], then αf + βg is integrable on [a, b], and

∫ b
a

(αf(x) + βg(x))dx = α

∫ b
a

f(x)dx + β

∫ b
a

g(x)dx.

As an example, consider the following function

f : IR+ �→ IR, x �→
{
x2 if x ∈ [0, 2]
x if x ∈ (2,∞).

This function is not continuous at x0 = 2. The graph of f is illustrated in Figure 5.4.

Suppose we want to find
∫ 4
0
f(x)dx. This can be achieved by partitioning the interval [0, 4] into [0, 2]

and [2, 4]. We obtain ∫ 4
0

f(x)dx =

∫ 2
0

f(x)dx+

∫ 4
2

f(x)dx

=
1

3
x3
∣∣∣∣2
0

+
1

2
x2
∣∣∣∣4
2

=
8

3
+ 8− 2 = 26

3
.

Some integral functions can be found using a method called integration by parts. This integration
rule follows from the application of the product rule for differentiation. It is illustrated in the following
theorem.

Theorem 5.3.13 Let A ⊆ IR be an interval. If f : A �→ IR and g : A �→ IR are differentiable, then∫
f ′(x)g(x)dx = f(x)g(x) −

∫
f(x)g′(x)dx+ c. (5.34)
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Figure 5.4: Piecewise integration.

Proof. By the product rule (see Theorem 3.2.5), (fg)′(x) = f ′(x)g(x) + f(x)g′(x) for all x ∈ A.
Therefore,

∫
(fg)′(x)dx =

∫
f ′(x)g(x)dx+

∫
f(x)g′(x)dx+ c̄. By definition of an integral function,∫

(fg)′(x)dx = (fg)(x) = f(x)g(x).

Setting c := −c̄, (5.34) follows. ‖
As an example for the application of Theorem 5.3.13, we determine the indefinite integral

∫
ln(x)dx

using integration by parts. Define f : IR++ �→ IR, x �→ x, and g : IR++ �→ IR, x �→ ln(x). Then f ′(x) = 1
for all x ∈ IR++, and g′(x) = 1/x for all x ∈ IR++. According to Theorem 5.3.13, we obtain∫

ln(x)dx =

∫
f ′(x)g(x)dx = x ln(x)−

∫
dx = x ln(x)− x+ c = x(ln(x)− 1) + c.

Another important rule of integration is the substitution rule, which is based on the chain rule for
differentiation (see Theorem 3.2.6).

Theorem 5.3.14 Let A ⊆ IR be an interval, and let f : A �→ IR, g : f(A) �→ IR. If f is differentiable
and G is an integral function of g, then∫

g(f(x))f ′(x)dx = G(f(x)) + c. (5.35)

Proof. By the chain rule, (G ◦ f)′(x) = G′(f(x))f ′(x) = g(f(x))f ′(x) for all x ∈ A. Therefore,∫
g(f(x))f ′(x)dx =

∫
(G ◦ f)′(x)dx+ c,

which is equivalent to (5.35). ‖
To illustrate the application of the substitution rule, we use this rule to find the indefinite integral∫
(x2 + 1)2xdx. Define f : IR �→ IR, �→ x2 + 1, and g : IR �→ IR, y �→ y. We obtain f ′(x) = 2x for all
x ∈ IR, and the integral function

G : IR �→ IR, y �→ 1
2
y2

for the function g. Using the substitution rule,∫
(x2 + 1)2xdx =

∫
g(f(x))f ′(x)dx =

1

2
(f(x))2 + c =

1

2
(x2 + 1)2 + c.
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So far, we restricted attention to functions that are bounded on a closed interval [a, b]. In some
circumstances, we can derive integrals even if these conditions do not apply. Integrals of this kind are
called improper integrals, and we can distinguish two types of them.
The first possibility to have an improper integral occurs if one of the limits of integration is not finite.

We define

Definition 5.3.15 (i) Let A ⊆ IR be an interval, and let a ∈ IR be such that [a,∞) ⊆ A. Suppose
f : A �→ IR is integrable on [a, b] for all b ∈ (a,∞). If

lim
b↑∞

∫ b
a

f(x)dx

exists and is finite, then f is integrable on [a,∞), and the improper integral∫ ∞
a

f(x)dx := lim
b↑∞

∫ b
a

f(x)dx

exists (or converges). If
∫∞
a
f(x)dx does not converge, we say that this improper integral diverges.

(ii) Let A ⊆ IR be an interval, and let b ∈ IR be such that (−∞, b] ⊆ A. Suppose f : A �→ IR is
integrable on [a, b] for all a ∈ (−∞, b). If

lim
a↓−∞

∫ b
a

f(x)dx

exists and is finite, then f is integrable on (−∞, b], and the improper integral∫ b
−∞
f(x)dx := lim

a↓−∞

∫ b
a

f(x)dx

exists (or converges). If
∫ b
−∞ f(x)dx does not converge, we say that this improper integral diverges.

For example, consider

f : IR++ �→ IR, x �→
1

x2
.

To determine whether the improper integral
∫∞
1
f(x)dx exists, we have to find out whether

∫ b
1
f(x)dx

converges as b approaches infinity. We obtain

∫ b
1

f(x)dx =

∫ b
1

dx

x2
= −1

x

∣∣∣∣b
1

= −1
b
+ 1.

This implies

lim
b↑∞

∫ b
1

dx

x2
= lim
b↑∞

(
−1
b
+ 1

)
= 1,

and hence, ∫ ∞
1

dx

x2
= 1.

As another example, define

f : IR++ �→ IR, x �→
1

x
.

Now we obtain ∫ b
1

f(x)dx =

∫ b
1

dx

x
= ln(x)|b1 = ln(b)− ln(1) = ln(b).

Clearly, limb↑∞ ln(b) =∞, and therefore,
∫∞
1
dx
x
diverges.

Another type of improper integral is obtained if the function f is not bounded on an interval. This
possibility is described in
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Definition 5.3.16 Let A ⊆ IR be an interval, and let a, b ∈ IR be such that a < b.
(i) Suppose [a, b) ⊆ A, b �∈ A, and f : A �→ IR is integrable on [a, c] for all c ∈ (a, b). If

lim
c↑b

∫ c
a

f(x)dx

exists and is finite, then f is integrable on [a, b), and the improper integral∫ b
a

f(x)dx := lim
c↑b

∫ c
a

f(x)dx

exists (or converges). If
∫ b
a f(x)dx does not converge, we say that this improper integral diverges.

(ii) Suppose (a, b] ⊆ A, a �∈ A, and f : A �→ IR is integrable on [c, b] for all c ∈ (a, b). If

lim
c↓a

∫ b
c

f(x)dx

exists and is finite, then f is integrable on (a, b], and the improper integral∫ b
a

f(x)dx := lim
c↓a

∫ b
c

f(x)dx

exists (or converges). If
∫ b
a
f(x)dx does not converge, we say that this improper integral diverges.

For example, consider the function

f : IR++ �→ IR, x �→
1√
x
.

For a ∈ (0, 1), we obtain ∫ 1
a

f(x)dx =

∫ 1
a

dx√
x
= 2
√
x
∣∣1
a
= 2(1−

√
a).

Therefore,

lim
a↓0

∫ 1
a

f(x)dx = lim
a↓0
2(1−

√
a) = 2,

and the improper integral
∫ 1
0 f(x)dx exists and is given by∫ 1

0

f(x)dx = lim
a↓0

∫ 1
a

f(x)dx = 2.

5.4 Differential Equations

Differential equations are an alternative way to describe relationships between economic variables over
time. Whereas difference equations work in a discrete setting, time is treated as a continuous variable
in the analysis of differential equations. Therefore, the function y that describes the development of a
variable over time now has as its domain a non-degenerate interval rather than the set IN0. That is,
we consider functions y : A �→ IR where A ⊆ IR is a non-degenerate interval. We assume that y is
continuously differentiable as many times as required to ensure that the differential equations introduced
below are well-defined.

Definition 5.4.1 Let A ⊆ IR be a non-degenerate interval, and let n ∈ IN. A differential equation of
order n is an equation

y(n)(x) = G(x, y(x), y′(x), . . . , y(n−1)(x)) (5.36)

where G : IR �→ IR is a function and y′, y′′, y(3), . . . are the derivatives of y of order 1, 2, 3, . . .. A function
y : A �→ IR is a solution of this differential equation if and only if (5.36) is satisfied for all x ∈ A.

As in the case of difference equations, we restrict attention to certain types of differential equations.
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Definition 5.4.2 Let A ⊆ IR be a non-degenerate interval, and let n ∈ IN. A linear differential equation
of order n is an equation

y(n)(x) = b(x) + a0(x)y(x) + a1(x)y
′(x) + . . .+ an−1(x)y

(n−1)(x) (5.37)

where b : A �→ IR and the ai : A �→ IR for all i ∈ {0, . . . , n − 1} are continuous functions. If b(x) = 0
for all x ∈ A, the equation is a homogeneous linear differential equation of order n. If there exists x ∈ A
such that b(x) �= 0, the equation (5.37) is an inhomogeneous linear differential equation of order n.

The continuity assumption regarding the functions b and a0, . . . , an−1 is not required for all of our results.
For convenience, however, we impose it thoughout.
The homogeneous equation associated with the linear equation (5.37) is given by

y(n)(x) = a0(x)y(x) + a1(x)y
′(x) + . . .+ an−1(x)y

(n−1)(x). (5.38)

Analogously to the results obtained for linear difference equations, there are some convenient proper-
ties of the set of solutions of a linear differential equations that will be useful in developing methods to
solve these equations.

Theorem 5.4.3 (i) Suppose ŷ is a solution of (5.37). For each solution y of (5.37), there exists a
solution z of the homogeneous equation (5.38) associated with (5.37) such that y = z + ŷ.
(ii) If ŷ is a solution of (5.37) and z is a solution of the homogeneous equation (5.38) associated with

(5.37), then the function y defined by y = z + ŷ is a solution of (5.37).

Proof. The proof of (i) is analogous to the proof of part (i) of Theorem 5.2.4.
To prove (ii), suppose y = z + ŷ where ŷ solves (5.37) and z solves (5.38). By definition,

y(x) = z(x) + ŷ(x) ∀x ∈ A.

This is an identity and, differentiating both sides n times, we obtain

y(n)(x) = z(n)(x) = ŷ(n)(x) ∀x ∈ A. (5.39)

Because ŷ is a solution of (5.37), we have

ŷ(n)(x) = b(x) + a0(x)ŷ(x) + a1(x)ŷ
′(x) + . . .+ an−1(x)ŷ

(n−1)(x) ∀x ∈ A

and because z is a solution of (5.38), it follows that

z(n)(x) = a0(x)z(x) + a1(x)z
′(x) + . . .+ an−1(x)z

(n−1)(x) ∀x ∈ A.

Substituting into (5.39), we obtain

y(n)(x) = a0(x)z(x) + a1(x)z
′(x) + . . .+ an−1(x)z

(n−1)(x)

+ b(x) + a0(x)ŷ(x) + a1(x)ŷ
′(x) + . . .+ an−1(x)ŷ

(n−1)(x)

= b(x) + a0(x)(z(x) + ŷ(x)) + a1(x)(z
′(x) + ŷ′(x)) + . . .+ an−1(x)(z

(n−1)(x) + ŷ(n−1)(x))

= b(x) + a0(x)y(x) + a1(x)y
′(x) + . . .+ an−1(x)y

(n−1)(x) ∀x ∈ A

and, thus, y satisfies (5.37). ‖
The next two results (the second of which we state without a proof) concern the structure of the set

of solutions to the homogeneous equation (5.38). They are analogous to the corresponding theorems for
linear difference equations.

Theorem 5.4.4 If z1, . . . , zn are n solutions of (5.38) and c = (c1, . . . , cn) ∈ IRn is a vector of arbitrary
coefficients, then the function y defined by y =

∑n
i=1 cizi is a solution of (5.38).

Proof. Suppose z1, . . . , zn are n solutions of (5.38) and c = (c1, . . . , cn) ∈ IRn is a vector of arbitrary
coefficients. Let y =

∑n
i=1 cizi. Using this definition and differentiating n times, we obtain

y(n)(x) =
n∑
i=1

ciz
(n)
i (x)
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=
n∑
i=1

ci(a0(x)zi(x) + a1(t)z
′
i(x) + . . .+ an−1(x)z

(n−1)
i (x))

= a0(x)
n∑
i=1

cizi(t) + a1(t)
n∑
i=1

z′i(x) + . . .+ an−1(x)
n∑
i=1

z
(n−1)
i (x)

= a0(x)y(x) + a1(x)y
′(x) + . . .+ an−1(x)y

(n−1)(x)

for all x ∈ A and, therefore, y is a solution of (5.38). ‖

Theorem 5.4.5 Suppose z1, . . . , zn are n solutions of (5.38). The following two statements are equiva-
lent.
(i) For every solution y of (5.38), there exists a vector of coefficients c ∈ IRn such that y =

∑n
i=1 cizi.

(ii) There exists x0 ∈ A such that∣∣∣∣∣∣∣∣∣
z1(x0) z2(x0) . . . zn(x0)
z′1(x0) z′2(x0) . . . z′n(x0)
...

...
...

z
(n−1)
1 (x0) z

(n−1)
2 (x0) . . . z

(n−1)
n (x0)

∣∣∣∣∣∣∣∣∣
�= 0.

According to Theorem 5.4.5, it is sufficient to find a single point x0 ∈ A such that the determinant
in statement (ii) of the theorem is non-zero in order to guarantee that the system of solutions z1, . . . , zn
satisfies the required independence property.
We now consider solution methods for specific differential equations of order one. In general, a

differential equation of order one can be expressed as

y′(x) = G(x, y(x)); (5.40)

this is the special case obtained by setting n = 1 in (5.36). We discuss two types of differential equations
of order one. The first type consists of separable equations, the second of linear equations.
Separable differential equations of order one are defined as follows.

Definition 5.4.6 Let A ⊆ IR be a non-degenerate interval. A separable differential equation of order
one is an equation

y′(x) = f(x)g(y(x)) (5.41)

where f : A �→ IR and g : B → IR are Riemann integrable functions, B ⊆ y(A) is a nondegenerate interval
and g(y(x)) �= 0 for all x ∈ A such that y(x) ∈ B.
Because the value of g is assumed to be different from zero for all points in the domain B of g,

separable equations can be solved by a method that involves separating the equation in a way such that
the function y to be obtained appears on one side of the equation only and the variable x appears on the
other side only. This is a consequence of the substitution rule introduced in the previous section.
Dividing (5.41) by g(y(x)) (which is non-zero by the above hypothesis) yields

y′(x)

g(y(x))
= f(x).

Integrating both sides with respect to x, we obtain∫
y′(x)dx

g(y(x))
=

∫
f(x)dx. (5.42)

Applying the substitution rule, ∫
y′(x)dx

g(y(x))
=

∫
dy(x)

g(y(x))
. (5.43)

Combining (5.42) and (5.43), we obtain ∫
dy(x)

g(y(x))
=

∫
f(x)dx.

Thus, we have proven
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Theorem 5.4.7 If y is a solution to the separable differential equation (5.41), then y satisfies∫
dy(x)

g(y(x))
=

∫
f(x)dx.

To illustrate the solution method introduced in this theorem, consider the example given by the
following differential equation.

y′(x) = x2(y(x))2. (5.44)

This is a separable equation with f(x) = x2 for all x ∈ A and g(y(x)) = (y(x))2 for all x ∈ A such that
y(x) ∈ B. It follows that ∫

dy(x)

g(y(x))
=

∫
dy(x)

(y(x))2
= − 1

y(x)
+ c1

and ∫
f(x)dx =

∫
x2dx =

1

3
x3 + c2

where c1, c2 ∈ IR are constants of integration. According to Theorem 5.4.7, we must have

− 1

y(x)
+ c1 =

1

3
x3 + c2

or, defining c := c1 − c2 and simplifying,

y(x) =
1

c − x3/3

for all x ∈ A, where A and B must be chosen so that the denominator on the right side is non-zero.
If we impose an initial condition requiring the value of y at a specific point x0 ∈ A to be equal to a

given value y0 ∈ B, we can determine a unique solution of a separable equation. To obtain this solution,
we use the definite integrals obtained by substituting the initial values into the equation of Theorem
5.4.7. We state the corresponding result without a proof.

Theorem 5.4.8 Let x0 ∈ A and y0 ∈ B. If y is a solution to the separable differential equation (5.41)
and satisfies y(x0) = y0, then y satisfies∫ y(x)

y0

dȳ(x)

g(ȳ(x))
=

∫ x
x0

f(x̄)dx̄

for all x ∈ A such that y(x) ∈ B.

Consider again the example given by (5.44), and suppose we require the initial condition y(1) = 1.
We obtain ∫ y(x)

1

dȳ(x)

g(ȳ(x))
=

∫ y(x)
1

dȳ(x)

(ȳ(x))2
= − 1

(ȳ(x))

∣∣∣∣y(x)
1

= − 1

y(x)
+ 1

and ∫ x
1

f(x̄)dx̄ =

∫ x
1

x̄2dx̄ = −1
3
x̄3
∣∣∣∣x
1

= −1
3
x3 − 1

3
.

According to Theorem 5.4.8, a solution y must satisfy

− 1

y(x)
+ 1 = −1

3
x3 − 1

3

and, solving, we obtain

y(x) =
3

4− x3

for all x ∈ A such that y(x) ∈ B. Again, the domains of f and g must be chosen so that the equation is
required for values of x such that the denominator of the right side of this equation is non-zero.
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Now we move on to linear differential equations of order one. We obtain these equations as the speical
cases of (5.37) where n = 1, that is,

y′(x) = b(x) + a0(x)y(x). (5.45)

In contrast to linear difference equations of order one, there exists a solution method for linear
differential equations of order one, including those equations where the coefficient a0 is not constant.

Theorem 5.4.9 A function y : A �→ IR is a solution of the linear differential equation of order one
(5.45) if and only if there exists c ∈ IR such that

y(x) = e
∫
a0(x)dx

(∫
b(x)e−

∫
a0(x)dxdx+ c

)
. (5.46)

Proof. Clearly, (5.45) is equivalent to

y′(x)− a0(x)y(x) = b(x).

Multiplying both sides by e
∫
−a0(x)dx, we obtain

e

∫
−a0(x)dx (y′(x)− a0(x)y(x)) = b(x)e

∫
−a0(x)dx. (5.47)

As can be verified easily by differentiating, the left side of (5.47) is equal to

d
(
y(x)e

∫
−a0(x)dx

)
dx

and, thus, (5.47) is equivalent to

d
(
y(x)e

∫
−a0(x)dx

)
dx

= b(x)e
∫
−a0(x)dx.

Integrating both sides with respect to x, we obtain

y(x)e
∫
−a0(x)dx =

∫
b(x)e

∫
−a0(x)dxdx+ c

where c ∈ IR is the constant of integration. Solving for y(x), we obtain (5.46). ‖
As an example, consider the equation

y′(x) = 3− y(x).

This is a linear differential equation of order one with b(x) = 3 and a0(x) = −1 for all x ∈ A. According
to Theorem 5.4.9, we obtain

y(x) = e−
∫
dx

(∫
3e
∫
dxdx+ c

)

= e−x
(∫
3exdx+ c

)
= e−x (3ex + c) = 3 + ce−x

for all x ∈ A, where c ∈ IR is a constant.
Again, an initial condition will determine the solution of the equation uniquely (by determining the

value of the constant c). For instance, if we add the requirement y(0) = 0 in the above example, it follows
that we must have

3 + ce−0 = 0

which implies c = −3. Thus, the unique solution satisfying the initial condition y(0) = 0 is given by

y(x) = 3− 3e−x ∀x ∈ A.

In the case of linear differential equations of order two, solution methods are known for equations with
constant coefficients but, unfortunately, these methods do not generalize to arbitrary linear equations.
We therefore restrict attention to the class of equations with constant coefficients.
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Definition 5.4.10 Let A ⊆ IR be a non-degenerate interval, and let n ∈ IN. A linear differential equation
with constant coefficients of order n is an equation

y(n)(x) = b(x) + a0y(x) + a1y
′(x) + . . .+ an−1y

(n−1)(x) (5.48)

where b : IN0 �→ IR and a0, a1, . . . , an−1 ∈ IR. If b(x) = 0 for all x ∈ A, the equation is a homogeneous
linear differential equation with constant coefficients of order n. If there exists x ∈ A such that b(x) �= 0,
the equation (5.48) is an inhomogeneous linear differential equation with constant coefficients of order n.

The homogeneous equation associated with (5.48) is

y(n)(x) = a0y(x) + a1y
′(x) + . . .+ an−1y

(n−1)(x).

To solve linear differential equations with constant coefficients of order two, we proceed analogously
to the way we did in the case of difference equations. First, we determine the general solution of the
associated homogeneous equations, then we find a particular solution of the (inhomogeneous) equation
to be solved and, finally, we use Theorem 5.4.3 to obtain the general solution.
For n = 2, the above definitions of linear differential equations with constant coefficients and their

homogeneous counterparts become

y′′(x) = b(x) + a0y(x) + a1y
′(x) (5.49)

and

y′′(x) = a0y(x) + a1y
′(x). (5.50)

To solve (5.50), we set z(x) = eλx for all x ∈ A. Substituting back, we obtain

λ2eλx = a0e
λx + a1λe

λx

and the characteristic equation is
λ2 − a1λ− a0 = 0.

Analogously to linear difference equations with constant coefficients of order two, we have three possible
cases.
Case I: a21/4 + a0 > 0. In this case, the characteristic polynomial has two distinct real roots given by

λ1 = a1/2+
√
a21/4 + a0 and λ2 = a1/2−

√
a21/4 + a0, and we obtain the two solutions z1 and z2 defined

by
z1(x) = e

λ1x ∀x ∈ A

and

z2(x) = e
λ2x ∀x ∈ A.

We obtain ∣∣∣∣ z1(0) z2(0)z′1(0) z
′
2(0)

∣∣∣∣ =
∣∣∣∣ 1 1
λ1 λ2

∣∣∣∣ = λ2 − λ1 = −2√a21/4 + a0 �= 0.
Thus, the general solution of the homogeneous equation is given by

z(x) = c1z1(t) + c2z2(t) = c1e
λ1x + c2e

λ2x ∀x ∈ A

where c1, c2 ∈ IR are constants.
Case II: a21/4 + a0 = 0. Now the characteristic polynomial has a double root at λ = a1/2, and the

corresponding solutions are given by z1(x) = e
a1x/2 and z2(x) = xe

a1x/2 for all x ∈ A. We have∣∣∣∣ z1(0) z2(0)z′1(0) z
′
2(0)

∣∣∣∣ =
∣∣∣∣ 1 0
a1/2 1

∣∣∣∣ = 1 �= 0.
Thus, a function z : A �→ IR is a solution of the homogeneous equation if and only if there exist constants
c1, c2 ∈ IR such that

z(x) = c1z1(t) + c2z2(t) = c1e
a1x/2 + c2xe

a1x/2 ∀x ∈ A.
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Case III: a21/4 + a0 < 0. The characteristic polynomial has two complex roots, namely, λ1 = a + ib
and λ2 = a − ib, where a = a1/2 and b =

√
−a21/4− a0. Substituting back into the expression for a

possible solution, we obtain the two functions ẑ1 and ẑ2 defined by

ẑ1(x) = e
(a+ib)x = eaxeibx ∀x ∈ A

and
ẑ2(x) = e

(a−ib)x = eaxe−ibx ∀x ∈ A.
Using Euler’s theorem (Theorem 5.1.5), the two solutions can be written as

ẑ1(x) = e
ax(cos(bx) + i sin(bx)) ∀x ∈ A

and
ẑ2(x) = e

ax(cos(bx)− i sin(bx)) ∀x ∈ A.
Because any linear combination of any two solutions is itself a solution, we obtain the solutions

z1(x) = ẑ1(x)/2 + ẑ2(x)/2

= eax(cos(bx) + i sin(bx))/2 + eax(cos(bx)− i sin(bx))/2
= eax cos(bx)

and

z2(x) = ẑ1(x)/(2i) + ẑ2(x)/(−2i)
= eax(cos(bx) + i sin(bx))/(2i)− eax(cos(bx)− i sin(bx))/(2i)
= eax sin(bx)

for all x ∈ A. We obtain ∣∣∣∣ z1(0) z2(0)z′1(0) z
′
2(0)

∣∣∣∣ =
∣∣∣∣ 1 0a b

∣∣∣∣ = b =√−a21/4− a0 �= 0
and, therefore, z is a solution of (5.50) if and only if there exist c1, c2 ∈ IR such that

z(x) = c1z1(x) + c2z2(x) = c1e
a1x/2 cos

(√
−a21/4− a0x

)
+ c2e

a1x/2 sin

(√
−a21/4− a0x

)
∀x ∈ A.

We summarize our observations regarding the solution of homogeneous linear differential equations
with constant coefficients of order two in the following theorem.

Theorem 5.4.11 (i) Suppose a0 ∈ IR \ {0} and a1 ∈ IR are such that a21/4 + a0 > 0. A function
z : A �→ IR is a solution of the homogeneous linear differential equation with constant coefficients of order
two (5.50) if and only if there exist c1, c2 ∈ IR such that

z(x) = c1e
λ1x + c2e

λ2x ∀x ∈ A

where λ1 = a1/2 +
√
a21/4 + a0 and λ2 = a1/2−

√
a21/4 + a0

(ii) Suppose a0 ∈ IR\{0} and a1 ∈ IR are such that a21/4+a0 = 0. A function z : A �→ IR is a solution
of the homogeneous linear differential equation with constant coefficients of order two (5.50) if and only
if there exist c1, c2 ∈ IR such that

z(x) = c1e
a1x/2 + c2xe

a1x/2 ∀x ∈ A.

(iii) Suppose a0 ∈ IR \ {0} and a1 ∈ IR are such that a21/4 + a0 < 0. A function z : A �→ IR is a
solution of the homogeneous linear differential equation with constant coefficients of order two (5.50) if
and only if there exist c1, c2 ∈ IR such that

z(x) = c1e
a1x/2 cos

(√
−a21/4− a0x

)
+ c2e

a1x/2 sin

(√
−a21/4− a0x

)
∀x ∈ A.
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We consider two types of inhomogeneity. The first is the case where the function b is a polynomial of
degree two. In this case, our equation (5.49) becomes

y′′(x) = b0 + b1x+ b2x
2 + a0y(x) + a1y

′(x).

where b0, b1 ∈ IR and b2 ∈ IR \ {0} are parameters (the case where b2 = 0 leads to a polynomial of degree
one or less, and the solution method to be employed is analogous; working out the details is left as an
exercise).
To obtain a particular solution, we begin by checking whether a quadratic function will work. We set

ŷ(x) = γ0 + γ1x+ γ2x
2 ∀x ∈ A

and, substituting into (5.49) and rearranging, we obtain

2γ2 − a0γ0 − a1γ1 − (a0γ1 + 2a1γ2)x− a0γ2x2 = b0 + b1x+ b2x2.

This has to be true for all values of x ∈ A and, therefore, the coefficients of x0, x1 and x2 have to be the
same on both sides. Comparing coefficients, we obtain the system of equations

 −a0 −a1 2
0 −a0 −2a1
0 0 −a0




 γ0γ1
γ2


 =


 b0b1
b2


 . (5.51)

This is a system of linear equations in γ0, γ1 and γ2. There are two possible cases.
Case I: a0 �= 0. In this case, the matrix of coefficients in (5.51) is nonsingular and, consequently,

(5.51) has a unique solution (γ0, γ1, γ2), and we obtain the particular solution

ŷ(x) = γ0 + γ1x+ γ2x
2 ∀x ∈ A.

Case II: a0 = 0. Because b2 �= 0, the system (5.51) has no solution and we have to find an alternative
approach. Setting ŷ(x) = x(γ0 + γ1x + γ2x

2) for all x ∈ A, substituting into (5.49) and comparing
coefficients, we obtain the system of equations

 −a1 2 0
0 −2a1 6
0 0 −3a1




 γ0γ1
γ2


 =


 b0b1
b2


 . (5.52)

We have two subcases.
Subcase II.A: a1 �= 0. In this case, the matrix of coefficients is nonsingular and, consequently, (5.52)

has a unique solution (γ0, γ1, γ2), and we obtain the particular solution

ŷ(x) = x(γ0 + γ1x+ γ2x
2) ∀x ∈ A.

Subcase II.B: a1 = 0. Because b2 �= 0, the system (5.51) has no solution and we have to try yet another
functional form for a particular solution. Setting ŷ(x) = x2(γ0 + γ1x+ γ2x

2) for all x ∈ A, substituting
into (5.49) and comparing coefficients, we now obtain the system of equations

 2 0 0
0 6 0
0 0 12




 γ0γ1
γ2


 =


 b0b1
b2




which has the unique solution γ0 = b0/2, γ1 = b1/6 and γ2 = b2/12. Substituting back, we obtain the
particular solution

ŷ(x) = x2(b0/2 + b1x/6 + b2x
2/12) ∀x ∈ A.

In all cases, the general solution is obtained as the sum of the particular solution and the general solution
of the associated homogeneous equation. Thus, we obtain

Theorem 5.4.12 (i) Let b0, b1 ∈ IR, b2 ∈ IR \ {0}, a0 ∈ IR \ {0} and a1 ∈ IR. A function y : A �→ IR is
a solution of the linear differential equation with constant coefficients of order two (5.49) if and only if

y(x) = z(x) + γ0 + γ1x+ γ2x
2 ∀x ∈ A
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where (γ0, γ1, γ2) is the unique solution of (5.51) and z is a solution of the corresponding homogeneous
equation (5.50).
(ii) Let b0, b1 ∈ IR, b2 ∈ IR \ {0}, a0 = 0 and a1 ∈ IR \ {0}. A function y : A �→ IR is a solution of the

linear differential equation with constant coefficients of order two (5.49) if and only if

y(x) = z(x) + x(γ0 + γ1x+ γ2x
2) ∀x ∈ A

where (γ0, γ1, γ2) is the unique solution of (5.52) and z is a solution of the corresponding homogeneous
equation (5.50).
(iii) Let b0, b1 ∈ IR, b2 ∈ IR \ {0} and a0 = a1 = 0. A function y : A �→ IR is a solution of the linear

differential equation with constant coefficients of order two (5.49) if and only if

y(x) = z(x) + x2(b0/2 + b1x/6 + b2x
2/12) ∀x ∈ A

where z is a solution of the corresponding homogeneous equation (5.50).

As an example, consider the equation

y′′(x) = 1 + 2x+ x2 + y′(x).

The associated homogeneous equation is

y′′(x) = y′(x).

Setting z(x) = eλx for all x ∈ A, we obtain the characteristic polynomial λ2 − λ with the two distinct
real roots λ1 = 1 and λ0 = 0. The corresponding solutions of the homogeneous equation are given by
z1(x) = e

x and z2(x) = 1 for all x ∈ A. We obtain∣∣∣∣ z1(0) z2(0)z′1(0) z
′
2(0)

∣∣∣∣ =
∣∣∣∣ 1 1
1 0

∣∣∣∣ = −1 �= 0
and, therefore, the general solution of the homogeneous equation is given by

z(x) = c1e
x + c2 ∀x ∈ A

with constants c1, c2 ∈ IR. To obtain a particular solution of the inhomogeneous equation, we first set

ŷ(x) = γ0 + γ1x+ γ2x
2 ∀x ∈ A.

Substituting back and comparing coefficients, we see that there exists no (γ0, γ1, γ2) ∈ IR3 satisfying the
required system of equations (provide the details as an exercise). Thus, we use the alternative functional
form

ŷ(x) = x(γ0 + γ1x+ γ2x
2) ∀x ∈ A,

and comparing coefficients yields γ0 = −5, γ1 = −2 and γ2 = −1/3. Therefore, the general solution is

y(x) = c1e
x + c2 − 5x− 2x2 − x3/3 ∀x ∈ A

where c1, c2 ∈ IR are constants.
The second type of inhomogeneity is the case where b is an exponential function. Letting b0, b1 ∈ IR

be constants, the resulting differential equation is

y′′(x) = b0e
b1x + a0y(x) + a1y

′(x). (5.53)

Because we have already solved the associated homogeneous equation (5.50), all that is left to do is to
find a particular solution ŷ of (5.53). We begin with the functional form ŷ(x) = c0e

b1x for all x ∈ A,
where c0 ∈ IR is a constant to be determined. Substituting into (5.53) and simplifying, we obtain

c0(b
2
1 − a0 − a1b1) = b0.

There are two cases to be considered.
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Case I: b21 − a0 − a1b1 �= 0. In this case, we can solve for c0 to obtain c0 = b0/(b21 − a0 − a1b1) and,
thus, ŷ(x) = b0e

b1x/(b21 − a0 − a1b1) for all x ∈ A. The general solution of (5.53) is thus

y(x) = z(x) + b0e
b1x/(b21 − a0 − a1b1) ∀x ∈ A

where z is a solution of the corresponding homogeneous equation.
Case II: b21 − a0 − a1b1 = 0. In this case, we have to try another functional form for the desired

particular solution ŷ. We now use ŷ(x) = c0xe
b1x for all x ∈ A with the value of the constant c0 ∈ IR to

be determined. Substituting ŷ and the equation defining this case into (5.53) and simplifying, we obtain

c0(2b1 − a1) = b0.

There are two subcases.
Subcase II.A: 2b1 − a1 �= 0. In this case, we can solve for c0 to obtain c0 = b0/(2b1 − a1) and, thus,

ŷ(x) = b0xe
b1x/(2b1 − a1) for all x ∈ A. The general solution of (5.53) is

y(x) = z(x) + b0xe
b1x/(2b1 − a1) ∀x ∈ A

where, again, z is a solution of the corresponding homogeneous equation.
Subcase II.B: 2b1−a1 = 0. Now the approach of subcase II.A does not yield a solution, and we try the

functional form ŷ(x) = c0x
2eb1x for all x ∈ A, where c0 ∈ IR is a constant to be determined. Substituting

and simplifying, we obtain c0 = b0/2. This gives us the particular solution ŷ(x) = b0x
2eb1x/2 for all

x ∈ A and, finally, the general solution

y(x) = z(x) + b0x
2eb1x/2 ∀x ∈ A

where z is a solution of the corresponding homogeneous equation. In summary, we obtain

Theorem 5.4.13 (i) Let b0, b1, a1 ∈ IR and a0 ∈ IR \ {b21− a1b1}. A function y : A �→ IR is a solution of
the linear differential equation with constant coefficients of order two (5.53) if and only if

y(x) = z(x) + b0e
b1x/(b21 − a0 − a1b1) ∀x ∈ A

where z is a solution of the corresponding homogeneous equation (5.50).
(ii) Let b0, b1 ∈ IR, a1 ∈ IR \ {2b1} and a0 = b21 − a1b1. A function y : A �→ IR is a solution of the

linear differential equation with constant coefficients of order two (5.53) if and only if

y(x) = z(x) + b0xe
b1x/(2b1 − a1) ∀x ∈ A

where z is a solution of the corresponding homogeneous equation (5.50).
(iii) Let b0, b1 ∈ IR, a0 = −b21 and a1 = 2b1. A function y : A �→ IR is a solution of the linear

differential equation with constant coefficients of order two (5.53) if and only if

y(x) = z(x) + b0x
2eb1x/2 ∀x ∈ A

where z is a solution of the corresponding homogeneous equation (5.50).

As an example, consider the equation

y′′(x) = 2e3x − y(x) − 2y′(x). (5.54)

The corresponding homogeneous equation is

y′′(x) = y(x) − 2y′(x). (5.55)

Using the functional form z(x) = eλx for all x ∈ A, we obtain the characteristic polynomial λ2 + 2λ+ 1
which has the double real root λ = −1. Thus, the two functions z1 and z2 given by z1(x) = e−x and
z2(x) = xe

−x are solutions of (5.55). We obtain∣∣∣∣ z1(0) z2(0)z′1(0) z
′
2(0)

∣∣∣∣ =
∣∣∣∣ 1 0
−1 −2

∣∣∣∣ = −2 �= 0
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and, therefore, the general solution of (5.55) is given by

z(x) = c1e
−x + c2xe

−x ∀x ∈ A

with constants c1, c2 ∈ IR.
To obtain a particular solution of (5.54), we begin with the functional form ŷ(x) = c0e

3x for all x ∈ A.
Substituting into (5.54) and solving, we obtain c0 = 1/8 and, thus, the particular solution given by
ŷ(x) = e3x/8 for all x ∈ A. Thus, the general solution is

y(x) = c1e
−x + c2xe

−x + e3x/8 ∀x ∈ A

with constants c1, c2 ∈ IR.
Now consider the equation

y′′(x) = 2e3x + 3y(x) + 2y′(x). (5.56)

The corresponding homogeneous equation is

y′′(x) = 3y(x) + 2y′(x). (5.57)

Using the functional form z(x) = eλx for all x ∈ A, we obtain the characteristic polynomial λ2 − 2λ− 3
which has the two distinct real roots λ1 = 3 and λ2 = −1. Thus, the two functions z1 and z2 given by
z1(x) = e

3x and z2(x) = e
−x are solutions of (5.55). We obtain∣∣∣∣ z1(0) z2(0)z′1(0) z

′
2(0)

∣∣∣∣ =
∣∣∣∣ 1 1
3 −1

∣∣∣∣ = −4 �= 0
and, therefore, the general solution of (5.55) is given by

z(x) = c1e
3xx + c2e

−x ∀x ∈ A

with constants c1, c2 ∈ IR.
To obtain a particular solution of (5.56), we begin with the functional form ŷ(x) = c0e

3x for all x ∈ A.
Substituting into (5.56) and simplifying, it follows that this approach does not yield a solution. Next,
we try the functional form ŷ(x) = c0xe

3x for all x ∈ A. Substituting into (5.56) and solving, we obtain
c0 = 1/2 and, thus, the particular solution given by ŷ(x) = xe

3x/2 for all x ∈ A. Therefore, the general
solution is

y(x) = c1e
3x + c2e

−x + xe3x/2 ∀x ∈ A
with constants c1, c2 ∈ IR.
The final topic discussed in this chapter is the question whether the solutions to given linear differential

equations with constant coefficients of order two possess a stability property. Stability deals with the
question how the long-run behavior of a solution is affected by changes in the initial conditions. For
reasons that will become apparent, we assume that the domain A is not bounded from above.

Definition 5.4.14 Let A ⊆ IR be an interval such that (a,∞) ⊆ A for some a ∈ IR. The equation (5.49)
is stable if and only if

lim
x→∞

z(x) = 0

for all solutions z of the associated homogeneous equation.

According to this definition, every solution of the homogeneous equation corresponding to a linear differ-
ential equation of order two must converge to zero as x approaches infinity in order for the equation to
be stable. Recall that any solution y of (5.49) can be expressed as the sum z+ ŷ for a particular solution
ŷ of (5.49) and a suitably chosen solution z of the corresponding homogeneous equation. Thus, if the
equation is stable and ŷ has a limit as x approaches infinity, we obtain

lim
x→∞

y(x) = lim
x→∞

(z(x) + ŷ(x)) = lim
x→∞

z(x) + lim
x→∞

ŷ(x) = 0 + lim
x→∞

ŷ(x) = lim
x→∞

ŷ(x).

Recall that any solution z of the associated homogeneous equation can be written as z(x) = c1z1(x) +
c2z2(x) for all x ∈ A, where z1 and z2 are linearly independent solutions and c1, c2 ∈ IR are parameters.
Intital conditions determine the values of the parameters c1 and c2 but do not affect the particular solution
ŷ. Therefore, if the equation is stable, its limiting behavior is independent of the intial conditions, which
is what stability is about. As a preliminary result, we obtain
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Theorem 5.4.15 Let A ⊆ IR be an interval such that (a,∞) ⊆ A for some a ∈ IR, and let z1 : A �→ IR
and z2 : A �→ IR. Then[

lim
x→∞

(c1z1(x) + c2z2(x)) = 0 ∀c1, c2 ∈ IR
]
⇔
[
lim
x→∞

z1(x) = 0 and lim
x→∞

z2(x) = 0
]
.

Proof. Suppose first that limx→∞(c1z1(x) + c2z2(x)) = 0 for all c1, c2 ∈ IR. This implies, in particular,
that this limit is equal to zero for c1 = 1 and c2 = 0. Substituting, we obtain limx→∞ z1(x) = 0.
Analogously, for c1 = 0 and c2 = 1, we obtain limx→∞ z2(x) = 0.
To prove the converse implication, suppose that limx→∞ z1(x) = 0 and limx→∞ z2(x) = 0. This

implies immediately that limx→∞(c1z1(x) + c2z2(x)) = 0 for all c1, c2 ∈ IR. ‖
By Theorem 5.4.15, all that is required to check a linear differential equation of order two for stability

is to examine the limits of the two linearly independent solutions of the corresponding homogeneous
equation: if both limits exist and are equal to zero, the equation is stable, and if one of the limits does
not exist or is different from zero, it is not.
The characteristic polynomial of the homogeneous equation corresponding to (5.49) is

λ2 − a1λ− a0. (5.58)

If this polynomial has two distinct real roots λ1 and λ2, we obtain the solutions z1(x) = e
λ1x and

z2(x) = e
λ2x for all x ∈ A. If λ1 > 0, we obtain limx→∞ z1(x) = ∞ and if λ1 = 0, it follows that

limx→∞ z1(x) = 1. For λ1 < 0, we obtain limx→∞ z1(x) = 0. Analogously, limx→∞ z2(x) =∞ for λ2 > 0,
limx→∞ z2(x) = 1 for λ2 = 0 and limx→∞ z2(x) = 0 for λ2 < 0. Therefore, in this case, the equation
is stable if and only if both real roots are negative. Because λ1 and λ2 are roots of the characteristic
polynomial, it follows that λ1 + λ2 = a1 and λ1λ2 = −a0 (verify this as an exercise). If λ1 and λ2 are
both negative, it follows that a1 = λ1 + λ2 < 0 and a0 = −λ1λ2 < 0. Conversely, if a0 and a1 are both
negative, we obtain λ1+ λ2 = a1 < 0 which implies that at least one of the two numbers λ1 and λ2 must
be negative. Thus, because λ1λ2 = −a0 > 0, it follows that both λ1 and λ2 must be negative. Therefore,
in the case of two distinct real roots of the characteristic polynomial, the equation (5.49) is stable if and
only if a0 < 0 and a1 < 0.
Now suppose that (5.58) has one double root λ. In this case, substituting the corresponding solutions

z1(x) = e
λx and z2(x) = xe

λx for all x ∈ A, it follows again that the equation is stable if and only if
λ < 0. Because λ = a1/2 and a0 = −a21/4 in this case, this is again equivalent to a0 < 0 and a1 < 0.
Finally, for two complex roots λ1 and λ2, we again obtain λ1 + λ2 = a1 and λ1λ2 = −a0 and the

equation (5.49) is stable if and only if a0 < 0 and a1 < 0.
Summarizing, we obtain

Theorem 5.4.16 Let A ⊆ IR be an interval such that (a,∞) ⊆ A for some a ∈ IR. The equation (5.49)
is stable if and only if a0 < 0 and a1 < 0.



Chapter 6

Exercises

6.1 Chapter 1

1.1.1 Find the negations of the following statements.

(i) All students registered in this course are female;
(ii) x > 3 ∨ x < 2;
(iii) For any real number x, there exists a real number y such that x+ y = 0.

1.1.2 Which of the following statements is (are) true, which is (are) false?

(i) 3 < 2 ⇒ Ontario is a province in Canada;
(ii) 3 < 2 ⇒ Ontario is not a province in Canada;
(iii) 3 > 2 ⇒ Ontario is a province in Canada;
(iv) 3 > 2 ⇒ Ontario is not a province in Canada.

1.1.3 Find a statement which is equivalent to the statement a⇔ b using negation and conjunction only.

1.1.4 Suppose x and y are natural numbers. Prove:

xy is odd ⇔ (x is odd) ∧ (y is odd).

1.2.1 Let A and B be sets. Prove:

(i) A ∩ (A ∩B) = A ∩B;
(ii) A ∪ (A ∩B) = A.

1.2.2 Let X = IN be the universal set. Find the complements of the following sets.

(i) A = {1, 2};
(ii) B = IN;
(iii) C = {x ∈ IN | (x is odd) ∧ x ≥ 6}.

1.2.3 Let X be a universal set, and let A,B ⊆ X. Prove:
X \ (A ∪B) = (X \A) ∩ (X \B).

1.2.4 Let A := {x ∈ IN | x is even} and B := {x ∈ IN | x is odd}. Which of the following pairs are
elements of A× B, which are not?
(i) (2, 2);
(ii) (2, 3);
(iii) (3, 2);
(iv) (3, 3);
(v) (2, 1);
(vi) (1, 2).

1.3.1 Which of the following subsets of IR is (are) open in IR?

(i) A = {2};
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(ii) B = [0, 1);
(iii) C = (0, 1);
(iv) D = (0, 1)∪ {2}.

1.3.2 Which of the sets in Problem 1.3.1 is (are) closed in IR?

1.3.3 (i) Prove that the intersection of two convex sets is convex.
(ii) Give an example of two convex sets such that the union of these sets is not convex.

1.3.4 For each of the following subsets of IR, determine whether or not it has an infimum (a supremum,
a minimum, a maximum).

(i) A = IN;
(ii) B = Z;
(iii) C = (0, 1);
(iv) D = (−∞, 0].

1.4.1 Consider the function f : IN �→ IN, x �→ 2x− 1. Find f(IN) and f({x ∈ IN | x is odd}).

1.4.2 Use a diagram to illustrate the graph of the following function.

f : [0, 2] �→ IR, x �→
{
x if x ∈ [0, 1]
0 if x ∈ (1, 2].

1.4.3 Which of the following functions is (are) surjective (injective, bijective)?

(i) f : IR �→ IR, x �→ |x|;
(ii) f : IR �→ IR+, x �→ |x|;
(iii) f : IR+ �→ IR, x �→ |x|;
(iv) f : IR+ �→ IR+, x �→ |x|.

1.4.4 Find all permutations of A = {1, 2, 3}.

1.5.1 For each of the following sequences, determine whether or not it converges. In case of convergence,
find the limit.

(i) an = (−1)n/n ∀n ∈ IN;
(ii) bn = n(−1)n ∀n ∈ IN.

1.5.2 Show that the sequence defined by an = n
2 − n for all n ∈ IN diverges to ∞.

1.5.3 Which of the following sequences is (are) monotone nondecreasing (monotone nonincreasing,
bounded, convergent)?

(i) an = 1 + 1/n ∀n ∈ IN;
(ii) bn = 1 + (−1)n/n ∀n ∈ IN.

1.5.4 Find the sequences {an + bn} and {anbn}, where the sequences {an} and {bn} are defined by
an = 2n

2 ∀n ∈ IN, bn = 1/n ∀n ∈ IN.

6.2 Chapter 2

2.1.1 For n ∈ IN and x ∈ IRn, let ‖x‖ denote the norm of x. Prove that, for all x ∈ IRn,
(i) ‖x‖ ≥ 0;
(ii) ‖x‖ = 0 ⇔ x = 0;
(iii) ‖x‖ = ‖ − x‖.

2.1.2 For n ∈ IN and x, y ∈ IRn, let d(x, y) denote the Euclidean distance between x and y. Prove that,
for all x, y ∈ IRn,
(i) d(x, y) ≥ 0;
(ii) d(x, y) = 0 ⇔ x = y;
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(iii) d(x, y) = d(y, x).

2.1.3 Let x = (1, 3,−5) and y = (2, 0, 1). Find (i) the sum of x and y; (ii) the inner product of x and y.

2.1.4 Let x1 = (1, 0, 2,−1), x2 = (0, 0, 1, 2), x3 = (2,−4, 1, 9). Are the vectors x1, x2, x3 linearly
independent?

2.2.1 For each of the following matrices, determine whether it is (i) a square matrix; (ii) a symmetric
matrix.

A =


 1 2 1
0 1 0
1 2 1


 ; B = ( 1 1 1

1 1 1

)
; C =


 −1 1 0
1 −2 −1
0 −1 2


 .

2.2.2 Find the matrix product AB, where

A =


 1 2 1 −3
0 1 0 8
1 2 0 1


 ; B =



−1 0 4
2 1 −2
0 1 6
3 2 −5


 .

2.2.3 For each of the following matrices, determine its rank.

A = (0); B = (1); C =

(
2 1
0 1

)
; D =

(
2 1 1
0 1 −1

)
.

2.2.4 Find two 2× 2 matrices A and B such that R(A) = R(B) = 2 and R(A+ B) = 0.

2.3.1 Use the elimination method to solve the system of equations Ax = b, where

A =



1 2 0 4 2
0 2 2 −1 3
1 −1 0 1 1
1 1 2 0 4


 ; b =



0
1
0
2


 .

2.3.2 Use the elimination method to solve the system of equations Ax = b, where

A =



2 1 4 0
0 0 1 1
4 −1 1 0
−2 2 5 2


 ; b =



2
−1
−2
2


 .

2.3.3 Use the elimination method to solve the system of equations Ax = b, where

A =



2 0 1
1 1 0
0 0 2
0 −2 2


 ; b =



1
0
−2
0


 .

2.3.4 Prove: If α ∈ IR and x∗ solves Ax = b, then αx∗ solves Ax = αb.

2.4.1 Which of the following matrices is (are) nonsingular?

A = (0); B = (1); C =

(
2 1
−2 1

)
; D =


 1 0 1
1 1 0
1 1 1


 .

2.4.2 Find a 3× 3 matrix A such that A �= E and AA′ = E.

2.4.3 Calculate the product AA′A−1, where

A =

(
1 1
−1 1

)
.
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2.4.4 Suppose A is a nonsingular square matrix, and A−1 is the inverse of A. Let α ∈ IR, α �= 0. Show
that αA is nonsingular, and find (αA)−1.

2.5.1 Use the definition of a determinant to find |A|, where

A =



2 1 0 3
3 1 1 1
0 2 1 0
1 0 0 0


 .

2.5.2 Find the determinant of the matrix in 2.5.1 by expansion along (i) the first column; (ii) the last
row.

2.5.3 Show that A is nonsingular, and use Cramer’s rule to solve the system Ax = b, where

A =


 3 1 0
1 0 1
2 −1 0


 ; b =


 22
1


 .

2.5.4 Find the adjoint and the inverse of the matrix in 2.5.3.

2.6.1 Determine the definiteness properties of the matrix

A =


 3 1 1
1 2 0
1 0 1


 .

2.6.2 Find all principal minors of the following matrix A. Is A (i) positive semidefinite? (ii) negative
semidefinite?

A =


 2 3 −1
3 1 2
−1 2 0


 .

2.6.3 Let A be a symmetric square matrix. Prove:
A is positive definite ⇔ (−1)A is negative definite.

2.6.4 Give an example of a symmetric 3×3 matrix which is positive semidefinite, but not positive definite
and not negative semidefinite.

6.3 Chapter 3

3.1.1 Consider the function f defined by

f : IR �→ IR, x �→
{
0 if x ≤ 0
1 if x > 0.

Use Theorem 3.1.2 to show that this function is not continuous at x0 = 0.

3.1.2 Let

f : IR �→ IR, x �→
{
x if x ≤ 1
2x− 1 if x > 1.

Is f continuous at x0 = 1? Justify your answer rigorously.

3.1.3 Let

f : IR �→ IR, x �→
{
x if x ≤ 1
x− 1 if x > 1.

Is f continuous at x0 = 1? Justify your answer rigorously.

3.1.4 Let

f : [0, 3] �→ IR, x �→



0 if x ∈ [0, 1)
x− 1 if x ∈ [1, 2)
2 if x ∈ [2, 3].
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Is f (i) monotone nondecreasing? (ii) monotone increasing? (iii) monotone nonincreasing? (iv) monotone
decreasing? Justify your answers rigorously.

3.2.1 Let

f : IR �→ IR, x �→
{
x if x ≤ 1
2x− 1 if x > 1.

Is f differentiable at x0 = 1? Justify your answer rigorously. If yes, find the derivative of f at x0 = 1.

3.2.2 Find the derivative of the function f : IR++ �→ IR, x �→
(√
x+ 1 + x2

)4
.

3.2.3 Find the derivative of the function f : IR �→ IR, x �→ e2x2 ln(x2 + 1).

3.2.4 Find the derivative of the function f : IR �→ IR, x �→ e2(cos(x)+1) + 4(sin(x))3.

3.3.1 (i) Find all local maxima and minima of f : IR �→ IR, x �→ 2− x− 4x2.
(ii) Find all local and global maxima and minima of f : [0, 4] �→ IR, x �→ 2− x− 4x2.
(iii) Find all local and global maxima and minima of f : (0, 4] �→ IR, x �→ x2.

3.3.2 Consider the function f : (0, 1) �→ IR, x �→
√
x− x/2. Is this function (i) monotone nondecreasing?

(ii) monotone increasing? (iii) monotone nonincreasing? (iv) monotone decreasing? Use Theorem 3.3.11
to answer this question.

3.3.3 Let f : (0, 1) �→ IR, x �→ 2 ln(x) and g : (0, 1) �→ IR, x �→ x− 1. Find

lim
x↑1

f(x)

g(x)
.

3.3.4 Let f : IR++ �→ IR, x �→ ln(x). Find the second-order Taylor polynomial of f around x0 = 1, and
use this polynomial to approximate the value of f at x = 2.

3.4.1 Consider the function f : IR �→ IR, x �→ ax + b, where a, b ∈ IR are constants and a �= 0. Use
Definition 3.4.1 to show that f is concave and convex. Is f (i) strictly concave? (ii) strictly convex?

3.4.2 Let f : IR++ �→ IR, x �→ xα with α ∈ (0, 1). Use Theorem 3.4.4 to show that f is strictly concave.

3.4.3 Let f : [0, 4] �→ IR, x �→ 1 − x − x2. Show that f must have a unique global maximum, and find
this maximum.

3.4.4 The cost function of a perfectly competitive firm is given by C : IR+ �→ IR, y �→ y + 2y2. Find the
supply function and the profit function of this firm.

6.4 Chapter 4

4.1.1 Consider the distance function

d(x, y) = max({|xi − yi| | i ∈ {1, . . . , n}}) ∀x, y ∈ IRn.

Prove that, for all x, y ∈ IRn,
(i) d(x, y) ≥ 0;
(ii) d(x, y) = 0 ⇔ x = y;
(iii) d(x, y) = d(y, x).

4.1.2 For x0 ∈ IRn and ε ∈ IR++, let Uε(x0) be the ε-neighborhood of x0 as defined in (4.1), and let
UEε (x0) be the ε-neighborhood of x0 as defined in (4.2). Let x0 = (0, 0) ∈ IR2 and ε = 1.
(i) Find a δ ∈ IR++ such that Uδ(x0) ⊆ UEε (x0).
(ii) Find a δ ∈ IR++ such that UEδ (x0) ⊆ Uε(x0).

4.1.3 Which of the following sets is (are) open in IR2?
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(i) A = (0, 1)× (1, 2);
(ii) B = {x ∈ IR2 | 0 < x1 < 1 ∧ x1 = x2};
(iii) C = {x ∈ IR2 | (x1)2 + (x2)2 < 1}.

4.1.4 Consider the sequence {am} in IR2 defined by

am =

(
1 +

(
1

m

)
(−1)m, 2− m

m+ 1

)
∀m ∈ IN.

Show that this sequence converges, and find its limit.

4.2.1 Which of the following subsets of IR2 is (are) convex?

(i) A = (0, 1)× (1, 2);
(ii) B = {x ∈ IR2 | 0 < x1 < 1 ∧ x1 = x2};
(iii) C = {x ∈ IR2 | x1 = 0 ∨ x2 = 0}.

4.2.2 Let f : IR2 �→ IR, x �→ min({x1, x2}). Find the level set of f for y = 1, and illustrate this level set
in a diagram.

4.2.3 Let

f : IR2 �→ IR, x �→
{
x1 + x2 if x �= (0, 0)
1 if x = (0, 0).

Show that f is not continuous at x0 = (0, 0).

4.2.4 Let f : IR2 �→ IR, x �→ x1x2. Illustrate the graph of the function f1 : IR �→ IR, x �→ f(x, 2) in a
diagram.

4.3.1 Find all partial derivatives of the function

f : IR3++ �→ IR, x �→
√
x1x2 + e

x1x3 .

4.3.2 Find the total differential of the function defined in 4.3.1 at the point x0 = (1, 1, 1).

4.3.3 Find the Hessian matrix of the function defined in 4.3.1 at a point x ∈ IR3++.

4.3.4 Use the implicit function theorem to show that the equation

eyx1 + yx1x2 − ey = 0

defines an implicit function in a neighborhood of x0 = (1, 1), and find the partial derivatives of this
implicit function at (1, 1).

4.4.1 Find all local maxima and minima of f : IR2 �→ IR, x �→ (x1)2 + (x2)2 − x1x2.

4.4.2 Let f : IR2++ �→ IR, x �→ x1 +
√
x2 + ln(x1). Use Theorem 4.4.5 to show that f is strictly concave.

4.4.3 Show that f : IR2++ �→ IR, x �→ (x1x2)1/4 − x1 − x2 has a unique global maximum, and find this
maximum.

4.4.4 The production function of a firm is given by

f : IR2++ �→ IR, x �→
√
x1 +

√
x2.

Find the factor demand functions, the supply function, and the profit function of this firm.

4.5.1 Let f : IR2++ �→ IR, x �→
√
x1 +

√
x2, and g : IR

2
++ �→ IR, x �→ x1 + x2 − 4. Consider the problem

of maximizing f subject to the constraint g(x) = 0. Find the Lagrange function for this problem.

4.5.2 Find the stationary point of the Lagrange function defined in 4.5.1.

4.5.3 Use Theorem 4.5.3 to show that f has a constrained maximum at the stationary point found in
4.5.2.
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4.5.4 The production function of a firm is given by

f : IR2++ �→ IR, x �→ x1x2.

Find the conditional factor demand functions and the cost function of this firm.

4.6.1 Consider the functions

f : IR2 �→ IR, x �→ 2x1x2 + 4x1 − (x1)2 − 2(x2)2

g1 : IR2 �→ IR, x �→ x1 + 4x2 − 4
g2 : IR2 �→ IR, x �→ x1 + x2 − 2.

Show that f is strictly concave and g1 and g2 are convex.

4.6.2 Consider the functions f , g1, and g2 defined in Exercise 4.6.1. Show that the matrix J̄(g1(x), g2(x))
has maximal rank for all x ∈ IR2.

4.6.3 Consider the functions f , g1, and g2 defined in Exercise 4.6.1. Use the Kuhn-Tucker conditions to
maximize f subject to the constraints g1(x) ≤ 0, g2(x) ≤ 0, x1 ≥ 0, x2 ≥ 0.

4.6.4 Let n,m ∈ IN, let A ⊆ IRn be convex, and let f : A �→ IR, gj : A �→ IR for all j = 1, . . . , m.
Furthermore, let x0 be an interior point of A. Suppose f and g1, . . . , gm are partially differentiable
with respect to all variables in a neighborhood of x0, and these partial derivatives are continuous at
x0. Suppose J̄(g1(x0), . . . , gm(x0)) has maximal rank. Formulate the Kuhn-Tucker conditions for a local
constrained minimum of f subject to the constraints gj(x) ≥ 0 for all j = 1, . . . , m and xi ≥ 0 for all
i = 1, . . . , n at x0.

6.5 Chapter 5

5.1.1 Consider the complex numbers z = 1− 2i and z′ = 3 + i. Calculate
(a) |2z + iz′|;
(b) zz′.

5.1.2 Prove that the following statements are true for all z, z′ ∈ IC.
(a) z + z′ = z + z′.
(b) zz′ = zz′.

5.1.3 Find the representations in terms of polar coordinates for the following complex numbers.
(a) z = 2.
(b) z′ = −2i.

5.1.4 Find all solutions to the equation z4 = 1.

5.2.1 A difference equation is given by

y(t + 2) = (y(t))2 ∀t ∈ IN0.

(a) Of what order is this difference equation? Is it linear?
(b) Suppose we have the initial conditions y(0) = 1 and y(1) = 0. Find all solutions of this equation

satisfying these initial conditions.

5.2.2 Find all solutions of the difference equation

y(t + 2) = 3 + y(t) − 2y(t + 1) ∀t ∈ IN0.

5.2.3 Find all solutions of the difference equation

y(t + 2) = 3 + 3y(t) − 2y(t + 1) ∀t ∈ IN0.

5.2.4 Consider the followingmacroeconomic model. For each period t ∈ IN0, national income in t is given
by Y (t), private consumption in t is given by C(t), investment in t is I(t) and government expenses are
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G(t), where Y , C, I and G are functions with domain IN0 and range IR. Suppose these functions are
given by

C(t) =
1

4
Y (t) ∀t ∈ IN0,

I(t + 2) = Y (t + 1)− Y (t) ∀t ∈ IN0,
G(t) = 3 ∀t ∈ IN0.

An equilibrium in the economy is described by the condition

Y (t) = C(t) + I(t) +G(t) ∀t ∈ IN0.

(a) Define a difference equation describing this model.
(b) Find all solutions of this equation.
(c) Suppose the initial conditions are Y (0) = 6 and Y (1) = 16/3. Find the unique solution satisfying

these conditions.

5.3.1 Find the definite integral ∫ e+2
3

dx

x− 2 .

5.3.2 Find the indefinite integral ∫
xexdx.

5.3.3 Find the definite integral ∫ 2
0

3x2

(x3 + 1)2
dx.

5.3.4 Determine whether the following improper integral converges. If it converges, find its value.∫ 0
−∞

dx

(4 − x)2

5.4.1 Let y : IR++ �→ IR be a function. A differential equation is given by

y′(x) = 1 +
2

x2
− y(x)
x
.

(a) Find all solutions of this equation.
(b) Find the unique solution satisfying the initial condition y(1) = 3.

5.4.2 Let y : IR �→ IR be a function. A differential equation is given by

y′′(x) = 4− x2 − y(x).

(a) Find all solutions of this equation.
(b) Find the solution satisfying the conditions y(0) = 0 and y′(0) = 1.

5.4.3 Let y : IR++ �→ IR be a function. A differential equation is given by

y′′(x) = −2y
′(x)

x
.

Find all solutions of this equation.

5.4.4 Let y : IR++ �→ IR be a function. A differential equation is given by

y′′(x) = −y
′(x)

x
.

(a) Find all solutions of this equation.
(b) Find the solution such that y(1) = 2 and y(e) = 6.
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6.6 Answers

1.1.1 (i) Not all students registered in this course are female;
(ii) 2 ≤ x ≤ 3;
(iii) There exists a real number x such that x+ y �= 0 for all y ∈ IR.

1.1.2 (i) True; (ii) True; (iii) True; (iv) False.

1.1.3 [¬(a∧ ¬b)] ∧ [¬(b∧ ¬a)].

1.1.4 “⇒”: By way of contradiction, suppose

(xy is odd ) ∧ ((x is even) ∨ (y is even)).

Without loss of generality, suppose x is even. Then there exists n ∈ IN such that x = 2n. Then
xy = 2ny = 2r with r := ny, which shows that xy is even. This is a contradiction.
“⇐”: Suppose x is odd and y is odd. Then there exist n,m ∈ IN such that x = 2n−1 and y = 2m−1.

Therefore,

xy = (2n− 1)(2m− 1) = 4nm− 2m− 2n+ 1
= 2(2nm−m− n) + 1 = 2(2nm−m− n+ 1)− 1
= 2r− 1

where r := 2nm−m− n+ 1. Therefore, xy is odd. ‖

1.2.1

(i) A ∩ (A ∩B) = {x | x ∈ A ∧ x ∈ (A ∩B)}
= {x | x ∈ A ∧ x ∈ A ∧ x ∈ B}
= {x | x ∈ A ∧ x ∈ B}
= A ∩B. ‖

(ii) A ∪ (A ∩B) = {x | x ∈ A ∨ x ∈ (A ∩B)}
= {x | x ∈ A ∨ (x ∈ A ∧ x ∈ B)}
= {x | x ∈ A}
= A. ‖

1.2.2 (i) A = {x ∈ IN | x > 2};
(ii) B = ∅;
(iii) C = {x ∈ IN | x is even} ∪ {1, 3, 5}.

1.2.3

X \ (A ∪B) = {x ∈ X | x �∈ (A ∪B)}
= {x ∈ X | x �∈ A ∧ x �∈ B}
= {x ∈ X | x �∈ A} ∩ {x ∈ X | x �∈ B}
= (X \A) ∩ (X \B). ‖

1.2.4 (i) (2, 2) �∈ A×B, because 2 �∈ B;
(ii) (2, 3) ∈ A ×B, because 2 ∈ A ∧ 3 ∈ B;
(iii) (3, 2) �∈ A× B, because 3 �∈ A, 2 �∈ B;
(iv) (3, 3) �∈ A× B, because 3 �∈ A;
(v) (2, 1) ∈ A ×B, because 2 ∈ A ∧ 1 ∈ B;
(vi) (1, 2) �∈ A× B, because 1 �∈ A, 2 �∈ B.

1.3.1 (i) A is not open in IR, because 2 ∈ A is not an interior point of A;
(ii) B is not open in IR, because 0 ∈ B is not an interior point of B;
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(iii) C is open—all points in C are interior poins of C (see Section 1.3);
(iv) D is not open in IR, because 2 ∈ D is not an interior point of D.

1.3.2 (i) A is closed in IR, because A is open in IR;
(ii) B is not closed in IR, because B is not open in IR;
(iii) C is not closed in IR, because C is not open in IR;
(iv) D is not closed in IR, because D is not open in IR.

1.3.3 (i) Let A,B be convex. Let x, y ∈ A∩B and λ ∈ [0, 1]. We have to show that [λx+(1−λ)y] ∈ A∩B.
Because A and B are convex, we have [λx + (1 − λ)y] ∈ A and [λx + (1 − λ)y] ∈ B. Therefore,
[λx+ (1− λ)y] ∈ A ∩B. ‖
(ii) A = {0}, B = {1}.

1.3.4 (i) inf(A) = min(A) = 1, no supremum, no maximum;
(ii) no infimum, no minimum, no supremum, no maximum;
(iii) inf(C) = 0, sup(C) = 1, no minimum, no maximum;
(iv) sup(D) = max(D) = 0, no infimum, no minimum.

1.4.1 f(IN) = {x ∈ IN | x is odd }; f({x ∈ IN | x is odd}) = {1, 5, 9, 13, . . .}.

1.4.2

f(x)

x

1

1 2

�
�
�
]

( ][

1.4.3 (i) f is not surjective, because −1 ∈ IR but � ∃x ∈ IR such that f(x) = −1. f is not injective,
because 1 �= −1, but f(1) = f(−1) = 1. f is not bijective, because it is not surjective, not injective.
(ii) f is surjective. For any y ∈ IR+, let x = y to obtain f(x) = y. f is not injective, because 1 �= −1,

but f(1) = f(−1) = 1. f is not bijective, because it is not injective.
(iii) f is not surjective, because −1 ∈ IR but � ∃x ∈ IR such that f(x) = −1. f is injective, because

x �= y implies f(x) = x �= y = f(y) for all x, y ∈ IR+. f is not bijective, because it is not surjective.
(iv) f is surjective. For any y ∈ IR+, let x = y to obtain f(x) = y. f is injective, because x �= y

implies f(x) = x �= y = f(y) for all x, y ∈ IR+. f is bijective, because it is surjective and injective.

1.4.4

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 1
2 if x = 2
3 if x = 3;

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 1
2 if x = 3
3 if x = 2;

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 2
2 if x = 1
3 if x = 3;

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 2
2 if x = 3
3 if x = 1;

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 3
2 if x = 1
3 if x = 2;

π : {1, 2, 3} �→ {1, 2, 3}, x �→



1 if x = 3
2 if x = 2
3 if x = 1.
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1.5.1 (i) The sequence {an} converges to 0. Proof: For any ε ∈ IR++, choose n0 ∈ IN such that n0 > 1/ε.
For n ≥ n0, we obtain n > 1/ε, and therefore,

ε >
1

n
= |(−1)n/n| = |(−1)n/n− 0| = |an − 0|,

and therefore, limn→∞ an = 0. ‖
(ii) The sequence {bn} does not converge. Proof: Suppose, by way of contradiction, α ∈ IR is the

limit of {bn}. Let ε = 1. Then we have

|n(−1)n − α| > 1

for all n ∈ IN such that n is even and n > |α| + 1. Therefore, there cannot exist n0 ∈ IN such that
|bn − α| < 1 for all n ≥ n0, which contradicts the assumption that {bn} converges to α. ‖

1.5.2 Let c ∈ IR. Choose n0 ∈ IN such that n0 ≥ 1 + c. Then, for all n ≥ n0,

an = n
2 − n = n(n− 1) ≥ (1 + c)c = c+ c2 ≥ c,

and therefore, {an} diverges to ∞. ‖

1.5.3 (i) {an} is monotone nonincreasing, because

an+1 = 1 + 1/(n+ 1) < 1 + 1/n = an

for all n ∈ IN. {an} is bounded, because 1 < an ≤ 2 for all n ∈ IN. Because {an} is monotone and
bounded, {an} must be convergent.
(ii) {bn} is neither monotone nondecreasing nor monotone nonincreasing, because

b1 = 0 < 3/2 = b2 > 2/3 = b3.

{bn} is bounded, because 0 ≤ bn ≤ 3/2 for all n ∈ IN. {an} converges to 1—see Problem 1.5.1 (i) and
apply Theorem 1.5.12.

1.5.4 an + bn = 2n
2 + 1/n ∀n ∈ IN; anbn = 2n ∀n ∈ IN.

2.1.1 (i) ‖x‖ =
√∑n

i=1 x
2
i . Because x

2
i ≥ 0 for all xi ∈ IR,

∑n
i=1 x

2
i ≥ 0, and therefore, ‖x‖ ≥ 0. ‖

(ii) ‖x‖ = 0 ⇔

√√√√ n∑
i=1

x2i = 0

⇔ x2i = 0 ∀i = 1, . . . , n
⇔ xi = 0 ∀i = 1, . . . , n
⇔ x = 0. ‖

(iii) ‖ − x‖ =

√√√√ n∑
i=1

(−xi)2

=

√√√√ n∑
i=1

(−1)2x2i

=

√√√√ n∑
i=1

x2i

= ‖x‖. ‖

2.1.2 (i) d(x, y) =
√∑n

i=1(xi − yi)2. Because (xi − yi)2 ≥ 0 for all xi, yi ∈ IR,
∑n
i=1(xi − yi)2 ≥ 0, and

therefore, d(x, y) ≥ 0. ‖
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(ii) d(x, y) = 0 ⇔

√√√√ n∑
i=1

(xi − yi)2 = 0

⇔ (xi − yi)2 = 0 ∀i = 1, . . . , n
⇔ xi − yi = 0 ∀i = 1, . . . , n
⇔ x = y. ‖

(iii) d(y, x) =

√√√√ n∑
i=1

(yi − xi)2

=

√√√√ n∑
i=1

(−1)2(xi − yi)2

=

√√√√ n∑
i=1

(xi − yi)2

= d(x, y). ‖

2.1.3 (i) x+ y = (1 + 2, 3 + 0,−5 + 1) = (3, 3,−4);
(ii) xy = 1 · 2 + 3 · 0 + (−5) · 1 = −3.

2.1.4 We have

α1x
1 + α2x

2 + α3x
3 = 0⇔ α1



1
0
2
−1


+ α2



0
0
1
2


+ α3



2
−4
1
9


 =



0
0
0
0


 .

This implies α3 = 0 (second equation), α1 = 0 (first equation), and α2 = 0 (third equation). Therefore,
the vectors x1, x2, x3 are linearly independent.

2.2.1 A is a square matrix, A is not symmetric;

B is not a square matrix, and therefore not symmetric;

C is a symmetric square matrix.

2.2.2

AB =


 1 2 1 −3
0 1 0 8
1 2 0 1





−1 0 4
2 1 −2
0 1 6
3 2 −5


 =


 −6 −3 21
26 17 −42
6 4 −5


 .

2.2.3 R(A) = 0, R(B) = 1, R(C) = 2, R(D) = 2.

2.2.4

A =

(
1 0
0 1

)
, B =

(
−1 0
0 −1

)
.

2.3.1 

x1 x2 x3 x4 x5
1 2 0 4 2 0
0 2 2 −1 3 1
1 −1 0 1 1 0
1 1 2 0 4 2


 ∼



x1 x2 x3 x4 x5
1 2 0 4 2 0
0 1 1 −1/2 3/2 1/2
0 −3 0 −3 −1 0
0 −1 2 −4 2 2
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(multiply Equation 2 by 1/2, add −1 times Equation 1 to Equation 3, add −1 times Equation 1 to
Equation 4)

∼



x1 x2 x3 x4 x5
1 2 0 4 2 0
0 1 1 −1/2 3/2 1/2
0 0 3 −9/2 7/2 3/2
0 0 3 −9/2 7/2 5/2


 ∼



x1 x2 x3 x4 x5
1 2 0 4 2 0
0 1 1 −1/2 3/2 1/2
0 0 3 −9/2 7/2 3/2
0 0 0 0 0 1




(add 3 times Equation 2 to Equation 3, add Equation 2 to Equation 4; add −1 times Equation 3 to
Equation 4). Equation 4 in the last system requires 0 = 1, which is impossible. Therefore, the system
Ax = b has no solution.

2.3.2 

x1 x2 x3 x4
2 1 4 0 2
0 0 1 1 −1
4 −1 1 0 −2
−2 2 5 2 2


 ∼



x2 x4 x1 x3
1 0 2 4 2
0 1 0 1 −1
−1 0 4 1 −2
2 2 −2 5 2




(interchange columns)

∼



x2 x4 x1 x3
1 0 2 4 2
0 1 0 1 −1
0 0 6 5 0
0 2 −6 −3 −2


 ∼



x2 x4 x1 x3
1 0 2 4 2
0 1 0 1 −1
0 0 6 5 0
0 0 −6 −5 0




(add Equation 1 to Equation 3, add −2 times Equation 1 to Equation 4; add −2 times Equation 2 to
Equation 4)

∼



x2 x4 x1 x3
1 0 2 4 2
0 1 0 1 −1
0 0 1 5/6 0
0 0 0 0 0


 ∼



x2 x4 x1 x3
1 0 0 7/3 2
0 1 0 1 −1
0 0 1 5/6 0




(multiply Equation 3 by 1/6; add 1/6 times Equation 3 to Equation 4; add −2 times Equation 3 to
Equation 1). Let α := x3, which implies x2 = 2− 7α/3, x4 = −1− α, and x1 = −5α/6. Therefore, the
solution is

x∗ =



0
2
0
−1


+ α



−5/6
−7/3
1
−1




with α ∈ IR.

2.3.3 

x1 x2 x3
2 0 1 1
1 1 0 0
0 0 2 −2
0 −2 2 0


 ∼



x1 x2 x3
1 0 1/2 1/2
1 1 0 0
0 0 1 −1
0 −2 2 0




(multiply Equation 1 by 1/2, multiply Equation 3 by 1/2)

∼



x1 x2 x3
1 0 1/2 1/2
0 1 −1/2 −1/2
0 0 1 −1
0 −2 2 0


 ∼



x1 x2 x3
1 0 1/2 1/2
0 1 −1/2 −1/2
0 0 1 −1
0 0 1 −1
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(add −1 times Equation 1 to Equation 2; add 2 times Equation 2 to Equation 4)

∼



x1 x2 x3
1 0 1/2 1/2
0 1 −1/2 −1/2
0 0 1 −1


 ∼



x1 x2 x3
1 0 0 1
0 1 0 −1
0 0 1 −1




(add −1 times Equation 3 to Equation 4; add 1/2 times Equation 3 to Equation 2, add −1/2 times
Equation 3 to Equation 1). Therefore, the unique solution vector is x∗ = (1,−1,−1).

2.3.4 Suppose x∗ solves Ax = b. Then we have Ax∗ = b. Multiplying both sides by α ∈ IR, we obtain
αAx∗ = αb, which is equivalent to A(αx∗) = αb. Therefore, αx∗ solves Ax = αb. ‖

2.4.1 A is singular;
B is nonsingular with inverse B−1 = (1);
C is nonsingular with inverse

C−1 =

(
1/4 −1/4
1/2 1/2

)
;

D is nonsingular with inverse

D−1 =


 1 1 −1
−1 0 1
0 −1 1


 .

2.4.2

A =


 0 0 1
0 1 0
1 0 0


 .

2.4.3

A′ =

(
1 −1
1 1

)
, A−1 =

(
1/2 −1/2
1/2 1/2

)
.

Therefore,

AA′A−1 =

(
1 1
−1 1

)(
1 −1
1 1

)(
1/2 −1/2
1/2 1/2

)
=

(
1 −1
1 1

)
.

2.4.4

AA−1 = E ⇒ αAA−1 = αE

⇒ (αA)

(
1

α
A−1
)
= E

⇒ (αA)−1 =
1

α
A−1,

which shows that αA is nonsingular. ‖

2.5.1

|A| = (−1)0a11a22a33a44 + (−1)1a11a22a34a43 + (−1)1a11a23a32a44
+ (−1)2a11a23a34a42 + (−1)2a11a24a32a43 + (−1)3a11a24a33a42
+ (−1)1a12a21a33a44 + (−1)2a12a21a34a43 + (−1)2a12a23a31a44
+ (−1)3a12a23a34a41 + (−1)3a12a24a31a43 + (−1)4a12a24a33a41
+ (−1)2a13a21a32a44 + (−1)3a13a21a34a42 + (−1)3a13a22a31a44
+ (−1)4a13a22a34a41 + (−1)4a13a24a31a42 + (−1)5a13a24a32a41
+ (−1)3a14a21a32a43 + (−1)4a14a21a33a42 + (−1)4a14a22a31a43
+ (−1)5a14a22a33a41 + (−1)5a14a23a31a42 + (−1)6a14a23a32a41
= 2 · 1 · 1 · 0− 2 · 1 · 0 · 0− 2 · 1 · 2 · 0 + 2 · 1 · 0 · 0 + 2 · 1 · 2 · 0− 2 · 1 · 1 · 0
− 1 · 3 · 1 · 0 + 1 · 3 · 0 · 0 + 1 · 1 · 0 · 0− 1 · 1 · 0 · 1− 1 · 1 · 0 · 0 + 1 · 1 · 1 · 1
+ 0 · 3 · 2 · 0− 0 · 3 · 0 · 0− 0 · 1 · 0 · 0 + 0 · 1 · 0 · 1 + 0 · 1 · 0 · 0− 0 · 1 · 2 · 1
− 3 · 3 · 2 · 0 + 3 · 3 · 1 · 0 + 3 · 1 · 0 · 0− 3 · 1 · 1 · 1− 3 · 1 · 0 · 0 + 3 · 1 · 2 · 1
= 1− 3 + 6 = 4.
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2.5.2

(i) |A| = 2 ·

∣∣∣∣∣∣
1 1 1
2 1 0
0 0 0

∣∣∣∣∣∣− 3 ·
∣∣∣∣∣∣
1 0 3
2 1 0
0 0 0

∣∣∣∣∣∣+ 0 ·
∣∣∣∣∣∣
1 0 3
1 1 1
0 0 0

∣∣∣∣∣∣− 1 ·
∣∣∣∣∣∣
1 0 3
1 1 1
2 1 0

∣∣∣∣∣∣
= (−1) ·

(
1 ·
∣∣∣∣ 1 32 0

∣∣∣∣− 1 ·
∣∣∣∣ 1 3
1 1

∣∣∣∣
)

= (−1) · (−6 + 2) = 4.

(ii) |A| = (−1) ·

∣∣∣∣∣∣
1 0 3
1 1 1
2 1 0

∣∣∣∣∣∣ = 4.
2.5.3

|A| = (−1) ·
∣∣∣∣ 3 1
2 −1

∣∣∣∣ = (−1) · (−5) = 5 �= 0.
Therefore, A is nonsingular. By Cramer’s rule,

x∗1 =

∣∣∣∣∣∣
2 1 0
2 0 1
1 −1 0

∣∣∣∣∣∣
5

=

(−1) ·
∣∣∣∣ 2 1
1 −1

∣∣∣∣
5

=
3

5
;

x∗2 =

∣∣∣∣∣∣
3 2 0
1 2 1
2 1 0

∣∣∣∣∣∣
5

=

(−1) ·
∣∣∣∣ 3 2
2 1

∣∣∣∣
5

=
1

5
;

x∗3 =

∣∣∣∣∣∣
3 1 2
1 0 2
2 −1 1

∣∣∣∣∣∣
5

=

(−1) ·
∣∣∣∣ 1 22 1

∣∣∣∣+ 1 ·
∣∣∣∣ 3 2
1 2

∣∣∣∣
5

=
7

5
.

2.5.4

|C11| =
∣∣∣∣ 0 1
−1 0

∣∣∣∣ = 1, |C12| =
∣∣∣∣ 1 1
2 0

∣∣∣∣ · (−1) = 2, |C13| =
∣∣∣∣ 1 0
2 −1

∣∣∣∣ = −1,
|C21| =

∣∣∣∣ 1 0
−1 0

∣∣∣∣ · (−1) = 0, |C22| =
∣∣∣∣ 3 0
2 0

∣∣∣∣ = 0, |C23| =
∣∣∣∣ 3 1
2 −1

∣∣∣∣ · (−1) = 5,
|C31| =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1, |C32| =
∣∣∣∣ 3 0
1 1

∣∣∣∣ · (−1) = −3, |C33| =
∣∣∣∣ 3 11 0

∣∣∣∣ = −1.
Therefore,

adj(A) =


 1 0 1
2 0 −3
−1 5 −1


 , A−1 = 1

|A|adj(A) =


 1/5 0 1/5
2/5 0 −3/5
−1/5 1 −1/5


 .

2.6.1 We obtain

|3| = 3 > 0,
∣∣∣∣ 3 1
1 2

∣∣∣∣ = 5 > 0, |A| = 3 > 0,
and therefore, all leading principal minors of A are positive. This implies that A is positive definite.

2.6.2 Principal minors of order one:

|2| = 2 > 0, |1| = 1 > 0, |0| = 0;

principal minors of order two:∣∣∣∣ 2 33 1
∣∣∣∣ = −7 < 0,

∣∣∣∣ 2 −1
−1 0

∣∣∣∣ = −1 < 0,
∣∣∣∣ 1 22 0

∣∣∣∣ = −4 < 0;
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principal minor of order three:
|A| = −21 < 0.

Therefore, A is indefinite, which implies that A is neither positive semidefinite nor negative semidefinite.

2.6.3

A is positive definite ⇔ x′Ax > 0 ∀x �= 0
⇔ (−1)x′Ax < 0 ∀x �= 0
⇔ x′(−1)Ax < 0 ∀x �= 0
⇔ (−1)A is negative definite. ‖

2.6.4 
 1 0 0
0 0 0
0 0 0


 .

3.1.1 Define the sequence {xn} by xn = 1/n for all n ∈ IN. Then we have limn→∞ xn = 0, but

lim
n→∞

f(xn) = lim
n→∞

1 = 1 �= 0 = f(0),

and therefore, f is not continuous at x0 = 0. ‖

3.1.2 We have
lim
x↓1
f(x) = lim

x↓1
(2x− 1) = 1, lim

x↑1
f(x) = lim

x↑1
x = 1,

and therefore,
lim
x→1
f(x) = 1 = f(1),

which implies that f is continuous at x0 = 1.

3.1.3 We obtain
lim
x↓1
f(x) = lim

x↓1
(x− 1) = 0, lim

x↑1
f(x) = lim

x↑1
x = 1.

Therefore, limx→1 f(x) does not exist, which implies that f is not continuous at x0 = 1.

3.1.4 (i) f is monotone nondecreasing. Suppose x, y ∈ [0, 3] and x > y. We have six possible cases:
(a) x ∈ [0, 1)∧ y ∈ [0, 1). In this case, we have f(x) = 0 ≥ 0 = f(y).
(b) x ∈ [1, 2)∧ y ∈ [0, 1). Now we obtain f(x) = x− 1 ≥ 0 = f(y).
(c) x ∈ [2, 3] ∧ y ∈ [0, 1). In this case, f(x) = 2 ≥ 0 = f(y).
(d) x ∈ [1, 2)∧ y ∈ [1, 2). We obtain f(x) = x− 1 ≥ y − 1 = f(y).
(e) x ∈ [2, 3] ∧ y ∈ [1, 2). We have f(x) = 2 ≥ y − 1 = f(y).
(f) x ∈ [2, 3]∧ y ∈ [2, 3]. In this case, f(x) = 2 ≥ 2 = f(y).
(ii) f is not monotone increasing, because f(0) = f(1/2) = 0.
(iii) f is not monotone nonincreasing, because f(2) = 2 > 0 = f(0).
(iv) f is not monotone decreasing (see (iii)).

3.2.1 We have

lim
h↓0

f(1 + h) − f(1)
h

= lim
h↓0

2(1 + h) − 1− 1
h

= 2

and

lim
h↑0

f(1 + h)− f(1)
h

= lim
h↑0

(1 + h)− 1
h

= 1,

which implies that f is not differentiable at x0 = 1.

3.2.2

f ′(x) = 4
(√
x+ 1 + x2

)3( 1

2
√
x+ 1

+ 2x

)
∀x ∈ IR++.
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3.2.3

f ′(x) = e2x
2

2x

(
2 ln(x2 + 1) +

1

x2 + 1

)
∀x ∈ IR.

3.2.4
f ′(x) = 2 sin(x)[6 sin(x) cos(x) − e2(cos(x)+1)] ∀x ∈ IR.

3.3.1 (i) The first-order condition for an interior solution is

f ′(x) = −1− 8x = 0,

which implies that we have a critical point at x0 = −1/8. The second derivative of f at x0 is f ′′(−1/8) =
−8 < 0, and therefore, we have a local maximum at x0 = −1/8. The domain of f is an open set, and
therefore, there are no boundary points to be checked. f has no local minimum.

(ii) The first-order condition for an interior maximum or minimum (see part (i)) is not satisfied for
any x ∈ (0, 4). We have f ′(0) = −1 < 0 and f ′(4) = −33 < 0. Therefore, we have a local maximum at
x0 = 0 and a local minimum at y0 = 4. There are no other critical points, and furthermore, the domain
of f is closed and bounded, and f is continuous. Therefore, f has a global maximum at x0 and a global
minimum at y0. The maximal and minimal values of f are f(x0) = 2 and f(y0) = −66.
(iii) We have f ′(x) = 2x and f ′′(x) = 2 > 0 for all x ∈ (0, 4]. The first-order condition for an interior

maximum or minimum is 2x = 0, which cannot be satisfied for any x ∈ (0, 4). The only possibility for a
boundary solution is at x = 4. We have f ′(4) = 8 > 0, and therefore, f has a local maximum at x0 = 4.
Because f is increasing, this is a global maximum, and the maximal value of f is f(x0) = 16. f has no
local and no global minimum.

3.3.2 We have

f ′(x) =
1

2
√
x
− 1
2
> 0 ∀x ∈ (0, 1).

Therefore, f is increasing, which implies that f is nondecreasing. f is not nonincreasing and not decreas-
ing.

3.3.3 We have limx↑1 f(x) = limx↑1 2 ln(x) = 0 and limx↑1 g(x) = limx↑1(x − 1) = 0. Therefore, we can
apply l’Hôpital’s rule. We obtain f ′(x) = 2/x and g′(x) = 1 for all x ∈ (0, 1). Therefore,

lim
x↑1

f(x)

g(x)
= lim
x↑1

f ′(x)

g′(x)
= lim
x↑1

2

x
= 2.

3.3.4 We obtain f ′(x) = 1/x and f ′′(x) = −1/x2 for all x ∈ IR++. Therefore, f(1) = 0, f ′(1) = 1, and
f ′′(1) = −1. The second-order Taylor polynomial of f around x0 = 1 is

f(x0) + f
′(x0)(x− x0) +

f ′′(x0)(x− x0)2
2

= (x − 1)− (x− 1)
2

2
.

Setting x = 2, we obtain

(2− 1) − (2− 1)
2

2
=
1

2

as a second-order Taylor approximation of f(2).

3.4.1 We have

f(λx + (1− λ)y) = a(λx+ (1− λ)y) + b
= λax+ λb+ (1− λ)ay + (1 − λ)b
= λ(ax+ b) + (1− λ)(ay + b)
= λf(x) + (1− λ)f(y)

for all x, y ∈ IR, for all λ ∈ (0, 1). Therefore, f is concave and convex, but not strictly concave and not
strictly convex.

3.4.2 Differentiating, we obtain f ′(x) = αxα−1 and f ′′(x) = α(α − 1)xα−2 for all x ∈ IR++. Because
α ∈ (0, 1), f ′′(x) < 0 for all x ∈ IR++. Therefore, f is strictly concave. ‖
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3.4.3 We have f ′(x) = −1 − 2x and f ′′(x) = −2 < 0 for all x ∈ [0, 4]. Therefore, f is strictly concave.
Because f is continuous and its domain is closed and bounded, f must have a global maximum. Because
f is strictly concave, this maximum is unique.
The first-order condition for an interior maximum is

−1− 2x = 0,

which cannot be satisfied for any x ∈ (0, 4). At the boundary point 0, we have f ′(0) = −1 < 0, and
therefore, f has a local and global maximum at x0 = 0. The maximal value of f is f(x0) = 1.

3.4.4 We have to solve
max
y
{π(y)}

where π : IR+ �→ IR, y �→ py − y − 2y2. Differentiating, we obtain

π′(y) = p− 1− 4y, π′′(y) = −4 < 0 ∀y ∈ IR+.

Therefore, π is strictly concave, and the first-order conditions are sufficient for a unique global maximum.
The first-order condition for an interior maximum is

p− 1− 4y = 0,

which implies y0 = (p − 1)/4. y0 is positive if and only if p > 1. For a boundary solution y0 = 0, we
obtain the first-order condition

p− 1 ≤ 0.

Therefore, we obtain the supply function

ȳ : IR++ �→ IR, p �→
{
(p− 1)/4 if p > 1
0 if p ≤ 1

and the profit function

π̄ : IR++ �→ IR, p �→
{
(p − 1)2/8 if p > 1
0 if p ≤ 1.

4.1.1 (i) d(x, y) = max({|xi−yi| | i ∈ {1, . . . , n}}). Because |xi−yi| ≥ 0 for all xi, yi ∈ IR, max({|xi−yi| |
i ∈ {1, . . . , n}}) ≥ 0, and therefore, d(x, y) ≥ 0. ‖

(ii) d(x, y) = 0 ⇔ max({|xi − yi| | i ∈ {1, . . . , n}}) = 0
⇔ |xi − yi| = 0 ∀i = 1, . . . , n
⇔ xi − yi = 0 ∀i = 1, . . . , n
⇔ x = y. ‖

(iii) d(y, x) = max({|yi − xi| | i ∈ {1, . . . , n}})
= max({|(−1)(xi − yi)| | i ∈ {1, . . . , n}})
= max({|xi − yi| | i ∈ {1, . . . , n}})
= d(x, y). ‖

4.1.2 (i) We have to find a δ ∈ IR++ such that√
(x1 − 0)2 + (x2 − 0)2 < 1

for all x ∈ IR2 such that max({|x1 − 0|, |x2− 0|}) < δ. Let δ = 1/2. Then max({|x1|, |x2|}) < δ implies
|x1| < 1/2 and |x2| < 1/2. Therefore, (x1)2 < 1/4 and (x2)2 < 1/4, which implies√

(x1)2 + (x2)2 <
√
1/4 + 1/4 =

√
1/2 < 1.
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(ii) Now we have to find a δ ∈ IR++ such that

max({|x1 − 0|, |x2− 0|}) < 1

for all x ∈ IR2 such that
√
(x1 − 0)2 + (x2 − 0)2 < δ. Again, let δ = 1/2. Then

√
(x1)2 + (x2)2 < δ

implies (x1)
2 + (x2)

2 < 1/4. Therefore, (x1)
2 < 1/4 and (x2)

2 < 1/4. This implies |x1| < 1/2 and
|x2| < 1/2, and therefore, max({|x1|, |x2|}) < 1/2 < 1.

4.1.3 (i) A is open;

(ii) B is not open—the point (1/2, 1/2) ∈ B is not an interior point of B;
(iii) C is open.

4.1.4

lim
m→∞

am =

(
lim
m→∞

[
1 +

(
1

m

)
(−1)m

]
, lim
m→∞

[
2− m

m+ 1

])
= (1, 1).

4.2.1 (i) Let x, y ∈ A and λ ∈ [0, 1]. Then λx1 + (1 − λ)y1 ∈ (0, 1) and λx2 + (1 − λ)y2 ∈ (1, 2), and
therefore, λx+ (1− λ)y ∈ (0, 1)× (1, 2) = A. Therefore, A is convex.
(ii) Let x, y ∈ B and λ ∈ [0, 1]. Then x1, y1 ∈ (0, 1) and x1 = x2 and y1 = y2. Therefore, λx1 + (1 −

λ)y1 ∈ (0, 1) and λx2 + (1 − λ)y2 = λx1 + (1 − λ)y1, and hence, λx + (1 − λ)y ∈ B. Therefore, B is
convex.

(iii) C is not convex. Let x = (0, 1), y = (1, 0), and λ = 1/2. Then we have x, y ∈ C, but
λx+ (1− λ)y = (1/2, 1/2) �∈ C.

4.2.2 The level set of f for y = 1 is {x ∈ IR2 | min({x1, x2}) = 1}. Illustration:

1

1

x1

x2

4.2.3 Let xm = (1/m, 1/m) for all m ∈ IN. Then we have

lim
m→∞

xm = (0, 0) = x0

and f(xm) = xm1 + x
m
2 for all m ∈ IN, but

lim
m→∞

f(xm) = 0 �= 1 = f(x0).

Therefore, f is not continuous at x0 = (0, 0). ‖

4.2.4 We have f1(x) = f(x, 2) = 2x for all x ∈ IR. Illustration:
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�
�
�
�
�
�
�
�
�
�
�
�
�
��

1

2

x

f1(x)

4.3.1
∂f(x)

∂x1
=
1

2

√
x2

x1
+ x3e

x1x3 ,
∂f(x)

∂x2
=
1

2

√
x1

x2
,
∂f(x)

∂x3
= x1e

x1x3 ∀x ∈ IR3++.

4.3.2

df(x0, h) =
∂f(x0)

∂x1
h1 +

∂f(x0)

∂x2
h2 +

∂f(x0)

∂x3
h3 = (1/2 + e)h1 + h2/2 + eh3.

4.3.3 For all x ∈ IR3++,

H(f(x)) =


 −

√
x2

4x1
√
x1
+ (x3)

2ex1x3 1
4
√
x1x2

(1 + x1x3)e
x1x3

1
4
√
x1x2

−
√
x1

4x2
√
x2

0

(1 + x1x3)e
x1x3 0 (x1)

2ex1x3


 .

4.3.4 Let y0 = 0. We obtain

ey
0x01 + y0x01x

0
2 − ey

0

= 1 + 0− 1 = 0

and
∂F (x0, y0)

∂y
= x01e

y0x01 + x01x
0
2 − ey

0

= 1 + 1− 1 = 1 �= 0.

Therefore, there exists an implicit function in a neighborhood of x0 = (1, 1). Furthermore, we have

∂F (x0, y0)

∂x1
= y0ey

0x01 + y0x02 = 0

and
∂F (x0, y0)

∂x2
= y0x01 = 0.

Therefore, the partial derivatives of this implicit function at x0 are

∂f(x0)

∂x1
=
∂f(x0)

∂x2
= 0.

4.4.1 The partial derivatives of f are

∂f(x)

∂x1
= 2x1 − x2,

∂f(x)

∂x2
= 2x2 − x1

for all x ∈ IR2, and the Hessian matrix at x ∈ IR2 is

H(f(x)) =

(
2 −1
−1 2

)
.

H(f(x)) is positive definite for all x ∈ IR2, and therefore, f is strictly convex. This implies that the
first-order conditions are sufficient for a unique minimum. The only stationary point is x0 = (0, 0), and
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therefore, f has a global (and therefore, local) minimum at x0 with f(x0) = 0. f has no local and no
global maximum.

4.4.2 The Hessian matrix of f at x ∈ IR2++ is

H(f(x)) =

(
−1/(x1)2 0
0 −1/(4x2

√
x2)

)

which is negative definite for all x ∈ IR2++, and therefore, f is strictly concave. ‖

4.4.3 The partial derivatives of f are

∂f(x)

∂x1
=
1

4
(x1)

−3/4(x2)
1/4 − 1, ∂f(x)

∂x2
=
1

4
(x1)

1/4(x2)
−3/4 − 1

for all x ∈ IR2++, and the Hessian matrix of f at x ∈ IR2++ is

H(f(x)) =

(
− 316(x1)−7/4(x2)1/4

1
16(x1x2)

−3/4
1
16(x1x2)

−3/4 − 316(x1)1/4(x2)−7/4
)
.

The principal minors of order one are negative for all x ∈ IR2++, and the determinant of H(f(x)) is

|H(f(x))| = 1
32
(x1x2)

−3/2 > 0

for all x ∈ IR2++, which implies that f is strictly concave. Therefore, f has at most one global maximum.
Using the first-order conditions, we obtain the unique stationary point x0 = (1/16, 1/16), and therefore,
f has a unique global maximum at x0. The maximal value of f is f(x0) = 1/8.

4.4.4 We have to solve
max
x
{p(√x1 +

√
x2) −w1x1 −w2x2}.

The first-order partial derivatives of the objective function are

∂π(x)

∂x1
=

p

2
√
x1
− w1,

∂π(x)

∂x2
=

p

2
√
x2
− w2

for all x ∈ IR2++, and the Hessian matrix of π at x ∈ IR2++ is

H(π(x)) =

(
− p
4x1
√
x1

0

0 − p
4x2
√
x2

)
.

This matrix is negative definite for all x ∈ IR2++, and therefore, the first-order conditions are sufficient
for a unique global maximum. The first-order conditions for an interior solution are

p

2
√
x1
− w1 = 0 and

p

2
√
x2
−w2 = 0.

Solving, we obtain x01 = (p/(2w1))
2 and x02 = (p/(2w2))

2. Therefore, the factor demand functions are
given by

x̄1 : IR
3
++ �→ IR, (p, w) �→ (p/(2w1))2,

x̄2 : IR
3
++ �→ IR, (p, w) �→ (p/(2w2))2.

The supply function is
ȳ : IR3++ �→ IR, (p, w) �→ p/(2w1) + p/(2w2),

and the profit function is

π̄ : IR3++ �→ IR, (p, w) �→ (p)2/(4w1) + (p)2/(4w2).
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4.5.1 L : IR× IR2++ �→ IR, (λ, x) �→
√
x1 +

√
x2 − λ(x1 + x2 − 4).

4.5.2 The stationary points of the Lagrange function must satisfy

−x1 − x2 + 4 = 0

1/(2
√
x1) − λ = 0

1/(2
√
x2) − λ = 0.

Solving, we obtain x0 = (2, 2) and λ0 = 1/(2
√
2).

4.5.3 The bordered Hessian at (λ0, x0) is

H(L(λ0, x0)) =


 0 −1 −1
−1 −1/(8

√
2) 0

−1 0 −1/(8
√
2)


 .

Therefore, |H(L(λ0, x0))| = 1/(4
√
2) > 0, which implies that f has a constrained maximum at x0.

4.5.4We have to minimize w1x1+w2x2 by choice of x subject to the constraint y = x1x2. The Lagrange
function for this problem is

L : IR× IR2++ �→ IR, (λ, x) �→ w1x1 +w2x2 − λ(x1x2 − y).

The necessary first-order conditions for a constrained minimum are

−x1x2 + y = 0

w1 − λx2 = 0

w2 − λx1 = 0.

Solving, we obtain x0 = (
√
yw2/w1,

√
yw1/w2) and λ

0 =
√
w1w2/y. The bordered Hessian at (λ

0, x0) is

H(L(λ0, x0)) =


 0 −x02 −x01
−x02 0 −λ0
−x01 −λ0 0


 .

Therefore, |H(L(λ0, x0))| = −2√w1w2y < 0, which implies that the objective function has a constrained
minimum at x0. The conditional factor demand functions are

x̂1 : IR
3
++ �→ IR, (w, y) �→

√
yw2/w1

x̂2 : IR
3
++ �→ IR, (w, y) �→

√
yw1/w2

and the cost function is
C : IR3++ �→ IR, (w, y) �→ 2

√
w1w2y.

4.6.1 The Hessian matrix of f at x ∈ IR2 is given by

H(f(x)) =

(
−2 2
2 −4

)
.

Because this matrix is negative definite for all x ∈ IR2, f is strictly concave. The Hessian matrix of g1
and g2 at x ∈ IR2 is given by

H(g1(x)) = H(g2(x)) =

(
0 0
0 0

)
.

This matrix is positive semidefinite for all x ∈ IR2 and, therefore, g1 and g2 are convex.

4.6.2 The Jacobian matrix of g1 and g2 at x ∈ IR2 is given by

J(g1(x), g2(x)) =

(
1 4
1 1

)
.
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This matrix has rank 2, which is its maximal possible rank. If a row or a column is removed from this
matrix, the resulting matrix has its maximal possible rank 1. If two rows or two columns are removed,
the rank condition is trivially satisfied. Therefore, in all possible cases, J̄(g1(x), g2(x)) has maximal rank
for all x ∈ IR2.

4.6.3 The Lagrange function for this problem is given by

L : IR2 × IR2 �→ IR, (λ, x) �→ 2x1x2 + 4x1 − (x1)2 − 2(x2)2 − λ1(x1 + 4x2 − 4)− λ2(x1 + x2 − 2).

The Kuhn-Tucker conditions are

x01 + 4x
0
2 − 4 ≤ 0 (6.1)

λ01(x
0
1 + 4x

0
2 − 4) = 0 (6.2)

x01 + x
0
2 − 2 ≤ 0 (6.3)

λ02(x
0
1 + x

0
2 − 2) = 0 (6.4)

2x02 + 4− 2x01 − λ01 − λ02 ≤ 0 (6.5)

x01(2x
0
2 + 4− 2x01 − λ01 − λ02) = 0 (6.6)

2x01 − 4x02 − 4λ01 − λ02 ≤ 0 (6.7)

x02(2x
0
1 − 4x02 − 4λ01 − λ02) = 0 (6.8)

λ01 ≥ 0 (6.9)

λ02 ≥ 0 (6.10)

x01 ≥ 0 (6.11)

x02 ≥ 0. (6.12)

We have to consider all possible cases regarding whether or not the values of the choice variables and
multipliers are equal to zero. Because the objective function f is strictly concave and the constraint
functions are convex, we can stop as soon as we find a point (λ0, x0) satisfying the Kuhn-Tucker conditions.
By Theorems 4.6.3 and 4.6.4, we know that, in this case, f has a unique global constrained maximum at
x0.
(a) x01 = 0 ∧ x02 = 0. In this case, (6.2) and (6.4) imply λ01 = λ02 = 0. Substituting, we obtain a

contradiction to (6.5).
(b) x01 = 0 ∧ x02 > 0. In this case, (6.8) requires

−4x02 − 4λ01 − λ02 = 0

which, because of (6.9), (6.10), and (6.12), implies λ01 = λ
0
2 = x

0
2 = 0, contradicting our assumption that

x02 > 0.
(c) x01 > 0 ∧ x02 = 0. (6.3) implies x

0
1 ≤ 2 and, by (6.2), λ01 = 0. Therefore, (6.6) implies

4− 2x01 − λ02 = 0, and we obtain
x01 = 2− λ02/2 (6.13)

or, equivalently, λ02 = 4− 2x01. Substituting into (6.7), we find x01 ≤ 1 and, by (6.4), λ02 = 0. Therefore,
by (6.13), x01 = 2, contradicting x

0
1 ≤ 1.

Therefore, the only remaining possibility is
(d) x01 > 0 ∧ x02 > 0. We now go through the possible cases regarding whether or not the multipliers

are equal to zero.
(i) λ01 = 0 ∧ λ02 = 0. By (6.6) and (6.8), we obtain the system of equations

2x02 + 4− 2x01 = 0

2x01 − 4x02 = 0.

The unique solution to this system of equations is x01 = 4, x
0
2 = 2. But this leads to a contradiction of

(6.1).
(ii) λ01 = 0 ∧ λ02 > 0. By (6.4), (6.6), and (6.8), we obtain the system of equations

x01 + x
0
2 − 2 = 0

2x02 + 4− 2x01 − λ02 = 0

2x01 − 4x02 − λ02 = 0.



164 CHAPTER 6. EXERCISES

The unique solution is given by x01 = 8/5, x
0
2 = 2/5, λ

0
2 = 8/5. Substituting x

0 = (8/5, 2/5) and
λ0 = (0, 8/5), we find that all Kuhn-Tucker conditions are satisfied. Therefore, f has a unique global
constrained maximum at x0. The maximal value of the objective function is f(x0) = 24/5.

4.6.4 There exists λ0 = (λ01, . . . , λ
0
m) ∈ IRm such that

gj(x0) ≥ 0 ∀j = 1, . . . , m
λ0jg

j(x0) = 0 ∀j = 1, . . . , m

fxi(x
0)−

m∑
j=1

λ0jg
j
xi
(x0) ≥ 0 ∀i = 1, . . . , n

x0i


fxi(x0)− m∑

j=1

λ0jg
j
xi(x

0)


 = 0 ∀i = 1, . . . , n

λ0j ≥ 0 ∀j = 1, . . . , m
x0i ≥ 0 ∀i = 1, . . . , n.

5.1.1 (a)
√
2.

(b) 5 + 5i.

5.1.2 (a) z + z′ = (a+ a′) − (b+ b′)i = (a− bi) + (a′ − b′i) = z + z′. ‖
(b) zz′ = (aa′ − bb′) + (ab+ a′b)i = (aa′ − bb′)− (ab′ + a′b)i = (a− bi)(a′ − b′i) = zz′. ‖

5.1.3 (a) |z| = 2 and θ = 0. Therefore, z = 2(cos(0) + i sin(0)).
(b) |z′| = 2 and θ = 3π/2. Therefore, z = 2(cos(3π/2) + i sin(3π/2)).

5.1.4 z∗1 = 1, z
∗
2 = −1, z∗3 = i, z∗4 = −i.

5.2.1 (a) Order two, non-linear.
(b) y(t) = 1 for all t ∈ {0, 2, 4, . . .} and y(t) = 0 for all t ∈ {1, 3, 5, . . .}.

5.2.2 The associated homogeneous equation is

y(t + 2) = y(t) − 2y(t + 1).

We obtain the characteristic equation λ2 + 2λ − 1 = 0 with the two real roots λ1 = −1 +
√
2 and

λ2 = −1−
√
2. Thus, we have the two solutions z1(t) = (−1+

√
2)t and z2(t) = (−1−

√
2)t for all t ∈ IN0.

The two solutions are linearly independent because∣∣∣∣ z1(0) z2(0)z1(1) z2(1)

∣∣∣∣ =
∣∣∣∣ 1 1

−1 +
√
2 −1−

√
2

∣∣∣∣ = −2√2 �= 0.
Thus, the general solution of the homogeneous equation is

z(t) = c1(−1 +
√
2)2 + c2(−1−

√
2)t ∀t ∈ IN0

where c1, c2 ∈ IR are constants. To obtain a particular solution of the inhomogeneous equation, we set
ŷ(t) = c0 for all t ∈ IN0 where c0 ∈ IR is a constant. Substituting into the equation yields c0 = 3/2 and,
thus, the general solution is

y(t) = c1(−1 +
√
2)t + c2(−1−

√
2)t + 3/2 ∀t ∈ IN0.

5.2.3 The associated homogeneous equation is

y(t + 2) = 3y(t) − 2y(t + 1).

We obtain the characteristic equation λ2+2λ−3 = 0 with the two real roots λ1 = 1 and λ2 = −3. Thus,
we have the two solutions z1(t) = 1 and z2(t) = (−3)t for all t ∈ IN0. The two solutions are linearly
independent because ∣∣∣∣ z1(0) z2(0)z1(1) z2(1)

∣∣∣∣ =
∣∣∣∣ 1 1
1 −3

∣∣∣∣ = −4 �= 0.
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Thus, the general solution of the homogeneous equation is

z(t) = c1 + c2(−3)t ∀t ∈ IN0

where c1, c2 ∈ IR are constants. To obtain a particular solution of the inhomogeneous equation, we set
ŷ(t) = c0 for all t ∈ IN0 where c0 ∈ IR is a constant. Substituting into the equation yields c0 = 3+3c0−2c0
which cannot be satisfied for any c0 ∈ IR. Therefore, we try ŷ(t) = c0t for all t ∈ IN0. Now we obtain
c0 = 3/4 and, thus, the general solution is

y(t) = c1 + c2(−3)t + 3/4t ∀t ∈ IN0.

5.2.4 (a) Substituting into the equilibrium condition yields

Y (t+ 2) = −4Y (t)/3 + 4Y (t+ 1)/3 + 4.

(b) The associated homogeneous equation is

Y (t+ 2) = −4Y (t)/3 + 4Y (t+ 1)/3.

The characteristic equation is λ2 − 4λ/3 + 4/3 = 0 with the complex solutions λ1 = 2/3 + i2
√
2/3 and

λ2 = λ1 = 2/3− i2
√
2/3. Using polar coordinates, the general solution of the homogeneous equation is

z(t) = c1(2/
√
3)t cos(tθ) + c2(2/

√
3)t sin(tθ) ∀t ∈ IN0

where θ ∈ [0, 2π) is such that cos(θ) = 1/
√
3 (and sin(θ) =

√
2/3) and c1, c2 ∈ IR are constants. To obtain

a particular solution of the inhomogeneous equation, we set ŷ(t) = c0 with c0 ∈ IR constant. Substituting
into the equation yields c0 = 4, and the general solution is given by

Y (t) = c1(2/
√
3)t cos(tθ) + c2(2/

√
3)t sin(tθ) + 4 ∀t ∈ IN0.

(c) Substituting Y (0) = 6 and Y (1) = 16/3 into the solution obtained in part (b) and solving for
the parameter values, we obtain c1 = 2 and c2 = 0. Therefore, the unique solution satisfying the initial
conditions is

Y (t) = 2(2/
√
3)t cos(tθ) + 4 ∀t ∈ IN0.

5.3.1 Let f(x) = x−2 and g(y) = 1/y, y > 0. Then we obtain f ′(x) = 1 and G(y) = ln(y)+c. Therefore,∫ e+2
3

dx

x− 2 =

∫ e+2
3

g(f(x))f ′(x)dx

= G(f(x))|e+23 = ln(x− 2)|e+23
= ln(e)− ln(1) = 1− 0 = 1.

5.3.2 Let f(x) = ex and g(x) = x. Then we have f ′(x) = ex and g′(x) = 1. Therefore,∫
xexdx =

∫
f ′(x)g(x)dx

= f(x)g(x) −
∫
f(x)g′(x)dx

= xex −
∫
exdx = xex − ex + c

= (x− 1)ex + c.

5.3.3 Define f(x) = x3+ 1 and g(y) = y−2, y > 0. We obtain f ′(x) = 3x2 and G(y) = −y−1 + c. Hence,∫ 2
0

3x2

(x3 + 1)2
dx =

∫ 2
0

g(f(x))f ′(x)dx = G(f(x))|20

=
−1
x3 + 1

∣∣∣∣2
0

= −1/9 + 1 = 8/9.
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5.3.4 Let f(x) = 4 − x and g(y) = y−2, y > 0. Then it follows that f ′(x) = −1 and G(y) = −y−1 + c.
Therefore, for a < 0, we obtain∫ 0

a

dx

(4 − x)2 = −
∫ 0
a

g(f(x))f ′(x)dx

= − G(f(x))|0a =
1

4− x

∣∣∣∣0
a

=
1

4
− 1

4− a,

and ∫ 0
−∞

dx

(4− x)2 = lima↓−∞

(
1

4
− 1

4− a

)
=
1

4
.

5.4.1 (a) We obtain

y(x) = e−
∫
dx/x

(∫
(1 + 2/x2)e

∫
dx/xdx+ c

)

=
1

x

(∫
(1 + 2/x2)xdx+ c

)
=
1

x

(∫
(1 + 2/x)dx+ c

)

=
1

x

(
1

2
x2 + 2 ln(x) + c

)
= x/2 + 2 ln(x)/x+ c/x

for all x ∈ IR++, where c ∈ IR is a constant.
(b) Substituting y(1) = 3 into the solution found in part (a), we obtain c = 5/2 and, thus, the solution

y(x) = x/2 + 2 ln(x)/x+ 5/(2x) ∀x ∈ IR++.

5.4.2 (a) We obtain the associated homogeneous equation

y′′(x) = −y(x).

Setting z(x) = eλx for all x ∈ IR, we obtain the characteristic equation λ2 + 1 = 0 with the complex
solutions λ1 = i and λ2 = λ1 = −i. Therefore, the general solution of the homogeneous equation is

z(x) = c1 cos(x) + c2 sin(x) ∀x ∈ IR

where c1, c2 ∈ IR are constants. To find a particular solution of the inhomogenenous equation, we set
ŷ(x) = γ0 + γ1x+ γ2x

2 for all x ∈ IR and, comparing coefficients, we obtain γ0 = 6, γ1 = 0 and γ2 = −1.
Therefore, the general solution is

y(x) = c1 cos(x) + c2 sin(x) + 6− x2 ∀x ∈ IR

where c1, c2 ∈ IR are constants.
(b) Substituting y(0) = 0 and y′(0) = 1 into the solution found in part (a), we obtain c1 = −6 and

c2 = 1 and, thus, the solution

y(x) = −6 cos(x) + sin(x) + 6− x2 ∀x ∈ IR++.

5.4.3 Defining w(x) = y′(x) for all x ∈ IR++, the differential equation becomes

w′(x) = −2w(x)/x

which is a separable equation because w′(x) = f(x)g(w(x)) with f(x) = −2/x and g(w(x)) = w(x) for
all x ∈ IR++. Therefore, we must have ∫

dw(x)

g(w(x))
=

∫
f(x)dx

which is equivalent to
ln(w(x)) = −2 ln(x) + c̄
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where c̄ is a constant of integration. Solving, we obtain w(x) = c/x2 for all x ∈ IR++, where c := ec̄ ∈
IR++. By definition of w, we obtain

y(x) = c

∫
dx/x2

and, thus,
y(x) = −c/x+ k ∀x ∈ IR++

where c ∈ IR++ and k ∈ IR are constants.

5.4.4 (a) Analogously to 5.4.4, we obtain

y(x) = c

∫
dx/x

and, thus,
y(x) = c ln(x) + k ∀x ∈ IR++

where c ∈ IR++ and k ∈ IR are constants.
(b) Substituting y(1) = 2 and y(e) = 6 into the solution found in part (a), we obtain c = 4 and k = 2

and, thus,
y(x) = 4 ln(x) + 2 ∀x ∈ IR++.


