Learning in Games Seminar

Introduction to Topics – 29. March 2023

Chair of Decision Sciences & Systems

Agenda

- Seminar format
- Background information
 - Recap: Games and Nash equilibria
 - A brief taxonomy of games
 - What is "learning in games" anyway?
 - A short primer on (multi-agent) reinforcement learning
- Topic assignments
- Q&A

Agenda

Seminar format

- Background information
 - Recap: Games and Nash equilibria
 - A brief taxonomy of games
 - What is "learning in games" anyway?
 - A short primer on (multi-agent) reinforcement learning
- Topic assignments
- Q&A

Format

Each student will be assigned an individual topic and prepare a presentation as well as a short summary paper

- We will have **biweekly meetings** throughout the semester with two topics being presented in each meeting
- Attendance of all meetings is mandatory
 - interaction with the other students' work is expected: E.g., answering prepared mini-quizzes

Agenda

- Seminar format
- Background information
 - Recap: Games and Nash equilibria
 - A brief taxonomy of games
 - What is "learning in games" anyway?
 - A short primer on (multi-agent) reinforcement learning
- Topic assignments
- Q&A

What is a game?

- G = (N, A, u)
- Set of players $\mathcal{I} = \{1, \dots, N\}$
- Each player has a set of actions: A_i
- Utility function: $u_i: A_1 \times \cdots \times A_N \to \mathbb{R}$

Outcome $u_i(a_1, ..., a_N)$ for player *i* depends on **all** players' actions.

Strategic behavior

- How should a player *i* choose his or her action a_i ?
- Goal: maximize expected utility u_i .
 - A player that achieves this given all the information that is available to them is called *rational*.
 - Important: Information about other players, and information about other players' information about other players, ... ("common knowledge")
- Optimal play often involves randomization. A *mixed strategy* π is a probability distribution (i.e., a vector) over all available actions.
 - For the resulting space of mixed-strategies, we write Π or ΔA .

Notational conventions

- a_i, π_i, u_i, \dots describe the action/strategy/utility/... of a single player *i*.
- *a*, *π*, *u* describe vectors over all players' actions/strategies/utilities.
 Such vectors are called action-/strategy-/... *profiles*.
- a_{-i} , π_{-i} , u_{-i} describe the partial profiles for all players, except player *i*.
- Utility of a strategy profile, means the expected utility of resulting action profiles:

$$u_i(\pi_i, \pi_{-i}) \coloneqq \mathbb{E}_{a \sim \pi}[u_i(a_i, a_{-i})]$$

Nash equilibrium

• A strategy profile π^* is a Nash equilibrium (NE), if and only if no single player can improve his or her expected utility by unilaterally changing the strategy:

$$\forall i \text{ and } \forall \pi_i \in \Pi_i: \quad u_i(\pi_i, \pi_{-i}^*) \le u_i(\pi_i^*, \pi_{-i}^*)$$

- At least one Nash equilibrium exists in every finite game.
- Nevertheless, NE are generally hard to compute.

Are Nash equilibria always the goal?

Prisoner's dilemma payoff matrix

A	B silent		B betrays	
A silent	-1	-1	-3	0
A betrays	0	-3	-2	-2

- NE are often hard to compute, but there are other equilibrium notions, like (coarse) correlated equilibria, that are easier to attain.
- Besides being hard to compute, NE may not always lead to desirable outcomes.
 - \rightarrow "Social Dilemma"
- Sometimes, these problems can be circumvented in repeated games.

Types of games – qualitative dimensions

Number of players

- Special case: 2
- "few"
- Many/infinite/continuum

Stateless vs. stateful

- Normal form
- Extensive form
- Repeated game
- Simultaneous moves vs. sequential moves

Types of utility functions

- Zero-Sum
- Nonzero-sum

Number of actions

- Finite
- Countably infinite
- Continuum

Observability of information

Complete vs. incomplete

- Complete information: Players know the rules of the game and others' payoff functions (but may possibly not know about past moves of other players or outcomes of chance events).
- Complete information: The structure of the game and the players' utility functions are commonly known (but players may not see all the moves made by other players).

• Perfect vs. imperfect information

- Perfect information: Players can observe all events and the full 'state' of the game (but may not know about opponents' goals).
- *Imperfect information:* Games where some aspect of play is hidden from players (e.g., poker).

Special Case 1 Matrix games

- Finitely many players
- Finitely many actions
- A single, simultaneous move
- Fixed outcomes, no randomness in utility functions
- (Both, complete and perfect information)

Special Case 2 Extensive form games

- Sequential actions by players, leading to a "game tree"
- Can have perfect or imperfect information

Special Case 3 **Two-player zero-sum games**

• Everything that's good for P1 is bad for P2, can be written as

$$u_1 = u$$
 $u_2 = -u$

• The *minimax* theorem applies:

$$\max_{\pi_1} \min_{\pi_2} u(\pi_1, \pi_2) = \min_{\pi_2} \max_{\pi_1} u(\pi_1, \pi_2)$$

- This makes it easier (in theory) to find and understand NE
- Examples: Two-player board games (Chess, Go, ...)
- However: Game can still be extremely large and hard to solve in practice!

Special Case 4 Mean field games

- Games with very large populations (e.g., 100s, 1000s, millions of players).
- Each individual agent will have a negligible impact on others.
- Idea: model others as a "continuum" rather than individual actors.
- Name inspired by mean-field theory in physics.
- Examples:
 - Choosing a route on your commute to avoid a traffic jam.
 - Behavior in saturated markets.

Learning in games

Most of non-cooperative game theory has focused on equilibrium in games [...]. This raises the question of when and why we might expect that observed play in a game will correspond to one of these equilibria. One traditional explanation of equilibrium is that it results from analysis and introspection by the players in a situation where the rules of the game, the rationality of the players, and the players' payoff functions are all common knowledge. [...]

This book develops the alternative explanation that equilibrium arises as the longrun outcome of a process in which less than fully rational players grope for optimality over time.

- Fudenberg & Levine, The Theory of Learning in Games (1999), page 1

Learning in games

- Most common setting: Learning agents play the game against each other iteratively, in *self-play*.
- Agents *update* their strategies over time, dependent on observed outcomes, in order to improve their own expected utility.
- Update strategies:
 - "Best-response dynamics",
 - improvement updates, often based on (regularized) gradient dynamics, or regret minimization,
 - solving a "meta game", of strategies encountered before (EGTA/PSRO),
 - reinforcement-learning-based updates.

Supervised machine learning

Input: Data set of observations (x_i, y_i)

 x_i : features y_i : labels

Goal: Find a *model* \hat{f} such that

 $\hat{f}(x_i)\approx y_i$

(Single-agent) reinforcement learning

At time t:

• agent observes state s_t

• Agent chooses **action** $a_t = \pi(s_t)$ Based on a_t , agent receives a **reward** r_{t+1}

Goal: Choose policy π to maximize expected future **return**

 $R_t = \sum_{\tau=1}^T \gamma^{\tau} r_{t+\tau}$ (with $\gamma \in (0,1)$: "discount rate")

Note: future state depends on current actions!

In practice: randomized actions: $\pi(a_t, s_t) =$ probability of playing a_t when observing s_t

Formal model for (SA)RL: Markov decision process (MDP)

At each time step *t*:

- Agent chooses a_t from a set of actions A_t
- Stationary state transition distribution given s_t and a_t : $P(s_{t+1} | s_t, a_t)$
- Rewards r_t associated with state transitions
- → Markov property: "The future is independent of the past, given the present"

How to "train" π in (SA)RL?

Data: sampled transitions: $(s_t, a_t, r_{t+1}, s_{t+1})$

Value Iteration

- Estimate the value of a state v(s), choose the action that maximizes the expected value of s_{t+1} .
- or directly estimate *state-action values* q(s, a) ("Q-Learning").

Policy Iteration

- Rather than learning values, act directly on the policy function $\pi(s, a)$.
- Most common: "policy gradient": Estimate $\nabla_{\pi} \mathbb{E}[R_t]$ from data, then perform gradient ascent.

For MDPs (and some additional details), both converge to optimal policy, in theory.

Practical problem: computational tractability!

(SA)RL: Approximation methods

- Tabular methods:
 - Keep track of q-values for all combinations (s, a), model policies as explicit probability vectors π(s, a) = P(a|s).
 → Only feasible for small state and action spaces.
- Approximation Methods:
 - Learn statistical models to represent one or more of v, q, π .
 - Usually using neural networks \rightarrow "deep reinforcement learning".
- Examples of deep RL:
 - Deep Q-learning (DQN): Model q(s, a) via a neural net (+ extra tricks).
 - DDPG (deep deterministic policy gradient): Model q(s, a) as one neural net, then use policy iteration on second neural net $\pi(s, a)$ based on *predicted* improvement $\nabla_{\pi} q(s, a) \rightarrow$, actorcritic method".

Multi-agent RL (MARL)

- *Markov game* as a generalization of MDP
- Main Challenge: environment loses its stationarity: state transitions now depend on other agents' actions!
 - \rightarrow convergence results from SA-RL break
- Cooperative MARL:
 - Agents share a common utility function, need to learn to work together
- Competitive MARL:
 - Agents have individual utility functions, only interested in their own rewards
- Mixed settings (e.g., team games) are also possible

Image: Justin Terry

What's the goal in competitive MARL?

- Equilibrium?
 - For two-player zero-sum games: Yes!
 - Otherwise ...?
- Super-human performance?
- Social welfare?

Further Reading: Shoham et al. (2007): If multi-agent learning is the answer, what is the question?

General literature recommendations

- Fudenberg, et al. (1998): The theory of learning in games
 - Foundation for equilibrium theory, replicator dynamics and fictious play, normal and extensive form games
 - Can be borrowed at chair, TUM library has a few hard-copies
- Young (2004): Strategic learning and its limits
 - Regret and no-regret learning, equilibrium concepts, fictious play
 - Can be borrowed at chair
- Shalev-Shwartz (2011): Online learning and online convex optimization
 - Survey paper on online learning that introduces , among other, FTL and FTRL, ...
 - Available online
- Nisan, Roughgarden, Tardos, Vazirani (2007): Algorithmic Game Theory
 - Collection of guest chapters on different topics in AGT, e.g., complexity, learning, applications, ...
- Sutton & Barto (2018): *Reinforcement Learning. An Introduction (2nd edition)*
 - The standard reference for (single-agent) reinforcement learning.
 - Latest edition available for free at <u>http://www.incompleteideas.net/book/the-book.html</u>

Practical Hint: Accessing paywalled papers

- eAccess is a service provided by the TUM university library. Using eAccess, you can access many scientific papers online that would usually be behind a paywall.
 See <u>https://login.eaccess.tum.edu/login</u>
- If you still cannot access a paper/book you need:
 - 1. Check the TUM university library catalog. Some books are only available as hard copies
 - 2. Ask your advisor for help.

Agenda

- Seminar format
- Background information
 - Recap: Games and Nash equilibria
 - A brief taxonomy of games
 - What is "learning in games" anyway?
 - A short primer on (multi-agent) reinforcement learning

• Topic assignments

• Q&A

Course Content Available Topics

01	Normal Form Games & Equilibria
02	Regret Matching & Convergence
03	Zero-Sum, Fictitious Play, MiniMax
04	MDP + Q-Learning
05	Policy Gradients
06	Stochastic Games + Solution Concepts + Shapley Algorithm
07	Lemke-Howson Algorithm
08	Multiplicative Weights & Replicator Dynamics
09	Regret Policy Gradients
10	<u>Collusion</u>
11	Policy Space Response Oracles
12	Sophisticated/Bayesian Learning
13	Inverse Reinforcement Learning
14	Neural Equilbirum Solvers

Topic 01 Normal Form Games & Equilibria

- Introduce basic concepts from Game Theory
 - Normal Form Game
 - Strategy, Dominance, Optimality
 - Solution Concepts:
 - Nash Equilibrium
 - Correlated Equilibrium
 - Coarse Correlated Equilibrium
 - ... others ?
- Illustrate concepts with examples
 - Prisoners' Dilemma, Matching Pennies, Chicken, etc.

Topic 02 Regret Matching & Convergence

- The regret matching algorithm (Hart & Mas-Colell, 2000) seeks to minimize regret about its actions.
 - Regret of not having chosen an action: Difference between the utility of that action and the utility of the action we actually chose, with respect to the fixed choices of other players.
 - It learns from past behavior by favoring actions that have resulted in positive outcomes and avoiding actions that have resulted in negative ones.
- Is the foundation for modern poker bots
- Considers simple normal-form games
- The averaged strategy then converges to a (correlated) equilibrium

Topic 03

Zero-Sum, Fictitious Play, MiniMax

- MiniMax Value Iteration:
 - Determine the best worst-case scenario
 - Solution corresponds to a Nash Equilibrium in 2-Player Zero-Sum games
- Fictitious Play:
 - Agents assume that opponents play stationary strategies
 - Play the best-response against the frequency of opponents play
 - Convergence to the Nash Equilibrium in 2-Player Zero-Sum games
 - Variety of adaptions of this learning procedure

Literature: Fudenberg and Levine (1998)

Topic 04 MDP + Q-Learning

- A Markov decision process is the mathematical framework of many fields, such as
 - Reinforcement learning
 - Planning
 - Control theory
 - ... and many more
- Introduce MDP mathematics and concepts
 - State, action, transition, reward, policy, etc.
 - What does it mean to "solve" an MDP?
- Discuss Q-learning as one example of an approximate MDP solver

•
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \cdot \left[R(s_t, a_t) + \gamma \cdot \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

Topic 05 Policy Gradients

- Prerequisite: MDPs
- Policy gradient theorem (PGT):

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log (\pi_{\theta}(s, a)) \cdot Q^{\pi_{\theta}}(s, a) \right]$$

- Many solution methods build upon PGT
- Your task:
 - Understand, explain, illustrate
 - Discuss advantages and disadvantages of policy gradient methods

Topic 06 **Stochastic Games** + **Solution Concepts** + **Shapley Algorithm**

- Stochastic games (<u>Shapley, 1953</u>) are a natural extension of MDPs to include multiple agents. We want to look at the basic definitions and examples:
 - Stochastic games contain both MDPs and matrix games as subsets of the framework
 - Similar to normal-form games, there are different types (e.g., zero-sum stochastic games)
 - Only for some settings equilibria solutions are known to exist
- The Shapley algorithm can be used to compute equilibria in zero-sum stochastic games
 - The algorithm is based on the proof of the equilibrium existence (Shapley, 1953)
 - The method is similar to value iteration for MDPs (Bowling & Veloso, 2000)

Topic 07 Lemke-Howson Algorithm

- The Lemke-Howson algorithm <u>(Lemke & Howson, 1964)</u> is an algorithm that computes a Nash equilibrium of two-player matrix games.
- It doesn't scale well but does solve the game exactly.
 - Worst case: Number of operations may be exponential in the number of pure strategies.
- It resembles the simplex algorithm (from linear programming).

Topic 08 Multiplicative Weights & Replicator Dynamics

- Replicator Dynamics
 - Motivated by the evolution of biological processes
 - Does not necessarily converge to a stable state (i.e., a Nash equilibrium)
- Multiplicative Weights Update:
 - Discrete-time variant of Replicator Dynamics
 - Assign each action a weight
 - Update the weight multiplicatively in each iteration
 - Converges to the Nash Equilibrium in time-average strategies of 2-Player Zero-Sum games
 - Actual strategies diverge from the equilibrium
- Literature: Fudenberg and Levine (1998), Bailey and Piliouras (2018)

Topic 09 Regret Policy Gradients

- Learning parameterized policies (e.g., neural networks) in RL.
- Introduced by Srinivasan et al. (2018) from Deepmind.
- Combination of
 - standard gradient-based learning (following the policy gradient uphill) and
 - regret minimization.
- They consider partially-observable multiagent environments and the algorithm is implemented in <u>Openspiel</u>.

Topic 10 Collusion

- In general, learning algorithms do not need to converge to Nash equilibria
- Sometimes the process can even lead to undesirable outcomes such as collusion, e.g., firms charge supracompetitive prices (Calvano et al., 2020)
- On the other hand, the choice of algorithms can change the game. And collusive outcomes might actually just be equilibrium strategies in the new game (den Boer et al, 2022)
- Therefore, choosing the right learning algorithm and model is crucial.

Topic 11 Policy Space Response Oracles

- Considers the meta-game, where agents are trained via RL in an inner loop and we apply game-theoretic reasoning in the outer loop
- Goal is to arrive at more robust strategies by training a collection of low-level controllers
- Subsumes classical approaches such as independent learning, iterated best response, double oracle, and fictitious play.
- Applying this is costly, but opens up the path to reason about more practical approaches
- "A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning", Lanctot et al., 2017 in Advances in neural information processing systems, 30

Topic 12 Sophisticated/Bayesian Learning

- Sophisticated learning
 - Many learning algorithms fail to identify patterns (like cycles)
 - Sophisticated Learning explicitly attempts to find those patterns
- Bayesian learning
 - Agents have prior knowledge about the game (opponents' strategies, random state)
 - Represent different beliefs as different models
 - If priors are consistent with the true model, the strategies converge to the true model, which implies convergence to an equilibrium

Literature: Fudenberg and Levine (1998), Wu et al. (2022)

Topic 13

Inverse Reinforcement Learning

• Idea

- Assume that optimal actions are already observed by agents
- Find the reward function that leads to these actions
- Three classes of algorithms
 - Max Margin Max the margin between optimal policy and value function
 - Bayesian Use prior knowledge to model the optimal reward
 - Maximum Entropy
- Extensions
 - Multi-Agent Inverse Reinforcement Learning
 - Suboptimal policy demonstrations
 - Feedback-Types

Literature: Adams et al. (2022)

Topic 14 Neural Equilbirum Solvers

- Finding NEs and (C)CEs for normal-form games is hard
- Existing algorithms either may iterate large parts of the joint-action space or are iterative – which fail to converge in some cases
- E.g., meta-learning solvers solve for certain solution concepts in an inner loop, so that fast and constant time calculations to an approximate solution are sufficient
- This work trains a neural network that outputs approximate solutions with a parametrized objective
- "Turbocharging Solution Concepts: Solving NEs, CEs and CCEs with Neural Equilibrium Solvers", Marris et al., 2012 in Advances in neural information processing systems, 35

Matching of Remaining Topics

Agenda

- Seminar format
- Background information
 - Recap: Games and Nash equilibria
 - A brief taxonomy of games
 - What is "learning in games" anyway?
 - A short primer on (multi-agent) reinforcement learning
- Topic assignments
- Q&A

