
Lock-Free Buffer Managers Do Not Require
Delayed Memory Reclamation

Michael Haubenschild
Salesforce

mhaubenschild@salesforce.com

Viktor Leis
Technische Universität München

leis@in.tum.de

ABSTRACT
High-performance data systems running on modern many-core
CPUs should not require readers to acquire physical locks. There
exist multiple synchronization schemes that allow this, but they
all require a solution for concurrent memory reclamation. In this
paper, we show that one can eschew such a scheme when a few
basic requirements are fulfilled. We exploit this insight in our high-
performance buffer manager implementation in LeanStore, which
as a consequence got simpler, more robust, and more performant.

ACM Reference Format:
Michael Haubenschild and Viktor Leis. 2023. Lock-Free Buffer Managers Do
Not Require Delayed Memory Reclamation. In 1st Workshop on Simplicity
in Management of Data (SiMoD ’23), June 23, 2023, Bellevue, WA, USA. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3596225.3596228

1 INTRODUCTION
EfficientReads on SharedData Structures. For high-performance
systems, concurrent access to shared data structures by multiple
threads is crucial. In particular, readers should not acquire a lock
(not even a shared lock), as it can severely degrade scalability [12].
Different synchronization schemes exist where readers do not need
to write to shared memory at all, e.g., lock-free data structures [8]
and optimistic locking [4]. Conventional wisdom is that all schemes
that avoid pessimistic locking require some form of concurrent
memory reclamation to prevent node deletion from causing crashes.
Memory reclamation increases implementation complexity and
adds runtime overhead or makes the system less robust. In this
paper, we show that – remarkably – one can avoid memory recla-
mation altogether if two conditions, which we describe in Section 3,
are fulfilled. These conditions hold for our high-performance buffer
manager in LeanStore, which got simpler and more robust once we
had this insight.
Background: Lock-Free Reads. Lock-free data structures [8, 13,
15, 16] allow access with multiple concurrent threads without them
acquiring locks. Modifying operations (insert, update, and delete)
employ atomic read-modify-write (RMW) primitives, e.g., compare
and swap (CAS), to manipulate the data structure. Read opera-
tions only perform loads, and depending on the guarantees of the
concrete data structure (wait-free, lock-free, or obstacle-free), can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SiMoD ’23, June 23, 2023, Bellevue, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0783-4/23/06. . . $15.00
https://doi.org/10.1145/3596225.3596228

Table 1: Qualitative comparison of concurrent memory recla-
mation strategies.

Epochs Hazard Stable Buffer Frames &
Pointers Version Counters

efficiency + ~ ++
robustness - + ++

impl. complexity + ~ ++

always finish in a bounded numbers of steps or may require a restart
if they detect any inconsistency, e.g., a broken chain in a linked
list. An alternative are optimistic locks, which consist of a normal
lock and an additional atomic version counter [4–6, 12]. A read
operation does not acquire any locks. Instead, it reads the version
before and after the operation. If it is the same, and in addition the
lock was unlocked before and after the read, it can be certain that
no in-between operation modified the object. On the other hand, if
the version counter changed, then the operation needs to restart.
Write operations increment the version counter while they hold the
lock. Optimistic locks can be combined with lock coupling [10, 11],
which yields a powerful building block for implementing scalable
synchronization protocols, e.g., for B-trees or tries.
Concurrent Memory Reclamation. Both lock-free data struc-
tures and optimistic locks need to solve the challenge of freeing
allocations while concurrent readers, which do not hold any lock
at all and are thus “invisible” to the deleting thread, might be still
accessing them. The following example illustrates how this can
lead to a segmentation fault in thread T1:

N1 N2

Step 1:
T1 reads pointer to N2

Step 2:
T2 frees N2

T1 T2

... N1 N2 ...

free(N2)

Step 3:
T1 reads N2

N1 ...

T1 *nextcur = cur->next

In the figure, after T1 has read a pointer to N2, but before it can
dereference it, another thread T2 frees N2. If T1 now dereferences
that pointer, a crash may occur. A naive solution is to never physi-
cally free allocations. But since memory is a scarce resource, leaking
memory is generally not feasible. We describe the two common
existing solutions that allow to eventually free unused allocations
in Section 2. Unfortunately, both come with disadvantages.
Synchronization in LeanStore. In LeanStore [9], we use an opti-
mistic lock for each page to synchronize buffer pool accesses. The
B-tree avoids locking pages for inner node traversals and leaf page
point lookups using an optimistic mode – making reads lock-free.

https://orcid.org/0000-0002-1825-0097
https://doi.org/10.1145/3596225.3596228
https://doi.org/10.1145/3596225.3596228

SiMoD ’23, June 23, 2023, Bellevue, WA, USA Michael Haubenschild and Viktor Leis

Thread 1
epoch: 7

Thread 2
epoch: 4

P2

...

...;k:233,v:
"p2Content";
k:467, v:...

Epochs Hazard Pointers Stable Buffer Frames + Version Counters

P4

...

...;k:42,v:
"someValueOn
Page4";k:107,
v:...

Timestamp TS1 Timestamp TS2

Thread 1
epoch: 3

access
P4 in ep.3

retire P4
in ep.4

evict P4;
load P2

Thread 2
epoch: 5

Thread 2

P2

...

...;k:233,v:
"p2Content";
k:467, v:...

P4

...

...;k:42,v:
"someValueOn
Page4";k:107,
v:...

Timestamp TS1 Timestamp TS2

Thread 1
HP: P4

publish HP;
access P4

retire P4;
HP prevents
eviction

evict P4;
load P2

Thread 2

enter ep.7

Thread 1
HP:

Thread 2

P2 ...;k:233,v:
"p2Content";
k:467, v:...

P4 ...;k:42,v:
"someValueOn
Page4";k:107,
v:...

Timestamp TS1 Timestamp TS2

Thread 1

read v1;
access P4

evict P4;
inc. version;
load P2

Thread 1

v1

read v2≠v1;
restart

v2

Figure 1: Three strategies for how a buffer frame occupied by page P4 can be eventually reused for another page P2 in the
presence of a lock-free reader (Thread 1). Both epochs and hazard pointers delay the physical deallocation until some timestamp
TS2 when there are no more concurrent readers. Stable buffer frames & version counters allow reusing the page immediately
with the reader detecting the inconsistency.

LeanStore also supports an exclusive mode for all modifying oper-
ations and a shared mode for long-running read operations (e.g.,
range scans). The first version of LeanStore used epoch-based recla-
mation for evicting pages and reusing buffer frames [9]. In this
paper, we describe how we were able to get rid of concurrent mem-
ory reclamation completely by adhering to two basic requirements.
As shown in Table 1, this resulted in a simpler, more robust and
efficient system.

2 EXISTING SOLUTIONS FOR MEMORY
RECLAMATION

Retired List. The existing approaches for concurrent memory
reclamation decouple the logical and the physical delete of an object.
The logical delete unlinks the object from the data structure so that
it is no longer reachable by new operations. Then, it is put into a
so-called retired list of objects that are to be freed at a later point
in time. The approaches differ in the mechanism how they detect
that there are no lock-free concurrent readers on those objects
anymore. The actual deallocation of that object can then be done
either by the thread that originally unlinked it, or by other threads
in a collaborative fashion.

2.1 Epoch-Based Reclamation
Algorithm. Each thread has a counter, called local epoch, that all
other threads can read. Threads regularly update their local epoch
with the current global epoch. The global epoch is a monotonically
increasing counter, which is frequently incremented. So all epoch
counters can only ever increase, with local epochs potentially lag-
ging behind the global epoch. When an allocation is put into the
retired list, it is tagged with the current global epoch. The retired list
is frequently scanned for allocations that are tagged with an epoch
that is smaller than the minimum of all local epochs, which can
then be physically freed. An example for this is shown in Figure 1.
Discussion. Epochs are fairly easy to understand and implement.
They are also efficient in the hot path, as individual object accesses
require no additional overhead. The work to update the local epoch
and increment the global epoch can be amortized over multiple
operations. On the downside, the frequency of the updates is a
tuning parameter that needs to be chosen carefully: Incrementing
epochs too frequently incurs overhead, but if they are not updated
often enough, the retired list may grow large. Worst of all, a single

straggler thread may halt the entire memory reclamation, leading
to an unbounded amount of garbage accumulating.

2.2 Hazard Pointers
Algorithm.Hazard pointers [14] are amore precise way of tracking
concurrent accesses by other threads than epochs. Each thread has
a small number of hazard pointer slots which it uses to announce
to other threads which objects it is currently reading. It does so
by first reading a pointer, then storing that pointer in its array
of hazard pointers, and finally reading the pointer again, check-
ing if it is still the same. If that is the case, the thread can safely
dereference the pointer. Multiple slots are required to achieve some
kind of overhand locking. When a thread wants to delete an object
from the retired list, it has to check that no hazard pointer from
any of the threads currently points to that object. In the hazard
pointer example in Figure 1, thread 2 cannot immediately evict P4
at timestamp TS1, since thread 1 holds a hazard pointer to P4.
Discussion. The main benefit of hazard pointers is that the size of
the retired list is bounded by the total number of hazard pointers
in the system. But compared to epoch-based reclamation, hazard
pointers are more complex to implement, and a mistake in the
precise sequence of operations can lead to subtle bugs. The biggest
issue, however, is their overhead. For every object being accessed, a
sequentially consistent atomic store to a hazard pointer is required
in order to flush the write buffer of the CPU core.

3 IDEA: CONCURRENT READERS DETECT
EVICTION AND RESTART

Requirements. As discussed above, both of the existing mem-
ory reclamation schemes have disadvantages. We realized that our
buffer manager in LeanStore fulfills two requirements that together
allow us to get rid of memory reclamation altogether [1]:

(1) Our buffer manager never actually releases memory back to
the operating system. All memory for the buffer pool is pre-
allocated at application startup. When a page is evicted, its
memory is simply put into a free list.

(2) The version counter of each optimistic lock is strictly mono-
tonically increasing. It is stored in the buffer frame and not the
page itself, and is not reset between page evictions. Pages are
evicted while holding the optimistic lock exclusively, which
increases the version counter before the lock is released.

Lock-Free Buffer Managers Do Not Require
Delayed Memory Reclamation SiMoD ’23, June 23, 2023, Bellevue, WA, USA

Table 2: Performancemetrics for the reclamation schemes for
random OLC reads on a B-tree with 8 byte keys and values.

B-tree ops / scale w/ instr. / cycles /
size sec 32 thr. op op

Epochs 160kb 13.4M 31.0 181 260
Hazard Pointers 160kb 10.1M 30.9 203 345
Stable Buffer Frames 160kb 13.6M 30.8 175 257
& Version Counter

Epochs 1.6gb 1.8M 30.8 363 1930
Hazard Pointers 1.6gb 1.4M 31.1 393 2448
Stable Buffer Frames 1.6gb 1.9M 30.0 358 1842
& Version Counter

The first requirement guarantees that there is no segmentation fault
when a thread tries to access the memory of a page after it has been
evicted. However, it may read the data of a completely different page
that has been loaded into that memory location in the meantime.
But the second requirement ensures that the version validation will
fail in that case, and the reader will restart its operation, which
is shown in Figure 1 at timestamp TS2. When traversing the tree
again, the thread will (re)load all required pages into the buffer pool.
Thus, there is no need for delaying page eviction until there are no
more potential concurrent readers.
Implementation. Putting this idea into practice is very straight-
forward. We simply remove all epoch related code from LeanStore,
and instead of resetting the version counter when a page gets
evicted, it is now incremented, which is a trivial change. The op-
timistic locking code already needed to be able to handle restarts
before, and thus did not require any adaptation. Remarkably, this
change is also orthogonal to the persistency scheme [7], the con-
currency control scheme [3], and contention management [2], all
of which naturally integrate with it via optimistic locking.

4 MICROBENCHMARKS
Table 2 shows the performance characteristics of the different mem-
ory reclamation schemes for random B-tree lookups. The experi-
ments are conducted on an AWS EC2 c6i.16xl instance which has
32 physical CPU cores. Table 2 shows that stable buffer frames and
epochs reach similar single-threaded performance, while hazard
pointers are ~20% slower. All competitors use optimistic lock cou-
pling (OLC) for synchronization, so they scale very well (30 − 31×)
with 32 threads. While epochs are almost as fast as stable buffer
frames, their main disadvantage is that an unbounded amount of al-
locations can accumulate in the retired list when there is a straggler
thread, which does not show up in the microbenchmark. Hazard
pointers are robust, but require additional instructions on the hot
path, including sequentially consistent atomic stores which flush
the write buffer of the CPU core. Note that the performance differ-
ence between the schemes is not that pronounced in this benchmark,
as B-tree lookups consist of relatively expensive binary searches
on a few large nodes. However, it is more representative of a real
workload in LeanStore than, e.g., a simple linked list traversal.

5 FUTUREWORK: GENERALIZATION
In this paper, we have shown that LeanStore does not require con-
current memory reclamation despite employing scalable optimistic
reads. We believe that this scheme is directly applicable to many
existing buffer-managed systems. A remaining question is whether
our idea can be generalized to arbitrary lock-free data structures.
A general purpose allocator for data structures synchronized with
optimistic locks can be implemented without concurrent memory
reclamation by adhering to the following principles:

(1) When freeing an allocation, mark its memory with
MADV_DONTNEED instead of unmapping it from the virtual
address space. This way, no physical memory is consumed
for that memory range anymore. Subsequent accesses to that
address would be safely redirected to the zero page by the
OS. Reads will consequently also return 0s.

(2) The version counter validation that is part of the optimistic
locking protocol must treat “0” always as an invalid version,
as it might be the result of an optimistic reader accessing the
zero page after the memory has been deallocated.

(3) The version counter must always be increasing (or be “0”).
This can be achieved either by

(a) remembering the version counter, e.g., in a hash table, and
restoring it on the next allocation or by

(b) storing the version counter separately from the actual
allocation, e.g., in a global array.

The granularity of allocations with this approach is multiples of
the page size. An open challenge is how to reuse the memory for
allocations of a different sizes, as the version counter might be
overwritten with arbitrary payload data.

REFERENCES
[1] Adnan Alhomssi, Michael Haubenschild, and Viktor Leis. 2023. The Evolution of

LeanStore. In BTW (LNI, Vol. P-331). 259–281.
[2] Adnan Alhomssi and Viktor Leis. 2021. Contention and Space Management in

B-Trees. In CIDR. www.cidrdb.org.
[3] Adnan Alhomssi and Viktor Leis. 2023. Scalable and Robust Snapshot Isolation for

High-Performance Storage Engines. Proc. VLDB Endow. 16, 6 (2023), 1426–1438.
[4] Jan Böttcher, Viktor Leis, Jana Giceva, Thomas Neumann, and Alfons Kemper.

2020. Scalable and robust latches for database systems. In DaMoN.
[5] Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010.

A practical concurrent binary search tree. In PPoPP. 257–268.
[6] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. 2001. Cache-

Conscious Concurrency Control of Main-Memory Indexes on Shared-Memory
Multiprocessor Systems. In VLDB. 181–190.

[7] Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, And
How To Exploit It: High-Performance I/O for High-Performance Storage. Proc.
VLDB Endow. 16, 9 (2023).

[8] Alex Kogan and Erez Petrank. 2011. Wait-free queues with multiple enqueuers
and dequeuers. In PPoPP. 223–234.

[9] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In ICDE.

[10] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42, 1 (2019), 73–84.

[11] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The
ART of practical synchronization. In DaMoN.

[12] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In EuroSys. 183–196.

[13] Maged M. Michael. 2002. High performance dynamic lock-free hash tables and
list-based sets. In SPAA. 73–82.

[14] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects. IEEE Trans. Parallel Distributed Syst. 15, 6 (2004), 491–504.

[15] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms. In PODC. 267–275.

[16] Ori Shalev and Nir Shavit. 2006. Split-ordered lists: Lock-free extensible hash
tables. J. ACM 53, 3 (2006), 379–405.

	Abstract
	1 Introduction
	2 Existing Solutions for Memory Reclamation
	2.1 Epoch-Based Reclamation
	2.2 Hazard Pointers

	3 Idea: Concurrent Readers Detect Eviction And Restart
	4 Microbenchmarks
	5 Future Work: Generalization
	References

