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Each student will be assigned an individual topic and prepare a presentation as well as a short summary paper

• We will have biweekly meetings throughout the semester with two topics being presented in each meeting

• Attendance of all meetings is mandatory
• interaction with the other students' work is expected: E.g., answering prepared mini-quizzes
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45 min presentation
of topic

Short handout (extended abstract) of 
maximal 2 pages

Mini-quiz for the audience: < 1 min 
with MC or single-word responses
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• 𝐺 = (𝑁, 𝐴, 𝑢)

• Set of players ℐ = {1, … , 𝑁}

• Each player has a set of actions: 𝐴𝑖
• Utility function: 𝑢𝑖: 𝐴1 ×⋯× 𝐴𝑁 → ℝ

Outcome 𝑢𝑖(𝑎1, … , 𝑎𝑁) for player 𝑖 depends on all players‘ actions.
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• How should a player 𝑖 choose his or her action 𝑎𝑖?

• Goal: maximize expected utility 𝑢𝑖 .
• A player that achieves this given all the information that is available to them is 

called rational.

• Important: Information about other players, and information about other 
players‘ information about other players, ... („common knowledge“)

• Optimal play often involves randomization. A mixed strategy 𝜋 is a 
probability distribution (i.e., a vector) over all available actions.
• For the resulting space of mixed-strategies, we write Π or Δ𝐴.
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• 𝑎𝑖, 𝜋𝑖, 𝑢𝑖, ... describe the action/strategy/utility/... of a single player 𝑖.

• 𝑎, 𝜋, 𝑢 describe vectors over all players‘ actions/strategies/utilities. 
Such vectors are called action-/strategy-/... profiles.

• 𝑎−𝑖 , 𝜋−𝑖 , 𝑢−𝑖 describe the partial profiles for all players, except player 
𝑖.

• Utility of a strategy profile, means the expected utility of resulting 
action profiles:

𝑢𝑖 𝜋𝑖 , 𝜋−𝑖 ≔ 𝔼𝑎∼𝜋 𝑢𝑖 𝑎𝑖 , 𝑎−𝑖
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• A strategy profile 𝜋∗ is a Nash equilibrium (NE), if and only if no single 
player can improve his or her expected utility by unilaterally changing 
the strategy:

∀𝑖 and ∀𝜋𝑖 ∈ Π𝑖: 𝑢𝑖 𝜋𝑖 , 𝜋−𝑖
∗ ≤ 𝑢𝑖 𝜋𝑖

∗, 𝜋−𝑖
∗

• At least one Nash equilibrium exists in every finite game.

• Nevertheless, NE are generally hard to compute.
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Prisoner’s dilemma 
payoff matrix

• NE are often hard to compute, but there are other 
equilibrium notions, like (coarse) correlated 
equilibria, that are easier to attain.

• Besides being hard to compute, NE may not always 
lead to desirable outcomes.
→ “Social Dilemma”

• Sometimes, these problems can be circumvented 
in repeated games. 
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Number of players
• Special case: 2
• “few”
• Many/infinite/continuum

Stateless vs. stateful
• Normal form
• Extensive form
• Repeated game
• Simultaneous moves vs. sequential moves 

Types of utility functions
• Zero-Sum
• Nonzero-sum

Number of actions
• Finite
• Countably infinite
• Continuum

Observability of information
• Complete vs. incomplete
− Complete information: Players know the rules of the game and 

others’ payoff functions (but may possibly not know about past 
moves of other players or outcomes of chance events).

− Complete information: The structure of the game and the 
players’ utility functions are commonly known (but players may 
not see all the moves made by other players).

• Perfect vs. imperfect information
− Perfect information: Players can observe all events and the full 

‘state’ of the game (but may not know about opponents’ goals).
− Imperfect information: Games where some aspect of play is 

hidden from players (e.g., poker).
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Special Case 1

• Finitely many players

• Finitely many actions

• A single, simultaneous move

• Fixed outcomes, no randomness in utility 
functions

• (Both, complete and perfect information)
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Special Case 2

• Sequential actions by players, leading to a “game tree”

• Can have perfect or imperfect information
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Special Case 3

• Everything that’s good for P1 is bad for P2, can be written as
𝑢1 = 𝑢 𝑢2 = −𝑢

• The minimax theorem applies:

max
𝜋1

min
𝜋2

𝑢 𝜋1, 𝜋2 = min
𝜋2

max
𝜋1

𝑢 𝜋1, 𝜋2

• This makes it easier (in theory) to find and understand NE

• Examples: Two-player board games (Chess, Go, …)

• However: Game can still be extremely large and hard to solve in 
practice! 
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• Games with very large populations (e.g., 100s, 
1000s, millions of players).

• Each individual agent will have a negligible 
impact on others.

• Idea: model others as a “continuum” rather 
than individual actors.

• Name inspired by mean-field theory in physics. 

• Examples:
• Choosing a route on your commute to avoid a 

traffic jam.

• Behavior in saturated markets. 

Special Case 4
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”
“Most of non-cooperative game theory has focused on equilibrium in games […]. 

This raises the question of when and why we might expect that observed play in a 
game will correspond to one of these equilibria. One traditional explanation of 
equilibrium is that it results from analysis and introspection by the players in a 
situation where the rules of the game, the rationality of the players, and the 
players’ payoff functions are all common knowledge. […] 

This book develops the alternative explanation that equilibrium arises as the 
longrun outcome of a process in which less than fully rational players grope for 
optimality over time.

- Fudenberg & Levine, The Theory of Learning in Games (1999), page 1
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• Most common setting: Learning agents play the game against each other 
iteratively, in self-play.

• Agents update their strategies over time, dependent on observed 
outcomes, in order to improve their own expected utility.

• Update strategies:
• “Best-response dynamics”,

• improvement updates, often based on (regularized) gradient dynamics, or regret 
minimization,

• solving a “meta game”, of strategies encountered before (EGTA/PSRO),

• reinforcement-learning-based updates.
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Input: Data set of observations 𝑥𝑖 , 𝑦𝑖

𝑥𝑖: features 𝑦𝑖: labels

Goal: Find a model መ𝑓 such that

መ𝑓 𝑥𝑖 ≈ 𝑦𝑖
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At time t: 
• agent observes state 𝑠𝑡
• Agent chooses action 𝑎𝑡 = 𝜋 𝑠𝑡

Based on 𝑎𝑡, agent receives a reward 𝑟𝑡+1

Goal: Choose policy 𝜋 to maximize expected future 
return

𝑅𝑡 = 

𝜏=1

𝑇

𝛾𝜏 𝑟𝑡+𝜏

(with 𝛾 ∈ 0,1 : „discount rate“)

Note: future state depends on current actions!

In practice: randomized actions: 𝜋 𝑎𝑡, 𝑠𝑡 = 
probability of playing 𝑎𝑡 when observing 𝑠𝑡



At each time step 𝑡:

• Agent chooses 𝑎𝑡 from a set of actions 𝐴𝑡

• Stationary state transition distribution 
given 𝑠𝑡 and 𝑎𝑡: 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡)

• Rewards 𝑟𝑡 associated with state transitions

→Markov property:
„The future is independent of the past, 
given the present“
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Data: sampled transitions: 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1

Value Iteration

• Estimate the value of a state 𝑣(𝑠), choose the action that maximizes the expected value of 𝑠𝑡+1.

• or directly estimate state-action values 𝑞 𝑠, 𝑎 („Q-Learning“).

Policy Iteration

• Rather than learning values, act directly on the policy function 𝜋 𝑠, 𝑎 .

• Most common: „policy gradient“: Estimate 𝛻𝜋𝔼 𝑅𝑡 from data, then perform gradient ascent.

For MDPs (and some additional details), both converge to optimal policy, in theory.

Practical problem: computational tractability!
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• Tabular methods:
• Keep track of q-values for all combinations 𝑠, 𝑎 , model policies as explicit probability 

vectors 𝜋 𝑠, 𝑎 = 𝑃 𝑎 𝑠 .
→ Only feasible for small state and action spaces.

• Approximation Methods:
• Learn statistical models to represent one or more of  𝑣, 𝑞, 𝜋.

• Usually using neural networks→ „deep reinforcement learning“.

• Examples of deep RL:
• Deep Q-learning (DQN): Model 𝑞 𝑠, 𝑎 via a neural net (+ extra tricks).

• DDPG (deep deterministic policy gradient): Model 𝑞 𝑠, 𝑎 as one neural net, then use policy 
iteration on second neural net 𝜋 𝑠, 𝑎 based on predicted improvement 𝛻𝜋 𝑞 𝑠, 𝑎 → „actor-
critic method“.
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• Markov game as a generalization of MDP
• Main Challenge: environment loses its

stationarity: state transitions now depend
on other agents‘ actions!
→ convergence results from SA-RL break

• Cooperative MARL:
• Agents share a common utility function, 

need to learn to work together
• Competitive MARL:

• Agents have individual utility functions,
only interested in their own rewards

• Mixed settings (e.g., team games) are also 
possible



• Equilibrium?
• For two-player zero-sum games: Yes!
• Otherwise…?

• Super-human performance?

• Social welfare?

Further Reading: Shoham et al. (2007): If multi-agent learning is the 
answer, what is the question? 
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• Fudenberg, et al. (1998): The theory of learning in games
• Foundation for equilibrium theory, replicator dynamics and fictious play, normal and extensive form games

• Can be borrowed at chair, TUM library has a few hard-copies

• Young (2004): Strategic learning and its limits
• Regret and no-regret learning, equilibrium concepts, fictious play

• Can be borrowed at chair

• Shalev-Shwartz (2011): Online learning and online convex optimization
• Survey paper on online learning that introduces , among other, FTL and FTRL, …

• Available online

• Nisan, Roughgarden, Tardos, Vazirani (2007): Algorithmic Game Theory
• Collection of guest chapters on different topics in AGT, e.g., complexity, learning, applications, …

• Sutton & Barto (2018): Reinforcement Learning. An Introduction (2nd edition)
• The standard reference for (single-agent) reinforcement learning.

• Latest edition available for free at http://www.incompleteideas.net/book/the-book.html
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Practical Hint:

• eAccess is a service provided by the TUM university library. Using eAccess, you 
can access many scientific papers online that would usually be behind a paywall.

See https://login.eaccess.tum.edu/login

• If you still cannot access a paper/book you need:

1. Check the TUM university library catalog.
Some books are only available as hard copies

2. Ask your advisor for help.
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Course Content
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01 Normal Form Games & Equilibria

02 Regret Matching & Convergence

03 Zero-Sum, Fictitious Play, MiniMax

04 MDP + Q-Learning

05 Policy Gradients

06 Stochastic Games + Solution Concepts + Shapley Algorithm

07 Lemke-Howson Algorithm

08 Multiplicative Weights & Replicator Dynamics

09 Regret Policy Gradients

10 Collusion

11 Policy Space Response Oracles

12 Sophisticated/Bayesian Learning

13 Inverse Reinforcement Learning

14 Neural Equilbirum Solvers
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Topic 01

Nils

Fabian

Matthias

Markus

Dima

Back to overview

• Introduce basic concepts from Game Theory
• Normal Form Game

• Strategy, Dominance, Optimality

• Solution Concepts:
• Nash Equilibrium

• Correlated Equilibrium

• Coarse Correlated Equilibrium

• ... others ?

• Illustrate concepts with examples
• Prisoners’ Dilemma, Matching Pennies, Chicken, etc.



• The regret matching algorithm (Hart & Mas-Colell, 2000) seeks to minimize 
regret about its actions.
• Regret of not having chosen an action: Difference between the utility of that action 

and the utility of the action we actually chose, with respect to the fixed choices of 
other players.

• It learns from past behavior by favoring actions that have resulted in positive 
outcomes and avoiding actions that have resulted in negative ones.

• Is the foundation for modern poker bots

• Considers simple normal-form games

• The averaged strategy then converges to a (correlated) equilibrium
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Topic 02

Nils

Fabian

Matthias

Markus

Dima

Back to overview

https://doi.org/10.1111/1468-0262.00153


• MiniMax Value Iteration:
• Determine the best worst-case scenario

• Solution corresponds to a Nash Equilibrium in 2-Player Zero-Sum games

• Fictitious Play:
• Agents assume that opponents play stationary strategies

• Play the best-response against the frequency of opponents play

• Convergence to the Nash Equilibrium in 2-Player Zero-Sum games

• Variety of adaptions of this learning procedure

Literature: Fudenberg and Levine (1998)
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Topic 03

Nils

Fabian

Matthias

Markus

Dima

Back to overview
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Topic 04

Nils

Fabian

Matthias

Markus

Dima

Back to overview

• A Markov decision process is the mathematical framework of many fields, 
such as
• Reinforcement learning
• Planning
• Control theory
• … and many more

• Introduce MDP mathematics and concepts
• State, action, transition, reward, policy, etc.
• What does it mean to “solve” an MDP?

• Discuss Q-learning as one example of an approximate MDP solver

• 𝑄 𝑠𝑡 , 𝑎𝑡 ← 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼 ⋅ 𝑅 𝑠𝑡 , 𝑎𝑡 + 𝛾 ⋅ max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄 𝑠𝑡 , 𝑎𝑡
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Topic 05

Nils

Fabian

Matthias

Markus

Dima

Back to overview

• Prerequisite: MDPs

• Policy gradient theorem (PGT):

𝛻𝜃𝐽 𝜃 = 𝔼𝜋𝜃 𝛻𝜃 log 𝜋𝜃 𝑠, 𝑎 ⋅ 𝑄𝜋𝜃 s, a

• Many solution methods build upon PGT

• Your task:
• Understand, explain, illustrate

• Discuss advantages and disadvantages of policy gradient methods



• Stochastic games (Shapley, 1953) are a natural extension of MDPs to include 
multiple agents. We want to look at the basic definitions and examples:
• Stochastic games contain both MDPs and matrix games as subsets of the framework

• Similar to normal-form games, there are different types (e.g., zero-sum stochastic 
games)

• Only for some settings equilibria solutions are known to exist

• The Shapley algorithm can be used to compute equilibria in zero-sum 
stochastic games
• The algorithm is based on the proof of the equilibrium existence (Shapley, 1953)

• The method is similar to value iteration for MDPs (Bowling & Veloso, 2000)
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Dima

Back to overview



• The Lemke-Howson algorithm (Lemke & Howson, 1964) is an algorithm that 
computes a Nash equilibrium of two-player matrix games.

• It doesn’t scale well but does solve the game exactly.
• Worst case: Number of operations may be exponential in the number of pure 

strategies.

• It resembles the simplex algorithm (from linear programming).
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Topic 07

Nils

Fabian

Matthias

Markus

Dima

Back to overview

https://doi.org/10.1137/0112033


• Replicator Dynamics
• Motivated by the evolution of biological processes
• Does not necessarily converge to a stable state (i.e., a Nash equilibrium)

• Multiplicative Weights Update:
• Discrete-time variant of Replicator Dynamics
• Assign each action a weight
• Update the weight multiplicatively in each iteration
• Converges to the Nash Equilibrium in time-average strategies of 2-Player Zero-Sum games
• Actual strategies diverge from the equilibrium

• Literature: Fudenberg and Levine (1998), Bailey and Piliouras (2018)
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Topic 08

Nils

Fabian

Matthias

Markus

Dima

Back to overview



• Learning parameterized policies (e.g., neural networks) in RL.

• Introduced by Srinivasan et al. (2018) from Deepmind.

• Combination of
• standard gradient-based learning (following the policy gradient uphill) and

• regret minimization.

• They consider partially-observable multiagent environments and the 
algorithm is implemented in Openspiel.
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Topic 09

Nils

Fabian

Matthias

Markus

Dima

Back to overview

https://proceedings.neurips.cc/paper/2018/hash/e22dd5dabde45eda5a1a67772c8e25dd-Abstract.html
https://openspiel.readthedocs.io/en/latest/algorithms.html


• In general, learning algorithms do not need to converge to Nash equilibria

• Sometimes the process can even lead to undesirable outcomes such as 
collusion, e.g., firms charge supracompetitive prices ( Calvano et al., 2020)

• On the other hand, the choice of algorithms can change the game. 
And collusive outcomes might actually just be equilibrium strategies in the 
new game (den Boer et al, 2022)

• Therefore, choosing the right learning algorithm and model is crucial.
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Topic 10

Nils

Fabian

Matthias

Markus

Dima

Back to overview



• Considers the meta-game, where agents are trained via RL in an inner loop and we 
apply game-theoretic reasoning in the outer loop

• Goal is to arrive at more robust strategies by training a collection of low-level 
controllers

• Subsumes classical approaches such as independent learning, iterated best 
response, double oracle, and fictitious play.

• Applying this is costly, but opens up the path to reason about more practical 
approaches

• „A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning“, 
Lanctot et al., 2017 in Advances in neural information processing systems, 30
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Topic 11

Nils

Fabian

Matthias

Markus

Dima

Back to overview



• Sophisticated learning
• Many learning algorithms fail to identify patterns (like cycles)

• Sophisticated Learning explicitly attempts to find those patterns

• Bayesian learning
• Agents have prior knowledge about the game (opponents' strategies, random state)

• Represent different beliefs as different models

• If priors are consistent with the true model, the strategies converge to the true 
model, which implies convergence to an equilibrium

Literature: Fudenberg and Levine (1998), Wu et al. (2022)

Chair of Decision Sciences & Systems 40

Topic 12

Nils

Fabian

Matthias

Markus

Dima
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• Idea
• Assume that optimal actions are already observed by agents
• Find the reward function that leads to these actions

• Three classes of algorithms
• Max Margin – Max the margin between optimal policy and value function
• Bayesian – Use prior knowledge to model the optimal reward
• Maximum Entropy

• Extensions
• Multi-Agent Inverse Reinforcement Learning
• Suboptimal policy demonstrations
• Feedback-Types

Literature: Adams et al. (2022)
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Topic 13

Nils

Fabian

Matthias

Markus

Dima

Back to overview



• Finding NEs and (C)CEs for normal-form games is hard

• Existing algorithms either may iterate large parts of the joint-action space or are 
iterative – which fail to converge in some cases

• E.g., meta-learning solvers solve for certain solution concepts in an inner loop, so that 
fast and constant time calculations to an approximate solution are sufficient

• This work trains a neural network that outputs approximate solutions with a 
parametrized objective

• „Turbocharging Solution Concepts: Solving NEs, CEs and CCEs with Neural Equilibrium 
Solvers“, Marris et al., 2012 in Advances in neural information processing systems, 35
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Topic 14

Back to overview

Nils

Fabian

Matthias

Markus

Dima



Chair of Decision Sciences & Systems 43



• Seminar format

• Background information
• Recap: Games and Nash equilibria

• A brief taxonomy of games

• What is “learning in games” anyway?

• A short primer on (multi-agent) reinforcement learning

• Topic assignments

• Q&A

Chair of Decision Sciences & Systems 44



nils.kohring@cit.tum.de
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