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Abstract—Modern high-performance analytical query engines
follow one of two execution paradigms. Vectorized engines im-
plement an interpreter for relational algebra operators that op-
erates on batches of tuples to maximize performance. Compiling
engines, on the other hand, generate optimized and specialized
code for every query. This paper unifies these two approaches.
We present Incremental Fusion, a novel execution paradigm for
modern, high-performance query engines. An Incremental Fusion
engine performs operator-fusing code generation – with a twist:
The compiling engine generates its own vectorized interpreter.
The engine uses a finite set of building blocks below relational
algebra for code generation. It can enumerate each building
block and generate a vectorized primitive for it. The vectorized
interpreter becomes a free byproduct of carefully choosing the
right abstraction for code generation. This allows an Incremental
Fusion engine to dynamically switch between vectorized inter-
pretation and operator-fusing code generation. We demonstrate
Incremental Fusion in our open-source prototype engine InkFuse.
We measure InkFuse against the state-of-the-art vectorized and
compiling engines DuckDB and Umbra. InkFuse is able to achieve
competitive performance both for low-latency processing, and
compute-intensive long-running queries.

I. INTRODUCTION

Analytical query engines have evolved significantly over the
past years. Larger main-memory sizes and increased storage
bandwidth led to query engines becoming increasingly com-
pute bound. To maximize performance on modern hardware,
engines implement one of two query execution paradigms.

Vectorized engines implement an interpreter for relational
algebra that operates on tuple batches using columnar prim-
itives [1]. For example, when interpreting the build side
of a hash join, the engine invokes primitives for hashing,
materializing rows, and inserting pointers to the materialized
rows into a hash table. The primitives amortize interpretation
overhead and have predictable data access patterns that result
in high performance on modern hardware [2].

Code-generating engines just-in-time (JIT) compile each
query into machine code. This allows the engine to generate
specialized code that fuses pipelined relational operators into
the same loop [3]. Tuples can reside in CPU registers across
operator boundaries, minimizing memory and cache accesses.

Virtually all commercial state-of-the-art OLAP engines are
based on either vectorization [4], [5] or code generation [6],
[7]. Kersten et al. [2] experimentally compare the two models
and find that while both models can be efficient, neither
dominates the other in all use cases. The intellectual battle
between the two models has been ongoing for one decade,
and neither of the two approaches has superseded the other.
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Fig. 1. Combining the best of vectorized and compiled query execution.

Recent advances [8], [9] blur the line between both models.
Based on compilation, they make it possible to generate code
that imitates vectorized execution. For long-running queries,
this consistently outperforms basic vectorization and compi-
lation. However, we argue that this does not solve the core
disadvantage of compiling engines: compilation takes time
while a vectorized interpreter can execute queries instantly.
Compiling engines that imitate vectorized execution still need
to generate code whenever a new query enters the system.
While it is possible to build a compiling engine for low-latency
data processing, it requires a sophisticated compilation stack
and deep expertise in code generation [10]–[13].

State-of-the art compiling engines translate queries into
a custom intermediate representation (IR). This IR is then
consumed by different execution backends. In the compiling
engine Umbra, a backend optimized for compute-intensive
queries takes the custom IR and compiles it to low-level
LLVM IR [14]. It then uses LLVM to generate an efficient
executable for the query. Since generating machine code with
LLVM can take hundreds of milliseconds, Umbra implements
multiple backends optimized for low-latency query processing
on different CPU architectures [11], [13]. These backends
directly translate the custom IR to x86 or ARM Assembly.
They implements novel variations of compiler optimizations
such as register allocation and liveness checking that mini-
mize compilation time. While the machine code generated by
these backends is less performant, they can start processing
tuples almost instantaneously. Since a compiling engine cannot
know in advance which backend performs best, it needs
additional infrastructure to dynamically switch between the
backends [10]. This allows competitive performance for long-
and short-running queries. Overall, building a low-latency
code-generating engine requires deep compiler expertise. This
expertise is not needed to build a fast vectorized engine,



significantly reducing the barrier of entrance.
So far, no engine has managed to combine all strengths

of code generation and vectorized interpretation. There is no
compiling engine that makes low-latency query execution easy.
There is no vectorized engine that can match the computational
efficiency of a compiling engine. This has a tangible impact
on commercial database systems. Companies need to choose
between the two execution paradigms, carefully evaluating
which strengths matter most for them. Recently, vectorization
has come out ahead more frequently [15]–[19]. Databricks, for
example, recently switched from compilation to vectorization,
arguing that it is “easier to build, profile, debug, and operate
at scale” [19].

This paper presents Incremental Fusion, the first execution
paradigm unifying compilation and vectorized interpretation.
Incremental Fusion subsumes compilation and vectorized in-
terpretation, combining both of their strengths. Incremental
Fusion can explore the wide space of execution strategies
between these two extremes, making it possible to mix in-
terpretation and code generation in almost arbitrary ways.

Incremental Fusion is powered by a novel suboperator
abstaction below relational algebra. There are a finite number
of suboperators that can represent the execution plan for
arbitrary SQL queries. The engine performs operator-fusing
code generation on these suboperators.

Using these finite building blocks for code generation,
the query engine generates its own vectorized interpreter. It
implements a special source and sink that read from and write
to columnar chunks of data, respectively. By wrapping each
suboperator between this source and sink, the engine generates
a vectorized primitive for the suboperator. The vectorized
interpreter becomes a free byproduct of having chosen the
right abstraction for code generation.

This allows Incremental Fusion to combine the best of
vectorized interpretation and compilation. Since the engine can
enumerate all suboperators, a complete vectorized interpreter
can be generated ahead of time, allowing for low-latency
processing. At the same time, the engine can perform tra-
ditional operator-fusing code generation, enabling high peak
performance. The engine can dynamically switch between
these strategies at runtime, and combine them in novel ways.
For example, it is possible to split an executable pipeline into
three steps, performing compilation for the first and last step,
while interpreting the middle one.

All of this is possible without over-complicating the query
engine. An Incremental Fusion engine does not require a
sophisticated compilation stack. By generating its own inter-
preter, the engine can effectively hide compilation latencies.
Our open-source, proof-of-concept Incremental Fusion engine
InkFuse generates C [20]. InkFuse is able to compete with the
state-of-the-art compiling and vectorized systems Umbra and
DuckDB across queries and data sizes.

II. BACKGROUND: QUERY EXECUTION PARADIGMS

In this section, we first discuss interpreted and compiled
query execution individually, and then compare them.

A. Interpreting Query Engines

Interpreting relational algebra is the most common approach
to evaluating queries. Engines of this class first translate
queries into a plan of relational algebra operators. After-
wards, they use generic implementations for these operators
to interpret the plan directly. Implementing these generic
operators traditionally follows the Volcano iterator model [21].
With Volcano, each relational operator provides a simple
nextTuple() function that emits a single result row. This
function is then called repeatedly until the entire result set
is produced. Query engines can evaluate complex relational
algebra plans by composing multiple of these operators.

However, Volcano engines are not tailored to modern CPUs.
They exhibit bad code locality, have complex data access
patterns, and require multiple virtual function calls to produce
even a single tuple. Yet, this model is still commonly used in
OLTP engines where execution is usually not bottlenecked by
CPU-intensive work on large data sets [22], [23].

To enable high-performance analytical processing, Mon-
etDB moved away from the Volcano iterator model [24], [25].
Instead of operating on a single row, the interpreter operates
on the full, materialized input and produces all output rows
at once. This full-materialization model allows for high code
locality with simple data-access patterns, resulting in efficient
code for modern CPUs. Even today, MonetDB is still one of
the faster open-source analytical systems.

MonetDB/X100 went beyond MonetDB by implementing a
hybrid between the Volcano model and full materialization [1].
Rather than evaluating queries tuple-at-a-time, X100 imple-
ments a vectorized interpreter that operates on tuple batches.
Vectorized engines implement operators and expressions by
composing fine-granular primitives. These primitives are pre-
compiled and specialized for all type combinations, eliminat-
ing the virtual function calls of Volcano engines and unlocking
the super-scalar capabilities of modern CPUs. A standard hash
join, for example, is implemented using primitives for per-
forming column-level hashing, combining of these hashes, and
inserting rows into a hash table. Vectorized interpretation is
the most widely-used approach to high-performance analytical
query processing today [4], [5], [15]–[17], [19], [26].

Fig. 2a presents a query being evaluated in a vectorized
engine. We show four of the primitives invoked during query
execution. Most primitives consist of a tight for-loop around
a set of input and output columns (1, 3, 4). Only hash-
join probing (2) is an exception. As a single input tuple can
have multiple matches, the code contains a nested loop. Some
primitives such as comparison with a constant (4) require extra
arguments. As a user can send arbitrary SQL queries, having a
comparison primitive for each integer is not feasible. The same
primitive is used for all constants. The constant is provided by
the runtime system. Objects such as hash tables are passed to
the primitives in a similar way (1, 2).

B. Compiling Query Engines

Another approach to high-performance query processing is
runtime code generation. Rather than implementing an inter-
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agg_create_group(ht, in: int[], out: void*[]): 
  for i in range(0, in.size):
    out[i] = ht.lookup_group(in[i])

ht_probe(ht, in: int[], out: void*[]):
  out_idx = 0
  for i in in range(0, in.size):
    matches = ht.lookup(in[i])
    for match in matches:
      out[out_idx++] = match

tscan(job, in:int[], out: int[]):
  for i in range(job.start, job.end):
    out[i - job.start] = in[i]
    
cmp_eq_int(constant: int, in: int[], out: bool[]):
  for i in range(0, in.size):
    out[i] = (in[i] == constant)
    (a) Primitives in a Vectorized Engine

pipe1:
execute(job, join_ht, rel_a):
  for i in range(job.start, job.end):
    if rel_a.a == 5:
      join_ht.insert_row(rel_a.a, rel_a.d)

pipe2: 
execute(job, join_ht, agg_ht, rel_b):
  for i in range(job.start, job.end):
    matches = join_ht.lookup(rel_b.c[i])
    for match in matches:
      group = agg_ht.lookup_group(match.d)
      group.agg_state += rel_b.d[i]

          

        (b) Code Generated by a Compiling Engine

1

2

3

4

Fig. 2. Execution of the query SELECT a.d, sum(b.d) FROM A a, B b WHERE a.a = 5 AND a.b = b.c GROUP BY a.d.

preter for relational algebra, the engine generates optimized
code for every query. Every relational algebra operator im-
plements a produce(), and consume() interface. Calling
these functions generates code for the operator in the given
query. To evaluate the query, this code gets compiled and
executed [3]. Runtime code generation is used in academic
and industrial systems [6], [14], [27], [28].

The code generated by these engines is highly specialized.
As Fig. 2b shows, all operators of a pipeline are fused into
a single loop, blurring operator boundaries. In the second
pipeline, the outer loop scans table B. This is followed by
a hash join probe. The inner loop iterates over the matching
keys in the join’s hash table. Finally, each match gets added
to the state of the final aggregation. This is fundamentally
different from vectorization, where each operator is broken up
into simple primitives and operator boundaries stay intact.

A compiling query engine cannot process any tuples before
it has generated specialized code for the query. Significant
research has focused on bringing low-latency query processing
to compiling engines [10]–[13]. Different CPU architectures
require custom compilation stacks to quickly generate exe-
cutable code. This allows compiling systems like Umbra to
compete with vectorized engines like DuckDB for low-latency
query processing.

C. Interpretation vs. Compilation

Cutting-edge analytical query engines employ either vec-
torization or code generation. Recent research shows that in
terms of raw system performance, there is no clear-cut winner
[2]. For compute-intensive queries, code generation offers the
best performance. The highly specialized code of compiling
engines keeps tuples in CPU registers beyond operator bound-
aries. Meanwhile, vectorized query engines win in other cases.
The simplicity of the vectorized primitives allows compilers
to generate optimized code for modern CPUs. The primitives
are often branch-free, and make it easy for prefetchers and
out-of-order execution to hide cache miss latencies. This is
especially useful when accessing hash tables that exceed the
cache size. Compared to tuple-at-a-time code generation, a
vectorized engine is able to generate more independent loads
that saturate the memory bandwidth.

As different execution paradigms perform best in different
settings, Relaxed Operator Fusion (ROF) attempts to bring
the performance benefits of vectorized query engines into
compiling systems [8]. Traditional compiling query engines
fuse a pipeline into compact nested loops to keep tuples
in CPU registers across operator boundaries. With ROF, a
query engine may introduce intermediate staging points that
partially materialize tuples. This yields opportunities for using
aggressive prefetching and SIMD-instructions after the staging
points. ROF brings many of the benefits of batching primitives
in vectorized engines to compiling query engines. However,
ROF is still a code-generating execution paradigm. It suffers
from upfront compilation latencies before any tuples can be
processed. As a result, low-latency processing in an ROF
engine necessitates a complex compilation stack similar to the
one found in Umbra.

Given that there is no clear-cut winner in terms of perfor-
mance, a common reason for choosing the vectorized model
in industry is system complexity [15], [19]. Compiling query
engines require a complex code generation stack to hide
compilation latencies [10], [11]. This makes it harder for
developers to ramp up quickly and have high velocity, which is
exasperated by code-generating engines being hard to profile
and debug [29], [30].

III. INCREMENTAL FUSION FOR EXPRESSIONS

This section outlines the basic concepts of Incremental
Fusion. We show how to build a code-generating expression
evaluator that can also generate a complete vectorized expres-
sion interpreter. The ideas presented in this section are the
building blocks needed to generalize Incremental Fusion to
arbitrary queries in Section IV.

In a traditional compiling query engine, each pipeline
becomes an executable fragment of code. A pipeline has a
source operator that generates code for reading data, and a
sink operator that generates code for materializing the pipeline
result. The most common source is a table scan, which directly
accesses the underlying storage engine. Pipelines can also read
from aggregation hash tables, or sorted buffers after executing
an ORDER BY clause. Sink operators can materialize data into
hash tables for aggregations or the build side of joins. The



execute(job, rel, out):
  for i in range(job.start, job.end):
   add = rel.a[i] + rel.b[i]
   sub = add - rel.c[i]
   out[i] = sub

(a) Traditional Code Generation
R

(a+b)-c

R

 π
 π
a+b

Source - Table Scan

Sink/Source - Tuple Buffer

Sink - Return to User

 π
a+b

(a+b)-c

 π

execute(in_1, in_2, out):
  for i in range(0, in_1.size):
    sub = in_1[i] - in_2[i]
    out[i] = sub

execute(in_1, in_2, out):
  for i in range(0, in_1.size):
    add = in_1[i] + in_2[i]
    out[i] = add

        (b) Incremental Fusion

Fig. 3. Executing the query SELECT (a + b) - c FROM R. To generate the vectorized primitive for an operator, an Incremental Fusion engine wraps
it in a tuple buffer source/sink and performs regular operator-fusing code generation.

sink operator of a query’s final pipeline materializes the query
result and sends it to the user.

Viewed in this light, the Relaxed Operator Fusion (ROF)
model discussed in Section II-C adds a novel type of source
and sink to the engine. At an intermediate staging point, the
pipeline is split into two steps. A new tuple buffer sink is
attached to the end of the first step. The second step starts with
a new tuple buffer source. The sink of the first step generates
code that materializes the step’s result data into a shared buffer.
The source of the second step generates code that reads the
materialized data from this shared buffer. The two steps are
run in lockstep. When the first step fills up the tuple buffer,
the engine invokes the second step, draining the buffer again.
This allows the materialized tuples to stay in the CPU cache.

Breaking a pipeline into steps does not add complexity to
the engine’s code generation stack. The compilation stack does
not differentiate between a pipeline and the more fine-grained
steps. Both are DAGs of operators, starting with a source and
ending with a sink. Only the engine’s scheduler needs to be
aware of the distinction. Pipelines are run one after the other,
while the steps in a pipeline are run in lockstep.

The modularity of the tuple buffer source and sink operators
is what powers Incremental Fusion. ROF cuts a pipeline in
half and strategically places a sink and a source to improve
performance. This, however, is just a special case of how
a pipeline can be split into steps. Incremental Fusion takes
the ideas behind ROF to the extreme by allowing to place
tuple buffers between every operator in a pipeline. This allows
Incremental Fusion to support both execution models in the
same engine. If no buffer is introduced, the code is identical to
the one of compiling query engines. If buffers are introduced
after every operator, the execution is virtually the same as
the one from a vectorized engine and allows the use of pre-
compiled primitives.

Fig. 3 shows this for the query SELECT (a + b) - c
FROM R. The projection is broken into two physical algebra
operators, one for each arithmetic operation in the query. The
left-hand side of the figure shows the code generated by a
traditional compiling query engine. The complete expression
is fused into the main loop of the table scan. As a code-
generating execution paradigm, Incremental Fusion can create
exactly the same, specialized code for the query.

At the same time, Incremental Fusion can also generate all
primitives used by a vectorized engine to evaluate this query.
To do this, it slices the original pipeline into one step per
physical operator. Each step starts with a tuple buffer source,
followed by the original physical operator, and ends in a tuple
buffer sink. This is illustrated on the right-hand side of the
figure. The resulting pipeline is split into four steps. The first
step reads rows from the base table into the first intermediate
buffer. The second and third steps perform the addition and
subtraction, respectively. Finally, the fourth step reads from the
subtraction’s intermediate buffer and returns the query result.

Both the record batches of a traditional vectorized engine,
and the intermediate materialization buffers of an Incremen-
tal Fusion engine are columnar, contiguous memory regions
containing tuples getting pushed through the pipeline. As a
result, the code generated by an Incremental Fusion engine
performs the same computation as the expression’s primitive
in a vectorized query engine. In the example, the Incremental
Fusion engine generates the vectorized primitives for adding
and subtracting two columns.

An Incremental Fusion engine uses this property to generate
a vectorized expression interpreter. It (1) exhaustively enumer-
ates all the possible primitive expressions a SQL query can
contain, such as the addition of two integers, or evaluating the
sine function on a float. For each of these, it (2) creates a step
that represents this expression. The step starts with a tuple
buffer source, followed by a physical operator projecting the
primitive expression. It ends in a tuple buffer sink. Afterwards,
it (3) uses the regular, operator-fusing code generator on
this step to create the corresponding vectorized primitive.
When an (arbitrarily-complex) expression enters the system
for evaluation, the engine breaks it into a DAG of these finite
primitives, and uses the previously generated code to interpret
the expression tree. However, the engine is not just limited
to vectorized interpretation. It can also perform just-in-time
compilation to generate fused code for the expression tree.

Compared to ROF, an Incremental Fusion engine does not
need to generate any code when a query enters the system. It
can directly initiate high-performance query processing using
the complete vectorized interpreter that was generated ahead
of time. The next section describes how these ideas can be
extended to every relational operator.



IV. INCREMENTAL FUSION

This section gives an in-depth overview of Incremental
Fusion. It extends and formalizes the ideas outlined in Sec-
tion III. We show how carefully choosing an intermediate
representation (IR) below relational algebra allows the engine
to generate a complete vectorized query interpreter. This
enables the engine to perform both operator-fusing code gener-
ation and vectorized interpretation, without increasing system
complexity.

A. Breaking Up Complex Operators

Section III presented Incremental Fusion for expressions.
The engine can generate a complete vectorized expression
interpreter because there is only a finite number of expression
signatures. This section extends this idea to arbitrary operators.

We can model any operator P that generates code in
a compiling engine. The operator P is parametrized over
p1, p2, . . . , pn. The parameters of an operator impact the
code generated in calls to produce() and consume().
When the operator is used to generate code for a query
it is instantiated with query-dependent, concrete values for
p1, . . . , pn. Two instantiations of P , P̃ and P̂ generate the
same code if and only if ∀k ∈ {1, . . . , n} : p̃k = p̂k.

In this model, the expression operator E is parametrized
over e1 ∈ EO modelling the opcode, and e2 ∈ ET , e3 ∈
ET modelling the input types. Since the set of opcodes EO

and types ET is finite, there only is a finite set of possible
instantiations of the operator: (e1, e2, e3) ∈ EO × ET × ET .

We can now define the core invariant that every operator in
an Incremental Fusion engine needs to satisfy.

Enumeration Invariant. A code-generating operator P
that is parametrized over p1, . . . , pn is capable of Incremental
Fusion if and only if there exists a finite set of parameters A,
such that for every possible instantiation of the operator P̃ , it
holds that (p̃1, . . . , p̃n) ∈ A.

For an operator P that satisfies the invariant, the engine can
enumerate every possible instantiation P̃ , wrap it in a tuple
buffer source and sink and use its regular compilation stack to
generate a vectorized primitive for P̃ . Since the generated code
is completely specified by p̃1, . . . , p̃n, we can be sure that no
matter what SQL query the user sends, any instantiation of P
in the query will have a corresponding pre-compiled primitive.
The enumeration invariant allows the engine to generate a
complete vectorized interpreter ahead of time.

The expression suboperators in Section III respect the enu-
meration invariant. We can exhaustively enumerate the finite
set of supported function signatures. As a counterexample, a
holistic aggregation operator cannot satisfy the enumeration
invariant. There are infinite possible combinations of aggre-
gate keys and functions, breaking the invariant. This makes
it impossible to enumerate all possible instantiations of an
aggregation operator ahead of time.

To build a complete Incremental Fusion engine, we need
to break up the relational algebra operators into a set of
more fine-grained building blocks that respect the enumeration

execute(in, out):
 out_idx = 0
 for i in range(0, in.size):
   if (in.filter[i]):
     out.col1[out_idx] = in.col1[i]
     out.col2[out_idx] = in.col2[i]
     out.col3[out_idx] = in.col3[i]
     out_idx++ 

Suboperator DAG Suboperator (Params)

Generated Code

Tuple Buffer Source

Branch

Copy (Int 2)

Copy (Int 8)

Copy (Int 4)

Tuple Buffer Sink

Fig. 4. Incremental Fusion filter representation.

invariant. Incremental Fusion achieves this through a custom
suboperator IR. Custom suboperator IRs have recently been
adopted by different systems to increase the modularity of
query engines and simplify query execution on heterogeneous
hardware [31]–[34]. Designing a suboperator IR where every
suboperator satisfies the enumeration invariant is the core
challenge when building an Incremental Fusion engine.

Vectorized query engines face similar problems. They also
need to map complex relational algebra operators to a finite
set of pre-existing primitives. MonetDB created the concept
of Binary Association Tables (BAT) and the Monet Interprer
Language (MIL) to tackle this problem [1], [35]. Similar
abstractions are found in all modern vectorized query engines
[16], [17]. Incremental Fusion brings the granularity of the
vectorized primitives into code-generating systems.

B. Filters

Many vectorized query engines use selection vectors to
indicate which rows in a record batch are active. Selection
vectors can be represented in different ways [36].

Other vectorized query engines such as ClickHouse do not
use selection vectors [17]. Instead, the batches of rows passed
between primitives are always dense. The filter evaluates
the predicate and then removes all rows that do not satisfy
the predicate from the columns in the current batch. While
this makes the filter primitives slightly more expensive, the
non-filter primitives do not have to worry about selection
vectors anymore. Their code can be more efficient on modern
hardware due to fewer branches and simple memory access
patterns. Our open-source Incremental Fusion engine InkFuse
represents filters this way [20].

An Incremental Fusion engine cannot have a holistic filter
suboperator. Since we can filter any number of columns with
arbitrary types, such an operator would violate the enumeration
invariant. The engine would not be able to generate all vector-
ized filter primitives ahead of time. To respect the invariant,
the filter needs to be broken into suitable suboperators.



execute(in, out, state):
 for i in range(0, in.size):
   add_c = state[1].rt_const
   res = in[i] + add_c
   out[i] = res

rt_const: 42

Suboperator DAG Suboperator (Params)
Tuple Buffer Source

Expr (Add, Int, Const Int)

Tuple Buffer Sink

Generated Code Runtime State

Fig. 5. Evaluating SELECT x + 42 FROM t in an Incremental Fusion
engine. The constant 42 is provided by the runtime system and gets resolved
by the generated code.

In InkFuse, a relational filter operator filters n columns
based on a boolean column. The filter operator gets broken into
n+1 suboperators. This is shown in Fig. 4. The first suboper-
ator generates the required branch based on the boolean input
column. It does not have any parameters, since we always
filter on a boolean column. Afterwards, one suboperator per
filtered column generates the code performing data copying.
Every copy suboperator has an input dependency on the
branching suboperator. This way, the copying is performed
in the filtered scope. The copy suboperator is parametrized
over the underlying type being copied. The unlimited degree
of freedom of the holistic filter operator in a traditional engine
is now encoded in the topology of the suboperator DAG.

Since the above suboperators respect the enumeration invari-
ant, the engine can generate all filter primitives for the vector-
ized interpreter. The engine only has as many filter primitives
as it has data types. Primitives for parameterized data types,
such as decimals, are defined based on the underlying storage
type, which keeps the number of primitives small.

C. Expressions with Constants

Section III outlined how a compiling query engine can
generate a vectorized expression interpreter. This is possible
because the expression suboperators satisfy the enumeration
invariant. Expressions are parametrized by an operation such
as subtraction or the cosine function, as well as input types.
This set is finite and can be exhaustively enumerated. However,
this interpreter cannot yet evaluate SQL queries such as
SELECT x + 42 FROM t.

The problem is that a user can send queries with arbitrary
constants. We cannot create a primitive that adds 42 to an
integer column, as this necessitates a primitive for every pos-
sible constant. This, in turn, breaks the enumeration invariant.
Therefore, non-discrete parameters get resolved at runtime
in an Incremental Fusion engine and are stripped from all
primitives. For each expression primitive shown in Section III,
there is a single additional variant of the primitive that accepts
a constant argument. This is similar to expression primitives
in traditional vectorized engines. Once the required constants
are known during query execution, they are provided by the
runtime system. This is shown in Fig. 5.

Every suboperator can have custom runtime state. This state
can contain objects like hash tables, or constants needed to
evaluate the primitive. The runtime state gets set up once the
query is known. Within the generated code, the expression
suboperator resolves the constant by accessing the runtime
state. The value read from the runtime state is used to perform
the addition during query execution. This allows the engine to
execute expressions with arbitrary constants while respecting
the enumeration invariant, completing the Incremental Fusion
expression evaluator.

D. Aggregations

In a similar way to a relational filter, a relational aggregation
needs to be broken up into a DAG of suboperators that respect
the enumeration invariant. By doing this, it is possible to
generate a vectorized interpreter for arbitrary aggregations
based on these suboperators.

The goal of Incremental Fusion is to choose suboperators
that yield a vectorized interpreter without making the system
more complex. Only the execution backend may be aware of
whether it executes a query using the vectorized interpreter or
operator-fusing JIT compilation. All other components such
as the suboperator implementation and the compilation stack
need to be unaware of the different execution modes.

Engines performing operator-fusing code generation treat
aggregations differently from vectorized engines, making it
harder to create suboperators that work for both execution
paradigms. A vectorized engine performing an aggregation
usually takes an entire chunk of rows through a multi-step
process. First, a set of primitives (1) computes the key hashes.
Afterwards, a primitive (2) looks up an initial slot in the
hash table based on the hashes. Then, set of primitives (3)
performs key comparisons, returning a new boolean column
that is true if the key in the current slot matches the row being
aggregated. The set of primitives that gets invoked for key
checking is query-dependent. Different primitives are used for
different types. Compound keys require multiple primitives to
be invoked. Once the engine knows which keys in the current
chunk match the keys in the hash table slot, another primitive
(4) advances the slots for the rows where the key does not
match due to hash collisions. The interpreter iteratively invokes
primitives (3) and (4) until all collisions are resolved. Only
then another set of primitives (5) updates the aggregation state.
Some extra care is needed for rows that do not have a match
yet and need to create a new group in the hash table.

Meanwhile, a code-generating engine goes through the
above flow one tuple at a time. This means that a single row
gets hashed (1), leading to an initial hash table lookup (2).
After, a nested loop takes the current tuple through the entire
collision chain (3-4). Custom key-checking logic based on the
used aggregation key is performed in the body of that loop.
This is possible because the aggregate key layout is known at
compile time. Finally, the aggregation state gets updated (5).

We see that resolving collision chains is done differently. A
code-generating engine resolves collisions through a special-
ized loop on every row. This loop advances the iterator for the



execute(in, out, state):
for i in range(0, in.size):
  key = malloc(state[1].width)

*(key + state[2].offset) = in.cint[i]
  *(key + state[3].offset) = in.cfloat[i]
  group = state[4].ht.lookup(key)
  curr_min = group + state[5].offset
  *curr_min = min(*curr_min, in.cdouble[i])

width:12

offset:0

offset:8 offset:12

ht: ht

Suboperator DAG Suboperator (Params)

Generated Code

Tuple Buffer Source

Create Col (Char[])

Pack Key (Int 8)

Pack Key (Float)

HT Loopkup (Char[])

Agg Expr (Min, Double)
Runtime State

Fig. 6. Evaluating SELECT cint, cfloat, min(cdouble) FROM
t GROUP BY cint, cfloat. The above pipeline adds the input rows
to an aggregate hash table.

current row until the keys match. The vectorized engine unrolls
this loop explicitly within the interpreter. Due to the block-
based nature of a vectorized engine, the interpreter invokes the
primitives for key checking and advancing iterators iteratively
until the longest chain is resolved.

Incremental Fusion unifies the two approaches by moving
collision resolution into the hash tables themselves. The hash
tables are part of the runtime system and do not participate
in code generation. This way, the engine knows that the
pointers returned by a hash table lookup already point to the
correct key. This solves the problem, as it moves the collision
resolution loops that are different in the two types of engines
outside of the generated code. We no longer need manual loop
unrolling in the interpreter.

In order to move key checking into the runtime system, our
Incremental Fusion engine InkFuse implements a row layout
for tuples. The key columns participating in an aggregation
are packed densely into a contiguous memory region. Fig. 6
shows the suboperator layout for the query SELECT cint,
cfloat, min(cdouble) FROM t GROUP BY cint,
cfloat. The query performs an aggregation on an eight byte
integer and a four byte floating-point number. In InkFuse,
a first primitive allocates a new twelve byte compound key.
Another primitive then packs the eight byte integer into the
compound key at offset zero. Finally, a third primitive packs
the four byte float into the compound key at offset eight.
Before query execution starts, the runtime system allocates
an empty hash table that expects contiguous twelve byte keys.
A special primitive now performs lookups in that hash table
with the packed compound key. The hash table is responsible
for hashing and key comparison. Key comparison happens
through a simple and very efficient memcmp. The hash table

lookup returns a pointer to the correctly resolved slot. A final
primitive updates the min aggregate state. In the successive
pipeline producing the aggregation result, primitives for key
unpacking reconstruct the original keys from the row layout.

These primitives reuse a lot of the infrastructure developed
for expressions with constants in Section IV-C. As we can
aggregate by any number of columns, the offset for key
packing can be arbitrary. Since the engine cannot generate
primitives for every possible offset, the offset is resolved as
a runtime parameter by accessing the operator state. This
allows the key packing suboperators to respect the enumeration
invariant.

We again use the enumeration invariant to generate a full
vectorized interpreter. As before, this is done by exhaustively
enumerating the suboperators that can participate in an aggre-
gation, wrapping them in a tuple-buffer source and sink, and
then using the regular operator-fusing code generation stack of
the engine to generate the vectorized primitives. To generate
all primitives, the engine generates key packing and unpacking
suboperators for all supported types, and aggregation subop-
erators for writing and reading for each supported aggregate
function and type combination.

Some care has to be taken when performing aggregations
on variable-size keys like strings. Here, a fixed-width row
layout with a memcmp does not work. For keys like this, the
engine has a specialized row layout which contains a variable
number of eight byte slots for pointers to string values before
the packed, fixed-size key. When aggregating variable-size
keys like this, a specialized hash table is used. Key equality
comparisons now happen through a strcmp on each variable-
size slot, followed by a single memcmp on the final fixed-size
part. This also works for collations by mapping the strings
to a representative of the equivalence class. When using a
case-insensitive collation for example, every key is turned to
lower-case. The keys ABCD and aBcD are both mapped to
abcd and compare equal. The normalized representation is
only used for key comparison. The original string needs to be
stored in the payload and passed on to the parent suboperator.
The open-source collation library ICU natively supports this
transformation.

Performing the explicit key packing and unpacking for the
row layout leads to some extra work compared to directly
operating on non-packed rows. In practice, we found that the
packing does not cause noticeable performance degradation.
Packing happens on data that is in the L1 cache already,
providing extremely high bandwidth and low access latency.
As the hash tables used in an aggregation grow, this cost is
dominated by cache misses to load the hash table from lower-
level caches or even main memory. A benefit of our approach
is that hashing and key comparison are done on contiguous
memory regions. If we only aggregate by a single column,
the engine performs no packing but just uses the raw column
directly. Similar row layouts are used by modern vectorized
query engines such as DuckDB [37].



execute(job, join_ht, agg_ht, rel_b):
  for i in range(job.start, job.end):
    matches = join_ht.lookup(rel_b.c[i])
    for match in matches:
      group = agg_ht.lookup_group(match.d)
      group.agg_state += rel_b.d[i]

SELECT a.d, sum(b.d)
FROM A a, B b
WHERE a.a = 5
  AND a.b = b.c
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Fig. 7. After query parsing and optimization (1, 2), each pipeline gets transformed into a DAG of suboperators (3). This DAG is then passed to an execution
backend (4). All backends rely on the same compilation stack, minimizing system complexity.

E. Joins

Joins build on the concepts of aggregations outlined in
Section IV-D. For the build side of a join, key and payload get
packed into a contiguous row layout. The tuple’s row layout
is then inserted into a hash table. Compared to aggregations,
the hash table for a join can store duplicate keys.

The probe side of a join is more interesting. The challenge
is that probing can have multiple matches in the hash table.
The engine needs to produce a result tuple for each match.
For this, it again packs key and payload into a contiguous
row layout. A hash join probing primitive is responsible for
accepting a packed input row and producing a set of packed
output rows. Since the probing primitive operates on abstract
packed rows rather than arbitrary type combinations it respects
the enumeration invariant. The probing suboperator returns
two values in row layout. The first one is the packed key and
payload from the build side. The second value is the packed
row from the probe side. After probing, suboperators unpack
the columns from the packed row layouts.

In compiling engines, operators that increase output cardi-
nality generate nested loops. In vectorized engines, individual
operators such as the hash join explicitly deal with chang-
ing output cardinalities. Some engines have complex iterator
logic in these operators to limit the size of output chunks
[16]. Other engines implement variable-size output chunks
[17]. InkFuse takes the latter approach and handles changing
output cardinalities through an additional tuple buffer sink.
For pipelines containing a suboperator that can explode chunk
sizes, this sink can exponentially grow the internal column
representation. This allows InkFuse to completely hide the
complexity of the growing chunks of a vectorized engine in
a single sink suboperator. The suboperator for join probing
is unaware of growing chunks in the vectorized interpreter,
it simply receives an input stream and transforms it into an
output stream. This also means that when using Incremental
Fusion for more traditional operator fusion, the engine does
not have to pay any bookkeeping overhead for potentially
exploding chunks in the interpreter. The tuple buffer sinks
are only used to generate vectorized primitives and are never
passed to the JIT backend for traditional code generation.

V. ENGINEERING INCREMENTAL FUSION

This section describes how to build an Incremental Fusion
engine, focusing on the engineering challenges encountered
when assembling an end-to-end query pipeline. We also show
how an Incremental Fusion engine can dynamically switch
between vectorization and compilation at query runtime.

A. Incremental Fusion Query Life Cycle

The life cycle of a query in an Incremental Fusion engine
is visualized in Fig. 7. We have implemented this pipeline in
our multithreaded engine InkFuse [20]. By choosing the right
abstractions, an Incremental Fusion engine is highly modular
and easy to reason about.

The Compilation Stack: As outlined in Section IV, an
Incremental Fusion engine generates code at the granularity of
suboperators. The compilation stack of an Incremental Fusion
engine turns a DAG of suboperators into executable code.
Suboperators implement the same produce and consume
interface found in traditional operator-fusing query engines
[3]. Since suboperators have a much more narrow scope than
holistic relational algebra operators, their code generation logic
tends to be far simpler than in a traditional operator-fusing
query engine. InkFuse implements twenty suboperators in
about two thousand lines of C++ code. InkFuse generates C.
However, other languages that compile to efficient machine
code such as C++ or LLVM IR can also be used.

Despite supporting JIT compilation and vectorized inter-
pretation, an Incremental Fusion engine only implements a
single compilation stack. It is used for operator-fusing JIT
compilation, as well as for generating vectorized primitives.

The Vectorized Interpreter: An Incremental Fusion engine
uses the compilation stack to generate a vectorized interpreter.
Since all suboperators respect the enumeration invariant, the
engine can generate all the required primitives for vectorized
query execution. These primitives are generated at engine
compile time and are loaded once when starting the database.

The vectorized interpreter is an easy to generate artifact
of having chosen the right abstraction for code generation.
Since generating the interpreter uses the same compilation
stack as traditional JIT code generation, the only additional
code required to obtain the vectorized interpreter is the one
that enumerates the suboperators.



The twenty suboperators implemented in InkFuse generate
more than eight hundred primitives. In total, the generated
interpreter consists of twenty thousand lines of C code.

The code generated for the interpreter is similar to hand-
written primitives in modern vectorized query engines. The
generated primitives perform well on modern CPUs. They are
cache efficient, have easy to predict memory access patterns,
and contain many independent instructions. Furthermore, the
compiler is able to auto-vectorize many primitives and gener-
ate efficient SIMD instructions.

Query Planning: When a query enters the system, it under-
goes traditional query parsing and planning. These are Steps
(1) and (2) in Fig. 7. Once an optimized relational algebra tree
is generated, each pipeline gets transformed into a suboperator
DAG. This is done in one additional pass over the optimized
algebra tree. Edges in the DAG represent code generation
dependencies. The code for a node in the DAG cannot be
generated before all input dependencies have generated their
code. In Fig. 7, Step (3) breaks the blue pipeline into a
suboperator DAG.

Query Execution: The query engine can choose how to
execute the suboperator DAG of a pipeline. Different execu-
tion backends facilitate operator-fusing code generation and
vectorized interpretation.

The JIT backend shown in Step (4) takes the suboperator
DAG from Step (3) and uses the system’s compilation stack to
generate code. This yields a single executable that is invoked
to push a batch of tuples through the pipeline.

The vectorized backend uses the primitives loaded on
startup to interpret the suboperator DAG. Each suboperator
in the pipeline gets mapped to a pre-compiled vectorized
primitive. Since the engine exhaustively enumerated all possi-
ble suboperator instantiations when generating the vectorized
interpreter, it can be sure that a suitable primitive was gener-
ated ahead of time. This is why the enumeration invariant is
essential for Incremental Fusion. By making sure the subop-
erators can be enumerated, the engine can match the entire
query to pre-compiled primitives. If the engine were unable to
enumerate all possible suboperator instantiations, it could not
generate a vectorized interpreter for arbitrary queries. This is
shown in Fig. 7. All suboperators in the DAG generated in
Step (3) have a corresponding pre-compiled primitive loaded
by the interpreter backend. To push a set of tuples through the
pipeline, the interpreter backend iterates over the suboperator
DAG and invokes the pre-compiled vectorized primitives in
some topological order.

Fig. 7 shows that the vectorized primitives are generated
by the regular, operator-fusing code generation stack of the
engine. As such, they require almost no special treatment in
the runtime system. In our Incremental Fusion engine InkFuse,
the vectorized backend has less than 50 lines of C++ code.
These are mainly concerned with mapping a suboperator to
a function pointer in the primitive cache. This also enables a
hybrid execution backend that dynamically switches between
vectorized interpretation and operator-fusing code generation.
We present this backend in Section V-B.
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Fig. 8. Each suboperator can allocate a custom state object. The state can be
shared across execution backends.

B. Adaptive Query Execution

It is highly query-dependent and hard to predict whether
vectorization or compilation performs best for a query [2].
This section shows how an Incremental Fusion engine can
dynamically switch execution modes at query runtime.

Injecting Operator State: Each suboperator can define a
custom state object containing constant arguments for expres-
sions, or pointers to runtime objects such as hash tables.
Fig. 6 shows the runtime state for multiple suboperators.
Suboperators access their state through an array of pointers
passed to the generated code. During code generation, each
suboperator gets a unique ID. The runtime state is resolved
by accessing the array at the index of the ID. This is shown
in Fig. 8. As the vectorized primitives are generated by the
same JIT backend, they resolve their state in the same way.
This is shown to the right of Fig. 8, where we interpret the
blue suboperator (1).

A Hybrid Execution Backend: Using these abstractions, it
is easy to build a hybrid adaptive execution backend similar
to [10]. The hybrid backend can dynamically switch between
compilation and interpretation during query execution.

When a query enters the system, the hybrid backend sets up
the runtime state for every suboperator. It then wires the state
pointer arrays of the interpreted and JIT backend to the shared
suboperator state. This is shown in Fig. 8. Since all persistent
query state is tied to these shared objects, the engine can safely
switch between the backends.

The main challenge when building the hybrid backend is
ensuring that the engine can pick the best performing exe-
cution mode with low overhead. InkFuse uses morsel-driven
parallelism to push chunks of data through a pipeline in a
multi-threaded way [38]. The hybrid backend chooses whether
to use the JIT compiled code or the vectorized interpreter at
morsel granularity.

When a new query enters the hybrid backend, no JIT
compiled code is available for execution. The engine kicks
off background code generation. Currently, InkFuse uses one
thread per pipeline for background compilation. For queries
with many pipelines, compilation overhead can be bounded
by limiting the number of concurrent compilation jobs. Ink-
Fuse then starts as many worker threads as there are CPU



cores. As the vectorized interpreter is available right away,
all worker threads begin executing the first pipeline using the
interpreter. Once the generated code becomes ready, the hybrid
backend can dynamically switch between interpretation and
compilation. If query execution finishes before background
compilation is done, compilation is interrupted.

To facilitate dynamic switching, the engine computes an
exponentially decaying average of the tuple throughput for
every backend being considered. To retain up-to-date statistics
for the different backends, 5% of morsels are run using the
interpreter and JIT backend, respectively. The remaining 90%
of morsels always choose the backend that currently has the
highest measured tuple throughput.

The bookkeeping overhead of the hybrid backend is min-
imal. Computing the morsel throughput requires measuring
the elapsed time for every morsel, which roughly corresponds
to taking two timestamps every millisecond. The decision
is made in a completely thread-local fashion. In principle,
different threads can use different backends at the same time.

If vectorized interpretation is the fastest paradigm for a
query, the hybrid backend introduces the overhead of back-
ground compilation. For short-running queries this overhead
can be significant. It can be mitigated by either delaying com-
pilation, or reducing the resources allocated to compilation.
In that case however, the compiled code will be ready later,
which can again negatively impact performance. If operator-
fusing compilation is the fastest paradigm for a query, the
hybrid backend consistently outperforms the pure JIT backend.
It can hide compilation latency by performing vectorized
interpretation on the idle CPU cores.

VI. BENEFITS OF INCREMENTAL FUSION

This section compares Incremental Fusion to other query
execution paradigms.

Comparison to Vectorization: An Incremental Fusion en-
gine can generate a complete vectorized interpreter. Rather
than implementing the interpreter by hand, an Incremental Fu-
sion engine assembles the pipelines representing the primitives
and then compiles them.

Comparison to Compilation: Incremental Fusion is a code-
generating execution paradigm. The compilation stack uses
the same concepts found in traditional code-generating engines
[3]. The engine uses a custom suboperator IR below relational
algebra to generate code. Traditional code-generating engines
are moving in a similar direction, with multi-level IRs becom-
ing more popular. Multi-level IRs reduce system complexity
and allow for novel optimizations [31]–[34], [39]–[42].

Compared to traditional low-latency code-generating en-
gines, we believe that it is easier to build, maintain, and operate
an Incremental Fusion query engine. Incremental Fusion also
eliminates some of the most complex parts of modern code-
generating query engines. To hide compilation latencies of e.g.
LLVM, these engines usually have sophisticated compilation
stacks [10]–[13]. These implement a fast path to generate ma-
chine code from relational algebra. Since LLVM compilation

can take hundreds of milliseconds, this is the only way to
compete with vectorized engines for low-latency analytics.

Incremental Fusion makes this fast path superfluous. For a
new query, the vectorized interpreter is used while operator-
fusing code generation happens in the background. This makes
it possible to build a low-latency compiling engine with a
simple compilation stack. Our engine InkFuse hides compila-
tion latencies so well that we are able to achieve competitive
performance while always generating C.

For traditional code-generating engines, runtime adaptivity
is difficult [43], [44]. In vectorized engines it is simpler to
reorder primitives, or choose optimized primitives depending
on the properties of the data [19], [45]. We believe that Incre-
mental Fusion enables easier runtime adaptivity in compiling
systems. We plan to study runtime adaptivity in an Incremental
Fusion engine in future work.

Comparison to ROF: Incremental Fusion is an extension
of Relaxed Operator Fusion (ROF) [8]. Our engine InkFuse
also implements an ROF backend. In the same way as ROF,
Incremental Fusion uses tuple buffers to divide a pipeline into
steps. However, an engine using ROF still always needs to JIT
compile code. Incremental Fusion extends ROF by matching
steps in a pipeline to pre-compiled primitives.

Building an ROF engine for low-latency query execution
necessitates a complex compilation stack similar to the one
of Umbra [10], [11], [13]. Incremental Fusion’s custom sub-
operator IR makes low-latency query execution easy. The
pre-compiled vectorized interpreter eliminates the dependency
between low-latency compilation and low-latency execution.

Research at the Intersection of Compilation and Interpreta-
tion: We now compare Incremental Fusion to recent work at
the intersection of compiling and interpreting query engines.

LB2 uses Futamura projections to create a query compiler
using the abstractions of a query interpreter, promising easier
system development [46]–[48]. However, building a compiling
system using Futamura projections does not yield a high-
performance interpreter. Incremental Fusion goes the opposite
route, using its compiler to generate a vectorized interpreter.

VOILA explores the design space of query engines [49],
[50]. VOILA synthesizes different flavors of query engines
by expressing the control flow of relational algebra operators
in a high-level language. It can synthesize interpreting and
compiling engines, as well hybrid versions similar to ROF.
Using a dynamic execution mode, VOILA can switch between
operator-fusing code generation and vectorization [9]. VOILA
is similar to Incremental Fusion in its goal to bridge the
gap between vectorization and compilation. However, VOILA
is primarily focused on finding the most efficient execution
strategy for a query. While VOILA can generate vectorized
primitives, it does so the first time it encounters them in a
query. VOILA uses a compilation cache to hide this latency
for repetitive query patterns. Incremental Fusion meanwhile
focuses on making low-latency query processing in a compil-
ing engine easy. The IR is specifically designed to be able to
generate a complete vectorized interpreter ahead of time.



To the best of our knowledge, Incremental Fusion is the
first execution paradigm that is able to combine the instant
availability of a vectorized interpreter with the performance
of operator-fusing code generation.

VII. EVALUATION

In this section, we experimentally evaluate our open-source
Incremental Fusion engine InkFuse [20]. We first compare the
execution backends of InkFuse in isolation. We then measure
InkFuse against the state-of-the-art vectorized and compiling
systems DuckDB and Umbra. InkFuse is able to achieve
competitive query performance for TPC-H queries across data
sizes and queries. Our experiments measure data sizes between
100 MB and 100 GB, corresponding to TPC-H scale factors
0.1 to 100.

Hardware: All experiments are run on an Intel Core i9-
10900 CPU. The CPU has ten cores (20 threads) with a 2.8
GHz clock rate and up to 5.2 GHz boost frequency. The system
has 20 MB shared, last-level cache and is equipped with 128
GB of main memory. It runs the Linux kernel version 6.1.0.

InkFuse: InkFuse is our open-source prototype Incremental
Fusion runtime. Currently, InkFuse has no SQL frontend,
requiring the manual creation of physical execution plans. Ink-
Fuse natively supports multi-threaded execution. It implements
morsel-driven parallelism [38]. We evaluate four execution
backends of InkFuse:

Compiling Backend: Performs code generation where all
pipelines are fully fused. It takes the physical query plan and
generates efficient C code. The C code is then compiled to
machine code using clang-14.

Vectorized Backend: Exclusively uses the pre-compiled
primitives loaded at engine startup.

Hybrid Backend: Starts execution using the vectorized
interpreter, and generates machine code in the background.
Once the machine code becomes ready, it dynamically chooses
the backend that provides the highest tuple throughput.

ROF Backend: Implements relaxed operator fusion. We
break up a pipeline before every hash table probe and insert
a dedicated prefetching step in the same way as the original
ROF paper [8]. The prefetching stage allows issuing many
independent loads and fetching data into CPU caches before
performing the tuple-at-a-time lookup. In a similar way to
vectorized engines, this improves performance when accessing
hash tables that exceed the cache size.

Queries: We execute eight different TPC-H queries at
different scale factors. Scale factor 1 corresponds to about 1
GB of data, and the data size scales linearly with the scale
factor. We implement the same TPC-H queries as the original
ROF paper [8]. The TPC-H queries are chosen to cover
all TPC-H choke-points [51]. Q1 contains a low-cardinality
aggregation. Q3 and Q4 are join queries with a more than 20x
size difference between the build and probe sides. Q5 contains
a large join tree with five joins. Q6 executes multiple selective
filters. Q13 performs an outer join with many unmarked tuples.
Q14 contains a join with a more moderate 4x size difference
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Fig. 9. Relative throughput of the different InkFuse execution backends at
SF100. The throughput is normalized by the vectorized throughput.

TABLE I
CPU COUNTERS FOR TPC-H QUERIES (SF100). COUNTERS ARE

NORMALIZED BY THE NUMBER OF TUPLES PROCESSED IN THE QUERY.

Query Backend Cycles Instr. IPC LLC
Miss

Branch
Miss

Q1 Compiled 7.61 19.40 2.55 0.09 0.01
Q1 Vectorized 13.23 25.41 1.92 0.08 0.02
Q4 Compiled 10.21 5.12 0.50 0.24 0.07
Q4 Vectorized 8.20 5.50 0.67 0.14 0.08

between the build and probe side. Q19 contains complex
expression trees.

A. Performance of InkFuse Backends

We first focus on the relative computational efficiency of
the different InkFuse backends. For this, we measure the
performance of the TPC-H queries at SF100. Absolute end-to-
end performance numbers are presented in the next section.

Fig. 9 shows the relative throughput of the different exe-
cution backends compared to the vectorized backend. Table I
shows low-level performance counters for Q1 and Q4. We can
see that it is highly query-dependent whether vectorization or
compilation offers the best performance.

Compilation outperforms vectorization for Q1 and Q14. The
computational efficiency of the generated code leads to higher
throughput. For Q1, the compiling backend is able to achieve
40% higher throughput than its vectorized counterpart. Table I
shows that the fused code issues fewer instructions and is able
to achieve higher IPC.

Vectorization meanwhile outperforms compilation for other
queries. Q3, Q4, and Q13 build large hash tables. As vec-
torization can generate more independent memory loads, the
probing becomes more efficient. Table I shows that this allows
Q4 to hide LLC misses more effectively. Q6 and Q19 contain
selective predicates that favor the vectorized backend. The
generated primitives are auto-vectorized by the compiler and
contain SIMD instructions, while the specialized code for the
query does not.

We can nicely see that compared to traditional compilation,
ROF always performs the same or better. For Q3, Q4, and
Q13 it is able to achieve almost the same performance as the
vectorized backend. This is because ROF can also generate
independent loads by prefetching hash table buckets. For Q6
and Q19 the ROF prefetching of hash tables does not help, as
vectorization performs better due to the selective filters.

For all queries except for Q6 and Q19, the hybrid backend
manages to achieve similar performance as the fastest static
backend. Once the compiled code is ready, the hybrid backend
can dynamically choose the backend that provides the highest
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Fig. 10. Compared to DuckDB and Umbra, InkFuse provides competitive performance across queries and data sizes.

throughput. For Q6 and Q19, compilation overhead leads to
the hybrid backend performing worse than the vectorized one.

B. Comparison to Other Systems

We compare InkFuse to the open-source vectorized database
system DuckDB (version 0.9.1) [16], as well as the closed-
source compiling engine Umbra developed at TU Munich
[14]. For Umbra, we evaluate two execution backends. The
LLVM backend generates LLVM IR that needs to be compiled
before any tuples can be processed. This backend is similar to
the compiling backend of InkFuse. Umbra’s hybrid backend
contains a fast path generating efficient x86 assembly while
compiling LLVM IR in the background [11]. This backend
allows Umbra to effectively hide compilation latencies.

The physical plans used by InkFuse are the same as the
optimized plans of Umbra. We only deviate when Umbra uses
advanced operators not supported by InkFuse such as index
joins or group joins [52]. Results are shown in Fig. 10.

Small Data Sizes: For 100 MB of data (SF 0.1), the
vectorized and hybrid backends of InkFuse are able to provide
the same performance as the vectorized engine DuckDB.
InkFuse is able to execute all queries in less than twenty
milliseconds. The hybrid backend of InkFuse never uses the
JIT compiled code. It always chooses the vectorized interpreter
that was generated ahead of time.

This experiment pinpoints one problem of compiling query
engines. The time spent waiting for compiled code to be ready
is represented as the dashed area of each bar. With compilation,
InkFuse needs more than 40 milliseconds to execute all queries
and spends almost the entire duration generating code. The
LLVM backend of Umbra is faster as it emits a more low-level
representation than C, but still needs around 20 milliseconds.
Meanwhile, the interpreter of vectorized engines is instantly
available and outperforms traditional compilation by up to 10x.

The hybrid backend of Umbra is able to outperform both
InkFuse and DuckDB. However, the impressive performance
necessitates a complicated compilation stack [11], [13].

For 1 GB of data (SF 1), the performance is similar.
However, we can see that the gap between the interpreted
and compiling engines is becoming smaller. This is because
code generation makes up less of the total execution time. The

hybrid backend manages to consistently outperform the JIT
backends. However, it does not achieve the same performance
as the interpreted backend. Background compilation slows
down queries. This is especially significant for Q13.

Large Data Sizes: With 10 GB of data (SF 10), the
performance of the JIT compiled queries becomes similar to
DuckDB and the vectorized backend of InkFuse. The time
spent waiting for compiled code to become ready (represented
by the dashed area of each bar) is amortized by the larger
data size that needs to be processed. For Q1, Q4, Q14, and
Q19, Umbra and the hybrid backend of InkFuse are able to
significantly outperform DuckDB.

For 100 GB of data (SF 100), it is highly query depen-
dent whether interpretation or compilation performs best. The
dashed area of the bars is hardly visible anymore, showing
that the compilation latencies are amortized by the time spent
processing tuples. Hiding compilation latencies is not impor-
tant anymore. Instead, it matters most whether compilation or
vectorization benefits the query.

Overall, InkFuse provides competitive performance to the
fastest analytical query engines. By dynamically switching
between vectorization and compilation, InkFuse can choose
the best execution paradigm across queries and data sizes.

VIII. CONCLUSION

This paper presents Incremental Fusion, a query execution
paradigm unifying compiled and vectorized query execution.
Incremental Fusion uses a novel suboperator IR to represent
a query plan. This IR allows the engine to factor an arbitrary
SQL query into a set of finite building blocks. The engine
can generate a complete vectorized interpreter for these finite
blocks ahead of time. This enables low-latency query pro-
cessing without necessitating the complex compilation stacks
found in modern compiling engines. Our open-source proto-
type engine InkFuse is able to compete with the state-of-the
art vectorized and compiled engines DuckDB and Umbra. It
provides competitive performance both for very short-running
queries, as well as compute-intensive long-running ones.
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