Efficient and Portable Einstein Summation in SQL

Mark Blacher

University of Jena
mark.blacher@uni-jena.de

Joachim Giesen
University of Jena
joachim.giesen@uni-jena.de

Julien Klaus
University of Jena
julien.klaus@uni-jena.de

Christoph Staudt Soren Laue Viktor Leis
University of Jena Technical University of Kaiserslautern Technical University of Munich
christoph.staudt@uni-jena.de laue@cs.uni-kl.de leis@in.tum.de

ABSTRACT TR i a

Computational problems ranging from artificial intelligence to Ja1 DOVBLE PRECISION) contraction ~—

physics require efficient computations of large tensor expressions.

These tensor expressions can often be represented in Einstein no-

tation. To evaluate tensor expressions in Einstein notation, that is, =

for the actual Einstein summation, usually external libraries are

used. Surprisingly, Einstein summation operations on tensors fit A B v

well with fundamental SQL constructs. We show that by apply- contraction order <~ @

ing only four mapping rules and a simple decomposition scheme YSELECT B.1, SUM(B val = vval) A% val FRON B, v ERE B. j=v.i GROUP BY Bd“
) SELECT A.i, SUM(A.val * w.val) AS val FROM A, w WHERE A.j=w.i GROUP BY A.i

using common table expressions, large tensor expressions in Ein-
stein notation can be translated to portable and efficient SQL code.
The ability to execute large Einstein summation queries opens up
new possibilities to process data within SQL. We demonstrate the
power of Einstein summation queries on four use cases, namely
querying triplestore data, solving Boolean satisfiability problems,
performing inference in graphical models, and simulating quantum
circuits. The performance of Einstein summation queries, however,
depends on the query engine implemented in the database system.
Therefore, supporting efficient Einstein summation computations
in database systems presents new research challenges for the design
and implementation of query engines.

ACM Reference Format:

Mark Blacher, Joachim Giesen, Julien Klaus, Christoph Staudt, Séren Laue,
and Viktor Leis. 2025. Efficient and Portable Einstein Summation in SQL. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Relational databases are the backbone of our data-driven world and
its data-intensive applications. SQL is the common language used
in relational databases to store, manipulate and retrieve data. SQL
is also suitable for simple computations with data. However, com-
pared to procedural programming languages, SQL’s data processing
capabilities are limited. Therefore, practitioners and researchers
strive to find SQL-friendly algorithms [1, 2], code-mapping ap-
proaches [3, 4], or even extend SQL’s data processing capabilities
by introducing new SQL operators and data types [5, 6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2025 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Correspondence between fundamental SQL con-
structs and Einstein summation: (1) tensors are realized as
relations, (2) tensor contractions are implemented as inner
joins paired with GROUP BY clauses and the SUM function,
and (3) common table expressions are used to optimize the
tensor contraction order.

Bringing computation to the data has many advantages, es-
pecially when computations can be expressed in pure and thus
portable SQL code. Processing data exclusively with SQL, avoids
costly data transfer to external applications, data duplication, and
possible data breaches. SQL provides a high level of abstraction from
the underlying hardware. Vectorized, parallel or even distributed
execution of SQL is done automatically by the underlying query
engine. SQL computations can achieve excellent performance with
powerful query engines [3]. Unlike user-defined functions, compu-
tations performed in pure SQL require minimal user permissions.
Furthermore, pure SQL code avoids expensive context switches
between the SQL parts and the procedural parts of the code, as they
occur in user-defined functions [7].

Many of today’s problems require efficient computations with
multidimensional arrays, that is, tensors. In artificial intelligence
and quantum physics, Einstein notation is commonly used to ex-
press large tensor expressions. Einstein notation is powerful enough
to represent all kinds of multiplicative tensor computations in a
natural and unambiguous way (see Background section). Although
Einstein notation has been around for over 100 years, it did not
reach the mainstream of the data science community until 2011
with its introduction in NumPy [8]. Since then, the notation has
become increasingly popular and is now part of major machine
learning and artificial intelligence frameworks [9-11], as well as
numerous array computing libraries [12, 13]. However, these frame-
works and libraries do not support Einstein notation with sparse
tensors. Surprisingly, SQL is sufficient to evaluate arbitrarily com-
plicated tensor expressions in Einstein notation, both for sparse
and dense tensors.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In this paper, we present a code-mapping approach for Einstein
notation that enables efficient Einstein summation in SQL. We use
the term Einstein summation to refer to the actual evaluation of
a tensor expression in Einstein notation. Mapping Einstein nota-
tion to SQL allows databases to perform the tensor computations
without the need for external libraries. We use only portable SQL
constructs for the mapping, so that the generated tensor compu-
tations can be executed on different DBMSes without any code
adjustments. For implementing Einstein summation in SQL we
exploit a natural correspondence between fundamental SQL con-
structs and Einstein summation. As illustrated in Figure 1, the
correspondence works on three levels: (1) relations correspond to
tensors, (2) inner joins paired with GROUP BY clauses and the SUM
function correspond to tensor contractions, and (3) common table
expressions correspond to optimizing the tensor contraction order,
that is, enforcing query optimizations externally in queries. We
explain how this correspondence can be exploited for efficient map-
pings from Einstein summation to SQL in Section 3. Note, however,
that Einstein summation is not only used for small linear algebra
expressions with vectors and matrices, as is the case in Figure 1.
Instead, practical Einstein summation problems often consist of
expressions with hundreds or even thousands of higher order ten-
sors. Therefore, using an efficient contraction order to evaluate an
Einstein summation query is crucial for its performance.

Executing Einstein summation in databases opens up new ap-
plication areas for SQL-only computations. Einstein summation
can be used for stand-alone computations or as part of larger algo-
rithmic computations. In the Experiments section, we apply stand-
alone Einstein summation in SQL to four recently published use
cases, namely querying triplestore data [14], solving Boolean sat-
isfiability problems (SAT) [15], performing inference in graphical
models [16], and simulating quantum circuits [17]. The source
code for the compiler that translates tensor expression from Ein-
stein notation to efficient and portable SQL Einstein summation
queries, and the experiments from the paper can be downloaded
from https://github.com/ti2-group/sql-einsum. In addition, we pro-
vide a website for generating SQL Einstein summation queries at
https://sql-einsum.ti2.uni-jena.de.

2 BACKGROUND

In 1916, Einstein introduced a notational convention for tensor
expressions that avoids explicit summation signs [18]. By using this
notational convention, commonly referred to as Einstein notation,
linear algebra or tensor expressions can be represented concisely
and clearly. For example, the linear algebra expression AB" v, where
v € R/, A € RI*K and B € R/*K| reads in Einstein notation as
follows: AjxBjrv;. In the original notation, pairs of repeated indices
are implicitly used for summation. The indices j and k appear twice
in the expression A;;Bjxv;, and therefore are used as summation
indices. The example expression in Einstein notation is thus a short
version of }’; 3’ AjxBjkvj, without the explicit summation signs.
Note that for each tensor within an expression in Einstein nota-
tion, the number of indices determines the order of the tensor. In the
example expression A;; is a second order tensor, that is, a matrix.
Within a tensor, the £-th index refers to its £-th axis. When two
tensors share an index, then the two axis must have the same size,

that is the same number of elements. In our example expression,
the second axis of A and the second axis of B share the same index,
namely k, so these two axes must have the same size. Also the first
axis of B and the first axis of v share an index, namely j. Therefore,
these two axes must also have the same size.

Each tensor expression in Einstein notation can be evaluated as a
nested set of for-loops. Suppose we evaluate the example expression
and store the result in a vector r, where r € R!. Listing 1 shows
how to perform this computation in Python using nested for-loops.
Note that i is the only index that remains after the computation
and is therefore used to index the output vector r.

Listing 1: Computing ¥; > Ak Bjxv; using nested for-loops.

r = np.zeros(A.shape[0]) # output is a vector @

for i in range(A.shape[0]):
for j in range(B.shape[0]): # summation over j
for k in range(A.shape[1]): # summation over k
r[i] += A[i, k] * B[j, k] * v[j]l # 7 remains

In contrast to Einstein’s original notation, modern Einstein nota-
tion explicitly states the indices that remain after the expression is
evaluated. Put differently, this means that modern Einstein summa-
tion explicitly specifies the indices for the output tensor. Instead of
writing A Bjxv; and assuming that j and k are used for summation,
because they appear twice in the expression, the example expres-
sion in modern Einstein notation reads as follows: A;;Bjxv; — ri,
where i is the output index. In modern Einstein notation, expres-
sions like A;Bjxv; — s or AyBjrv; — R;ji are also possible. The
first expression evaluates to a scalar, the second to a third order
tensor (see Listing 2). In modern Einstein notation the following
rule applies: indices that are not part of the output tensor are used
for summation. Note that the results of the last two expressions
are not directly computable using only the linear algebra notation.
Thus, modern Einstein notation significantly increases the expres-
sive power over Einstein’s original notation and also over linear
algebra notation.

Listing 2: Computing A ;xBjxv;—s and A ;xB;rv;— R;jx simul-
taneously using the same set of nested for-loops.

s = 0 # output <s a scalar "3
R = np.zeros((A.shape[0], B.shapel[0O],
A.shape[1])) # output <s a third order tensor
for i in range(A.shape[0]):
for j in range(B.shape[0]):
for k in range(A.shape[1]):
s += A[i, k] * B[j, k] * v[j]
R[i, j, k] += A[i, k] * B[j, k] * v[j]

Common Einstein summation APIs allow both the modern way
of expressing Einstein notation with the arrow, and the classical one
with the implicit convention of summation over repeated indices.
Here, to represent a tensor expression, we stick to the modern way
with the arrow to avoid ambiguity. If we do not care about the names
of the tensors, then the essential information of a tensor expression
can be encoded using just the indices of the tensors in a simple
format string. We use a format string similar to that of the einsum
function in the NumPy library [19]. The format string representing
the example expression A;Bjrv; —r; is "ik, jk, j->i". Table 1

https://github.com/ti2-group/sql-einsum
https://sql-einsum.ti2.uni-jena.de

Table 1: Examples of format strings for tensor expressions.

Operation Format string
Matrix diagonal ii->i
Vector outer product i,j->1j
Mahalanobis distance i,ij,j->

Marginalization (sum over multiple axes)
Batch matrix multiplication

Bilinear transformation [22]
Element-wise product of two 4D tensors
Matrix chain multiplication

2 X 3-tensor network [23]

Tucker decomposition [24]

ijklmno->m
bik,bkj->bij
ik,k1j,i1->ij
ijkl,ijkl->ijkl
ik,k1,1m,mn,nj->ij
ij,iml,lo, jk,kmn,no->
ijkl,ai,bj,ck,dl->abcd

contains example expressions to illustrate the expressive power of
this Einstein-like notation.

Although it is trivial to evaluate expressions in Einstein notation
in a brute forced manner, that is, with a set of nested for-loops,
it is NP-hard to do so with optimal computational cost [20]. Sum-
ming over pairs of repeated indices is called tensor contraction.
The computational cost of contracting a tensor expression depends
heavily on the contraction order, whereas the result does not [21].
In our example expression A;Bjrv; — r;, there are two possible
sequences for pairwise contracting the common indices. Contract-
ing k first and then j results in a matrix-matrix multiplication of
A and B, and then the intermediate matrix is multiplied by the
vector v. On the other hand, contracting j first and then k leads to
a matrix-vector multiplication between B and v, and then matrix A
is multiplied with the intermediate vector. The contraction order
J, k avoids the expensive matrix-matrix multiplication and is there-
fore preferable here. Listing 3 shows Python code illustrating the
efficient contraction order j, k of the example expression.

Listing 3: Computing A ;i Bjiv; —r; efficiently.

r = np.zeros(A.shape[0]) # output is a vector @
tmp = np.zeros(A.shape[1]) # intermediate vector
for j in range(B.shape[0]): # summation over j
for k in range(A.shape[1]):
tmp (k] += B[j, k] * v[j]
for k in range(A.shape[1]):
for i in range(A.shape[0]):
r(i] += A[i, k] * tmpl[k]

matrixz * vector
summation over k

matriz * wvector

The terms Einstein notation and Einstein summation are often
used interchangeably. To make the naming in this paper unam-
biguous, we use the term Einstein notation for the format string
representing the tensor expression, and Einstein summation for the
actual evaluation of a tensor expression.

3 EINSTEIN SUMMATION IN SQL

In this section, we map the Einstein-like notation presented in
the Background section to SQL for enabling Einstein summation
in databases. First, we choose a portable schema for representing
tensors in SQL, that is, we choose a design for relations and their
data types so that tensors can be encoded across various DBMSes.
Second, we present mapping rules to generate non-nested Einstein
summation queries from arbitrary format strings. Finally, we show
how to decompose Einstein summation queries into smaller parts
for exploiting efficient contraction sequences.

3.1 Choosing a portable schema for tensors

In order to make Einstein summation portable across different data-
base vendors and SQL dialects, we choose the coordinate (COO)
format to represent tensors. The COO format does not use vendor-
specific data types such as vectors, matrices or tensors, but only
integers and floating point numbers. The COO format explicitly
stores the indices, that is the coordinates, for each value of a ten-
sor [25]. For example, the schema for a 3D tensor looks as follows:
A(i INT, j INT, k INT, val DOUBLE).

Table A stores a 3D tensor. Each value (val) in tensor A can be
addressed by specifying the corresponding indices (i, j, k).

The COO format is a sparse tensor storage format, that is, zero
values do not need to be stored explicitly [26]. For tensors consisting
mainly of zeros, a sparse storage format saves space and time in
computations. For dense tensors, that is tensors with few or no
zero values, it is rather inefficient. Here, however, we use the COO
format for both dense and sparse tensors because we consider it
to be the only suitable format for portable Einstein summation in
SQL.

3.2 Mapping Einstein summation to SQL

Given the tensors in COO format and a format string in Einstein
notation, any Einstein summation operation can be mapped to a
single, non-nested SQL query. Suppose we map the example tensor
expression from the Background section to SQL. For clarity, we
use index names in the format string that are different from the
index names of the input tensors. We also color the indices used
for summation with the same color. The format string thus looks
as follows: ac,bc,b->a. Its corresponding input tensors in COO
format are A(i, j, val), B(i, j, val), v(i, val). Note
that the coloring of the indices of the input tensors is the same as in
the format string, although the index names are different. Listing 4,
along with some input data, shows how to compute the example
tensor expression in SQL and with NumPy in Python.

Listing 4: Einstein summation in Python and SQL.

import numpy as np 'g
A = np.array([[1.0, 0.0], [0.0, 2.0]])
np.array([[3.0, 4.0], [6.0, 6.0], [0.0, 7.0]11)
np.array([8.0, 0.0, 9.0])

» A, B, v))

WITH A(i, j, val) AS (-- matriz 4
VALUES (0, 0, 1.0), (1, 1, 2.0)
), B(i, j, val) AS (-- matriz B
VALUES (0, 0, 3.0), (0, 1, 4.0), (1, 0, 5.0),
(1, 1, 6.0), (2, 1, 7.0)
), v(i, val) AS (-- wector v
VALUES (0, 8.0), (2, 9.0)
) SELECT A.i AS i, -- R2
SUM(A.val * B.val * v.val) AS val -- R3
FROM A, B, v -- R1
WHERE A.j=B.j AND B.i=v.i -~ R4
GROUP BY A.i -- R2

B
v
print(np.einsum(

0

For mapping any tensor expression in Einstein notation to SQL,
the following four rules (R1 — R4) suffice.

R1 All input tensors are enumerated in the FROM clause.

R2 The indices of the output tensor are enumerated in the
SELECT clause and the GROUP BY clause.

R3 The new value is the SUM of all values multiplied together.

R4 Indices that are the same among input tensors are transitively
equated in the WHERE clause.

In Listing 4, all four rules are applied to map the example ten-
sor expression to SQL (see comments 21 — R/). For some tensor
expressions the conditions to apply the rules R2 and/or R4 are not
fulfilled. If the output tensor is a scalar, that is, there are no indices
in the format string after the arrow, R2 is skipped. If there is no
summation in the tensor expression, that is, there are no common
indices in the format string before the arrow, R4 is skipped. Skip-
ping R2 results in a query without a GROUP BY clause, skipping
R4 omits the WHERE clause in the query.

The format string of the example tensor expression from Listing 4
contains pairs of repeated indices, namely b and c, therefore, accord-
ing to R4 they need to be equated in the WHERE clause. Valid tensor
expressions can also contain triples, quadruples, etc. of repeated
indices. For example, the element-wise product of three vectors
(d,d,d->d) contains three repeating indices in the input tensors.
These three indices must be transitively equated in the WHERE
clause. Given the vectorsu(i, val),v(i, val) andw(i, val),
Listing 5 shows the operation in SQL mapped according to R1 — R4.

Listing 5: Transitively equated indices in the WHERE clause.

SELECT u.i AS i, -- 2 &=
L saL
SUM(u.val * v.val * w.val) AS val -- R3

FROM u, v, w -- R1
WHERE u.i=v.i AND u.i=w.i -- R4
GROUP BY u.i -~ R2

Note that the mapping of the element-wise product of three
vectors from Einstein notation to SQL in Listing 5 can be further
simplified by removing the SUM operation and the GROUP BY
clause. The four rules presented guarantee a correct mapping of
Einstein notation to SQL, not a mapping with minimal code size.
Further checks may be required to simplify the generated SQL code.
However, query optimizers are often smart enough to figure out
redundant SQL constructs on their own.

3.3 Optimizing contraction order in SQL

Mapping a tensor expression in Einstein notation to a single, non-
nested query can lead to suboptimal running times when executing
the query, especially for an expression with many tensors. The
suboptimal running times of a large Einstein summation query may
be caused by the query optimizer’s inability to efficiently decompose
the query into multiple smaller parts. Common query optimizers
know nothing about the contraction order of repeating indices in a
tensor expression and thus are unable to exploit it for computations.
However, by using common table expressions or subqueries for
intermediate tensors, a single large Einstein summation query can
be decomposed into smaller parts, forcing the database engine
to adhere to a predefined contraction order. By using GROUP BY
and aggregation (SUM) in the intermediate computations, query
engines have to adhere to the decomposed evaluation order of an
Einstein summation query. Listing 6 shows how to decompose the

Einstein summation query from Listing 4 into two matrix-vector
computations by using an intermediate vector k.

Listing 6: Decomposed Einstein summation query.

WITH k(i, val) AS (-- intermediate vektor k ==
SELECT B.j, SUM(v.val * B.val) En

FROM v, B WHERE v.i=B.i GROUP BY B.j -- k = vB
) SELECT A.i AS i, SUM(k.val * A.val) AS val
FROM k, A WHERE k.i=A.j GROUP BY A.i -- 4k

We use opt_einsum [27] for computing an efficient contraction
order of a format string and its corresponding tensors. We pass the
sizes of the tensors to opt_einsum, or set them to default values if
they are missing. opt_einsum contains several path finding algo-
rithms, ranging from an exhaustive search for all possible contrac-
tion paths to a greedy heuristic approach. By default, opt_einsum
selects the best possible algorithm for a format string while trying
to keep path finding times below 1 ms [28].

The result of using opt_einsum is a contraction list that con-
tains enough information for generating the decomposed Einstein
summation query. Because a decomposition of a large Einstein sum-
mation operation consists of multiple smaller Einstein summation
operations, we use the mapping strategy from Section 3.2 multiple
times to generate the decomposed query.

4 EXPERIMENTS

We demonstrate the practical value of Einstein summation in SQL
by solving problems from four different computational domains.
Each of the following subsections is self-contained and includes
both a problem description and an experimental evaluation. As
DBMSes for executing Einstein summation queries and thus solv-
ing the problems, we use HyPer, SQLite, and PostgreSQL. HyPer is a
column-oriented in-memory DBMS that achieves high performance
for both OLTP and OLAP workloads [29]. We use Tableau’s pub-
licly available HyPer API version 0.0.13287, which installs both the
HyPer DBMS and its corresponding Python interface locally on the
machine. SQLite is a lightweight, widely used, open source database
engine. We use SQLite version 3.33.0. PostgreSQL is a popular, open
source, row-oriented DBMS. We use PostgreSQL version 12.11. We
report the performance for these DBMSes in iterations per second,
that is, how many times the problem can be solved in one second,
where the computation of the next problem starts as soon as the
previous one finishes. In HyPer, we measure two possible query
execution modes, compilation and interpretation. We report only
the best results of these two modes. For better comparison, the mea-
surements also include the performance of opt_einsum. opt_einsum
is a Python package for efficient Einstein summation of large tensor
expressions. opt_einsum supports various einsum backends. To
the best of our knowledge, sparse tensors are not supported in the
various einsum backends. We use opt_einsum version 3.3.0 with
a NumPy backend. At each problem instance in the experiments,
the SQL implementations and opt_einsum use identical tensor con-
traction sequences. We pass a precomputed contraction sequence
as an optional argument to opt_einsum, so that opt_einsum can
immediately begin to compute the result tensor without having to
optimize the contraction path of the tensor expression first.

All following experiments are performed on a machine with an
Intel 19-10980XE 18-core processor running Ubuntu 20.04.1 LTS
with 128 GB of RAM. Each core has a base frequency of 3.0 GHz
and a max turbo frequency of 4.6 GHz and supports the AVX-512
vector instruction set.

4.1 Querying triplestore data

A triplestore is a type of graph database used to store and retrieve
triples through semantic queries. A triple is a data entity consist-
ing of three terms (subject-predicate-object or s-p-o for short), like
Alice-knows-Bob or Bob-plays-piano. A semantic query on these
two example triples could be as follows: Does Alice know anyone
who plays the piano? The answer here would be yes (Bob). Seman-
tic queries are usually formulated in SPARQL [30], the standard
query language for triplestores. SPARQL queries can be mapped
to Einstein summation when the triplestore data is organized as a
one-hot encoded third order tensor T"*™*" where n is the number
of distinct terms in the triples [14, 31].

For our SQL triplestore experiment we use the 120 years of
Olympic history dataset [32, 33]. This dataset consists of 1781625
triples and contains a total of n = 544 171 distinct terms in the
triples. Because each triple is only a data point in the tensor (with
a value of one), the tensor is hypersparse (107!! percent of the
values are non-zero). The tensor T would need about 500 petabytes
in a dense representation. Thus, executing SPARQL queries with
Einstein summation requires support for sparse tensors. However,
in constrast to our SQL Einstein summation, current Einstein sum-
mation implementations do not support sparse tensors. Therefore,
we use here the Python package RDFLib (version 6.2.0) instead of
opt_einsum for the performance comparison with SQL. RDFLib
represents the semantic data as a graph and allows SPARQL queries
to be executed on it. We use the SPARQL query in Listing 7 to
compare the performance between DBMSes and RDFLib.

Listing 7: SPARQL query for performance comparison. List
all athletes who have won a gold medal and the number of
gold medals they have won, in descending order.

PREFIX walls: <http://.../olympics/>
PREFIX rdfs: <http://.../rdf-schema#>

SPARQL

SELECT ?name (COUNT(?name) AS ?count)

WHERE {
?instance walls:athlete 7athlete . # TP1
?instance walls:medal <http://.../Gold> . # TP2
7athlete rdfs:label 7name . # TP3

} GROUP BY ?name ORDER BY DESC(?count)

To query the Olympic history dataset in SQL with Einstein sum-
mation, we convert the dataset to a sparse one-hot encoded third
order tensor T. Each of the three triple patterns (TP1 — TP3) in the
WHERE condition of the SPARQL query of Listing 7 represents a
slice of T. To obtain the corresponding slice from a triple pattern,
terms are replaced by their IDs and variables are replaced by the
slice placeholder ‘. Let a be the ID for walls:athlete, m for
walls:medal, g for <http://.../Gold>, and / for rdfs:1label,
the triple patterns yield the following three slices: T; = T a,:],
T, =T[:;,m,g] and Tz = T[; [, :]. The SPARQL query can now be ans-
wered with the following tensor expression: ij,1, jk->k, where

the input tensors correspond to slices T, T, and T (see Listing 8
for the full SQL query). Figure 2 shows the performance of the full
SQL query, that is, computing the slices of T, contracting them with
Einstein summation, and sorting the results in descending order.

Listing 8: SQL query for the SPARQL query from Listing 7.

WITH T1(i, j, val) AS (-- T[:,a,:]
SELECT s, o, val FROM T WHERE p=

0

S

[
]

), T2(i, val) AS (-~ T[:,m,q]
SELECT s, val FROM T WHERE p=m AND o=
), T3(i, j, val) AS (- T[:,1,:]

SELECT s, o, val FROM T WHERE p=
), K1 AS (-- Einstein summation
SELECT T1.j AS i, SUM(T2.val * T1l.val) AS val
FROM T2, T1 WHERE T2.i=T1.i GROUP BY T1.j
) SELECT T3.j AS i, SUM(Kl.val * T3.val) AS val
FROM K1, T3 WHERE K1.i=T3.i GROUP BY T3.j
ORDER BY val DESC

Surprisingly, all three DBMSes perform better than RDFLib, with
HyPer particularly standing out for its performance. Unlike rela-
tional DBMSes, triplestores are optimized for good performance
on querying semantic data. However, the results suggest that, at
least for medium-sized semantic datasets, relational databases may
be a possible alternative to triplestores, as querying the data with
Einstein summation shows satisfying performance. Note that we
did not index the tensor T in the experiments. Indexing T could
further improve the performance of querying semantic data in SQL.

E
9 28.91
§ 30 -
g
g 20
g 1o 2.78
s 0.74 - 1.77
g o0 | —
RDFLib HyPer PostgreSQL SQLite

Figure 2: Performance for answering the SPARQL query of
Listing 7 on multiple DBMSes and RDFLib (Python).

4.2 Solving SAT problems

SAT, which decides whether a given Boolean formula is satisfiable,
is probably the best known NP-complete problem. Satisfiable means
that there is an assignment of truth values to the Boolean variables
in the formula that evaluates the entire formula as true. Commonly,
SAT formulas are represented in conjunctive normal form (CNF).
A formula in CNF is a conjunction of clauses, where a clause is a
disjunction of literals and a literal is a variable or its negation. Any
decision problem in the complexity class NP can be reduced to the
SAT problem for CNF formulas [34].

Here, we use Einstein summation in SQL to count the number of
solutions to a given SAT formula in CNF. Counting the number of
solutions is known as the #SAT problem, which is #P-complete [35].
We adapt the approach of Biamonte et al. [15] to convert a SAT for-
mula in CNF to a tensor network. However, unlike Biamonte et al.
we avoid creating a COPY-tensor for each variable of the SAT for-
mula, thus simplifying the computation. The conversion starts by

dF dT SAT formula in CNF bF bT
11 ar|1 1
:’}li 10 clause 1 clause 2 a"l[:' 1 1|CF
— J a0 1
1 1T

each clause has one unsatisfiable assignment

\ (mav=d)A(aV bV o ar

clauses are combined each tensor is used

——> ad, abc ->

via Einstein notation for the Einstein notation
Figure 3: Conversion of a SAT formula into an Einstein sum-

mation problem to compute the number of its solutions.

creating a tensor for each clause of the SAT formula. The order of
a tensor corresponds to the number of variables in the clause. The
size of each dimension of the tensor is two. For a clause with two
variables, this would result in a {0, 1}?*? tensor; with three vari-
ables, it would result in a {0, 1}2*?%2 tensor. Each dimension of a
tensor corresponds to a variable of the clause. Thus, the coordinates
of a single point in the tensor describe a possible assignment of
truth values to the Boolean variables in the clause. If an assignment
satisfies the clause, then the value of the point is one, otherwise
it is zero. Note that in each tensor only one value is zero and all
others are one, because in a clause the variables are disjointly con-
nected and thus only one variable assignment does not satisfy the
clause. Finding the assignment that does not satisfy the clause is
computationally cheap, because it only requires to ensure that each
variable and its possible negation evaluates to false. Finally, the
tensor network combines the tensors in such a way that the indices
of the tensors correspond to the variables in the clauses. Figure 3
shows the conversion of an example SAT formula in CNF into
an Einstein summation problem. Listing 9 computes in SQL the
number of solutions for the example SAT formula.

Listing 9: SQL query for computing the number of solutions
for the SAT formula (maV =d) A (aV b V =c).

WITH T1(i, j, val) AS (
VALUES (0, 0, 1), (0, 1, 1), (1, 0, 1)
), T2(i, j, k, val) AS (-- temsor for clause 2
VALUES (0, 0, 0, 1), (0, 1, 0, 1),
(0, 1,1, 1), (1, 0, 0, 1), (1, 0, 1, 1),
1, 1,0, 1), (1, 1, 1, 1)
) SELECT SUM(T1.val * T2.val) AS val FROM T1, T2
WHERE T1.i=T2.i -- Einstein summation

=
-- tensor for clause 1

[
]

L]

To explore the practicality of solving SAT problems in SQL, we
studied the package management tool Anaconda [36]. With Ana-
conda, packages can be installed and managed for the Python and
R programming languages. When a new package is installed, Ana-
conda verifies dependencies between already existing packages
and the package to be installed. For this purpose, Anaconda in-
ternally creates a CNF formula, which it checks for satisfiability.
This formula encodes in its clauses the packages and the mutual
dependencies. For our use case, we run the Anaconda command
conda install sqlite on anewly created conda environment.
In this scenario, conda has to solve a CNF formula with 718 clauses
and 378 variables. This formula is given as a 3-SAT problem and
can therefore be converted to a tensor network using the approach
described above. In 3-SAT, each clause uses at most three literals.
Note that there can only be a maximum of 14 unique tensors in a

3-SAT problem: two for clauses with one variable, four for clauses
with two variables, and eight for clauses with three variables. In the
SQL queries and the opt_einsum computations in Python, we use
only the required subset of the 14 tensors to compute the number of
solutions for a 3-SAT formula. Reusing tensors avoids the need to
create a separate tensor for each clause. For our measurements, we
vary the number of clauses to get a sense of the scalability of solving
SAT problems in SQL. The performance of evaluating the tensor
networks for different numbers of clauses is shown in Figure 4.

HyPer —— SQLite PostgreSQL —e— opt_einsum

103

102

101

10°

iterations per second

| | | ! | | |
100 200 300 400 500 600 718

number of clauses

Figure 4: Performance based on the number of clauses in a
CNF formula of a 3-SAT problem.

The performance measurements are shown on a logarithmic
scale. As expected, opt_einsum outperforms HyPer and PostgreSQL
because it is a dense tensor algebra computation problem with
relatively small tensors, where a SQL query can easily exceed 100
KB in size. However, for this kind of problem SQLite shows even
better performance than opt_einsum. With SQLite the Einstein
summation for the complete SAT problem (718 clauses) can be
evaluated 52 times per second, but with opt_einsum only 21 times
per second. While experimenting with different SAT formulas, we
also reached the limits of the maximum allowed dimensions in
NumPy (32 dimensions) when running some SAT problems and
therefore could not perform the computations with opt_einsum.
With SQLite, the limit on the number of dimensions depends on the
compile-time parameter SQLITE_MAX_COLUMN, which can be set
to values up to 32767. Thus, we were able to solve more problems
with SQLite than with opt_einsum.

4.3 Inference in graphical models

Graphical models are sparse representations of multivariate proba-
bility distributions, where nodes represent random variables and
edges encode conditional dependencies (interactions) among the
variables. Inference in graphical models means computing proba-
bilities of the form P(X=x|E=e), where X is a set of query variables
and E is a set of evidence variables. The choice of X and E is arbi-
trary, which makes graphical models very flexible machine learning
models.

Here, we use as an example the breast cancer dataset from the
UCI machine learning repository [37], in which ten variables such
as age, tumor size, the degree of malignancy, and whether a tumor
has recurred were collected from 286 individuals. After learning a
graphical model for this dataset, we can ask inference queries like
What is the probability of breast cancer recurrence given a certain
age and the fact that the person was irradiated? or Given the number

of axillary lymph nodes containing metastatic breast cancer and the
grade of malignancy, what tumor size is most likely?. For answering
questions like these, the graphical model must be turned into a
data structure that supports inference queries. It has been shown
recently [16] that tensor networks can serve as such a data struc-
ture. Inference queries on graphical models represented by tensor
networks are performed via Einstein summation.

Here, we use the Python package cgmodsel [38] to learn a graph-
ical model for the breast cancer dataset. The interactions of the
learned model are given by a symmetric block-sparse matrix Q. The
non-zero blocks in Q correspond to edges in the graphical model
and are used, as shown in Figure 5, as tensors of the tensor network
representation.

Block matrix Q
Xi Xz X3

Graphical model

X1 0 pairwise interaction
between X5, X3
X3 0
v v Y
0 bc, be, ae,

Tensor network

Figure 5: Translation of the pairwise interaction matrix Q to
a tensor network. The blocks of Q are non-zero exactly when
there is an edge between the two underlying variables in the
graphical model (dashed arrow). Each edge of the graphical
model becomes a tensor in the tensor network (dotted arrow).

The tensor network for the breast cancer dataset has 21 matrices
with shapes ranging from R?*® to R!*7. For the SQL experiment,
we store the matrices in the DBMS before running the queries. Us-
ing these matrices, we compute the probability of breast cancer
recurrence considering all the patient’s data as evidence, that is,
we compute P(recurrencel|evidence). The patient’s data can be em-
bedded in the query as one-hot encoded vectors. However, instead
of computing the probability for a single patient, we compute the
probabilities for multiple patients simultaneously, that is, we em-
bed one-hot encoded matrices as evidence in the query instead of
vectors. Figure 6 shows the performance of computing probabilities
with different numbers of patients (batch size) in the query.

The graphical model query executes significantly faster in
opt_einsum than in the three DBMSes, for all batch sizes. How-
ever, especially on HyPer the performance for the graphical model
query is satisfying, also in terms of scalability for the batch size.
In SQLite and PostgreSQL, the performance degrades faster with
increasing batch size than in HyPer and NumPy. But for graphical
model inference with small batch sizes, DBMSes are fast enough in
practice.

4.4 Simulating quantum circuits

Quantum circuits are commonly used to describe quantum compu-
tations on qubits. A qubit is the smallest possible unit of quantum
information. A single qubit is a quantum system with two states,

HyPer —— SQLite PostgreSQL —e— opt_einsum

'é 104 T T T T T T

19)

Q

S ‘\‘\‘_—‘\.\.

g 10% | 1
a

w

=}

.8

S 100 - 5
—

3} \ \ \ \ \ !

h 1 10 50 100 200 250

batch size

Figure 6: Performance based on the number of patients (batch
size) in the graphical model query.

but unlike its classical counterpart, the bit, its value is not dis-
crete but continuous due to the principle of quantum superposition.
Quantum circuits basically consist of quantum gates connected by
quantum wires. Quantum gates are single or double qubit operators
representing unitary transformations on qubits. Figure 7 shows an
example quantum circuit for a two-qubit system consisting of two
Hadamard gates (single qubit operators) and one CX gate (double
qubit operator). The output of a quantum circuit is not a bit string,
but a complex probability distribution. Only after the output is
measured, the value for a given qubit becomes either 0 or 1.

CX gate
qubit 1 H Tg
qubit 2 X H

Figure 7: Simple two-qubit quantum circuit.

Because reliable quantum computers are still in their infancy,
simulating quantum circuits on classical computers is the usual
way to perform quantum computations. On a laptop it is feasible to
simulate quantum circuits with about 30 qubits. However, it takes
a supercomputer to simulate 56 qubits [39]. Efficient simulation
is key to solving larger quantum problems on classical machines.
Tensor networks have proven to be an efficient simulation backend
for quantum computations [40-42]. It is straightforward to map
quantum circuits onto tensor networks [17]. For our example circuit
from Figure 7, the format string a,b, ca,dbc,ed->ce represents
the Einstein summation operation to compute the corresponding
probability distribution. In the format string, "a,b" represents the
two input qubits. The input qubits are vectors of size two that
encode the initial state of the circuit. The symbol |1) stands for the
vector (1,0) and the symbol |0) for the vector (0, 1), so that for the
example circuit four possible initial states, namely |00}, |[01), |10),
and |11), can be encoded using two qubits. The two Hadamard gates,
which are essentially 2X2-matrices, are represented by "ca,ed".
The only peculiarity that must be taken into account to execute
the example circuit with Einstein summation is that commonly the
CX gate is represented by a 4x4-matrix. In Einstein summation,
however, the CX gate is instead a 2x2x2-tensor. The CX gate is
represented by "dbc" in the format string. Finally, the 2x2-matrix
"ce" describes the probabilities of the four possible output states
that the example circuit computes.

Quantum physics problems require the use of complex num-
bers [43, 44]. Therefore, to enable quantum computations in SQL,
we extend the decomposed Einstein summation queries from Sub-
section 3.3 to support complex numbers. Unfortunately, complex
numbers are not part of the SQL standard [45] and are therefore not
natively supported by most DBMSes. However, complex numbers
can be realized with SQL in a portable way [1]. But, when mul-
tiplying complex numbers, the boundaries between the real and
imaginary parts must be crossed. Multiplying two complex numbers
a+bi and c+di, results in the complex number (ac—bd) + (ad+bc)i.
Fortunately, the decomposed Einstein summation queries perform
only multiplication between two numbers, because each common
table expression uses at most two tensors. Therefore, to enable
Einstein summation with complex numbers in SQL, it is sufficient
to hardcode the formula for multiplying two complex numbers.

For our simulation experiments of quantum circuits, we use parts
of Google’s Sycamore quantum supremacy circuit [46]. The full
Sycamore quantum supremacy circuit contains 53 qubits and has
a depth of 20, meaning it contains 20 cycles of unitary operations.
Using the Julia package Yao [47], we can generate different quantum
circuits instances with different numbers of qubits and different
depths of the Sycamore circuit. The Yao package also allows us to
convert these circuits to Einstein notation.

For the first experiment we set the number of qubits to ten and
vary the depth of the circuits (see Figure 8). With increasing circuit
depth and a constant number of qubits, all implementations except
PostgreSQL show satisfying performance scaling. Considering the
fact that NumPy natively supports complex numbers and we have
to introduce significant overhead in SQL to enable them, it is sur-
prising that SQLite’s performance is only slightly worse compared
to opt_einsum with the NumPy backend.

HyPer —— SQLite PostgreSQL

opt_einsum

10°

—_
S
™o

—_
S
—

iterations per second

\ \ \ \ \ \ \ \ !
2 4 6 8 10 12 14 16 18

depth (number of qubits = 10)

Figure 8: Performance for computing different quantum cir-
cuits with changing depth and fixed number of qubits.

However, with varying number of qubits and a constant depth,
the measured performance diverges more for the databases (see
Figure 9). For a small number of qubits, SQLite outperforms even
opt_einsum, but for many qubits, SQLite’s performance drops un-
der HyPer. A large number of qubits means that the dense out-
put tensor describing the complex probability distribution is also
high-dimensional. It is rather inefficient to represent dense high-
dimensional tensors in SQL by using a sparse tensor format, there-
fore opt_einsum clearly outperforms here the database implemen-
tations of quantum circuits with many qubits.

HyPer —— SQLite PostgreSQL
10° T T T T T T T T T

103 - \N\ |

opt_einsum

iterations per second
—_
<
T
\

\ \ \ \ \ \ \ \ \
2 4 6 8 10 12 14 16 18

number of qubits (depth = 8)

Figure 9: Performance for computing different quantum cir-
cuits with changing number of qubits and fixed depth.

5 DISCUSSION: THE ROLE OF QUERY
ENGINES IN EINSTEIN SUMMATION

Performing Einstein summation with hundreds or even thousands
of tensors presents new challenges to query engines and their
query optimizers. Large Einstein summation queries have some
interesting properties. They often do not require much data, but
perform extensive computations. This is not the standard DBMS
use case, where computations are performed on large datasets.
Nevertheless, computations such as large Einstein summations are
used in practice, and surprisingly, some DBMSes, even if not tuned
for these types of computations, perform quite well. Why is it that
one DBMS finishes the query in a fraction of a second, whereas
another DBMS does not finish the query at all?

For large Einstein summation queries, the bottleneck is often not
executing the query, but optimizing it. However, because Einstein
summation queries are already decomposed into sequences of pair-
wise contractions, the additional query optimizations are mostly
superfluous and only cost computational time with no additional
benefit. For this kind of queries it would be sufficient to analyze only
which contractions, that is, which common table expressions, can
be executed at the same time. Finding independent computations
(common table expressions) that can be executed concurrently is
a rather lightweight optimization and would require only a small
amount of computational time. However, superfluous optimizations
for computationally intensive queries are common among DBMSes.

To demonstrate that query optimization can be the bottleneck
for such queries, we use as an example a SAT problem with 952
clauses. We also include DuckDB [48] (version 0.5.0) in our mea-
surements, as it demonstrates particularly well that excessive query
optimization can be the bottleneck for queries with little data but
large computations. To measure the time required for query opti-
mization, we measure the time to determine a query plan. We then
subtract the time needed to compute the query plan from the total
runtime of the query to obtain only the execution time.

Table 2 shows the planning and execution times for the example
SAT problem. It can be seen that the planning time in SQLite is
marginal, whereas the planning time in HyPer takes almost the
entire time of the query. Note that here we measure the time for

DBMS Planning time Execution time
opt_einsum (NumPy backend) 0.00's 3.69s
SQLite 0.03s 0.37s
HyPer (interpreted) 0.87s 0.08s
PostgreSQL 1.51s 20.19s
DuckDB N/A N/A
DuckDB (no optimizations) 0.20s 0.97 s

Table 2: Planning and execution times for the SAT problem.

HyPer in interpretation mode, in compilation mode the bottleneck
would be the compilation of the large SAT query (169 KB). However,
considering only the query execution (without planning), HyPer
has the best performance for the example SAT query. Interestingly,
for this problem, opt_einsum is much slower than the DBMSes,
except PostgreSQL. In DuckDB, the query plan for the example
SAT problem was still not computed after five hours, therefore we
terminated the computation. However, DuckDB supports disabling
query optimizations by setting a pragma before executing the query.
With query optimizations disabled, DuckDB showed also satisfying
performance. Most DBMSes do not allow disabling query optimiza-
tions in a simple way. The ability to disable query optimizations
before executing a query is a highly practical feature and should
therefore be firmly established in modern DBMSes.

Is disabling query optimizations the best strategy for efficient
in-DBMS Einstein summation? Would it not be better to create
efficient query plans by the query optimizer itself instead of hard-
coding them externally in the query? Einstein summation problems
are often repetitive, meaning that only one or a few parameter
tensors and/or data tensors change so that the contraction path
of an entire expression remains the same. Forcing a DBMS to op-
timize the contraction path on each execution of a query would
be redundant. However, caching the query plans could avoid re-
dundant computations of contraction paths. Still, finding efficient
contraction paths is a hard problem. We used opt_einsum’s built-in
contraction path optimizer, but for example cotengra [49] in com-
bination with KaHyPar [50] can find more efficient contraction
paths, but often at the price of longer computation time. Such de-
sign decisions about which optimizer to use for contraction path
computation are easily replaceable if contraction paths are com-
puted outside the DBMS. Moreover, such optimizers can be more
efficient than traditional query optimizers because the problem
they optimize, namely the contraction path, is known in advance.
However, the DBMS knows better the underlying dimensions and
sparsity levels of the data. Also, traditional contraction path optimiz-
ers do not consider sparsity, and the specialized implementations
that do adapt approaches from the DBMS community [14], such
as worst-case optimal join algorithms [51]. Therefore, optimizing
contraction paths for computations with sparse tensors is better
done by the query optimizer than externally. For dense tensors,
the decision between external path optimization versus in-DBMS
path optimization remains unclear. Note that, in the presented ap-
proach, we decompose a single, non-nested Einstein summation
query into a large number of nested pairwise Einstein summation
operations, that is, we replace a single GROUP BY clause in the
execution tree with multiple GROUP BY clauses, thereby splitting
and deferring joins and summation. Such query optimizations are

well known [52-54] - but not widely supported by current DBMSes.
Therefore, forcing an efficient evaluation order of the Einstein sum-
mation externally, makes the query more performance portable
compared to relying on the supported features of query optimizers.
Nevertheless, naive Einstein summation in SQL, that is, without
forcing an efficient evaluation order externally, shows that blindly
executing joins before executing GROUP BY is an inefficient query
optimization strategy for performing such aggregational compu-
tations. Modern query optimizers should be able to defer joins in
such scenarios, but surprisingly, most do not.

6 RELATED WORK

Intensive work has been done to incorporate machine learning,
data mining, artificial intelligence, and statistical routines into rela-
tional databases [55]. The overall idea of the different approaches
is to leverage database queries to trigger in-DBMS analytics. Ap-
proaches to support analytical queries range from pure SQL solu-
tions [3, 7, 56, 57], to modifying the language and thus the internals
of a database system [5, 58, 59], or even, to building new database
systems with better support for analytical tasks [60-62]. In between
are approaches that exploit the standard database extension mecha-
nisms such as user-defined types, functions and aggregates [63-66].

The mapping of Einstein summation to standard SQL presented
in this paper is a contribution to pure SQL analytics. Note, how-
ever, that the above approaches mostly focus on model training,
that is, implementing iterative algorithms for learning parameters
of various statistical models such as regression, classification, or
clustering. While in-DBMS model training is proving very useful in
avoiding copying huge amounts of data from one system to another,
there is also, as recently noted in the Seattle report on database
research [67], an immediate need for efficient in-DBMS inference.
Einstein summation naturally allows serving inference queries on
various Al models (Boolean, semantic, probabilistic). These infer-
ence queries are manifestations of tensor networks, that is, multi-
plicative tensor expressions with many high-dimensional tensors.
Using tensor networks for analytics is an emerging field [68-72],
with many applications yet to be found.

7 CONCLUSIONS

In this paper we presented mapping rules to translate tensor ex-
pressions given in an Einstein-like notation to SQL. The generated
Einstein summation queries are highly portable between different
DBMSes and exploit efficient contraction sequences in their execu-
tion. Our experiments demonstrate that Einstein summation queries
offer new opportunities to process data in SQL. The performance of
Einstein summation queries is satisfying across different DBMSes.
On a modern in-memory DBMS like HyPer, Einstein summation
queries for large sparse problems can even outperform specialized
libraries. For dense problems with hundreds of tensor contractions
over small tensors, SQLite surprisingly shows superior performance
over other DBMSes and occasionally even over opt_einsum with
a NumPy backend. However, besides of broadening the range of
practical problems that can be solved with database queries, Ein-
stein summation in SQL also offers the possibility of improving
query engines by providing contraction algorithms, practical query
decomposition strategies, and challenging SQL queries.

REFERENCES

[1

[10

(11

[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]
[22]
[23]
[24]

[25]

™
&

[27]

[28]
[29]

[30
[31]

[32]

[33]

[34]

[35]

D. Marten, H. Meyer, and A. Heuer, “Calculating fourier transforms in SQL,” in
ADBIS, 2019.

M. E. Schiile, A. Kemper, and T. Neumann, “Recursive sql for data mining,” in
SSDBM, 2022.

M. Blacher, J. Giesen, S. Laue, J. Klaus, and V. Leis, “Machine learning, linear
algebra, and more: Is SQL all you need?” in CIDR, 2022.

T. Fischer, D. Hirn, and T. Grust, “Snakes on a plan: Compiling python functions
into plain SQL queries,” in SIGMOD, 2022.

M. E. Schiile, F. Simonis, T. Heyenbrock, A. Kemper, S. Giinnemann, and T. Neu-
mann, “In-database machine learning: Gradient descent and tensor algebra for
main memory database systems,” in BTW, 2019.

S. Luo, Z. J. Gao, M. N. Gubanov, L. L. Perez, and C. M. Jermaine, “Scalable linear
algebra on a relational database system,” IEEE Trans. Knowl. Data Eng., 2019.

D. Hirn and T. Grust, “One WITH RECURSIVE is worth many GOTOs,” in SIG-
MOD, 2021.

C.R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna-
peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, et al.,, “Array programming
with NumPy,” Nature, 2020.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015. Software available from tensorflow.org.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance
deep learning library,” 2019.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Nec-
ula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: compos-
able transformations of Python+NumPy programs,” 2018.

Matthew Rocklin, “Dask: Parallel Computation with Blocked algorithms and
Task Scheduling,” in Proceedings of the 14th Python in Science Conference, 2015.
R. Nishino and S. H. C. Loomis, “Cupy: A numpy-compatible library for nvidia
gpu calculations,” Workshop on machine learning systems (LearningSys) in Neural
Information Processing Systems (NIPS), 2017.

A. Bigerl, F. Conrads, C. Behning, M. A. Sherif, M. Saleem, and A. N. Ngomo,
“Tentris - A tensor-based triple store,” in ISWC, 2020.

J. D. Biamonte, J. Morton, and J. W. Turner, “Tensor network contractions for
#sat,” Journal of Statistical Physics, 2015.

E.Robeva and A. Seigal, “Duality of graphical models and tensor networks,” CoRR,
vol. abs/1710.01437, 2017.

L. L. Markov and Y. Shi, “Simulating quantum computation by contracting tensor
networks,” SIAM J. Comput., 2008.

A. Einstein, “The foundation of the general theory of relativity,” Annalen der
Physik, 1916.

O. Bilaniuk, “Einstein summation in numpy.” https://obilaniu6266h16.wordpress.
com/2016/02/04/einstein- summation-in-numpy/, 2016.

C. Lam, P. Sadayappan, and R. Wenger, “On optimizing a class of multi-
dimensional loops with reductions for parallel execution,” Parallel Process. Lett.,
1997.

F. Schindler and A. S. Jermyn, “Algorithms for tensor network contraction order-
ing,” Machine Learning: Science and Technology, 2020.

Torch Contributors, “Bilinear.” https://pytorch.org/docs/stable/generated/torch.
nn.Bilinear.html, 2019.

J. Jakes-Schauer, D. Anekstein, and P. Wocjan, “Carving-width and contraction
trees for tensor networks,” arXiv, 2019.

E. Robeva and A. Seigal, “Duality of graphical models and tensor networks,”
Information and Inference: A Journal of the IMA, 2019.

D. Marten, H. Meyer, D. Dietrich, and A. Heuer, “Sparse and dense linear algebra
for machine learning on parallel-rdbms using SQL,” Open J. Big Data, 2019.

S. Chou, F. Kjolstad, and S. P. Amarasinghe, “Format abstraction for sparse tensor
algebra compilers,” Proc. ACM Program. Lang., 2018.

D. G. A. Smith and J. Gray, “opt_einsum - A python package for optimizing
contraction order for einsum-like expressions,” J. Open Source Softw., 2018.

D. G. A. Smith, “opt_einsum docs” https://optimized-einsum.readthedocs.io, 2018.
A. Kemper and T. Neumann, “HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots,” in ICDE, 2011.

S. Harris and A. Seaborne, “Sparql 1.1 query language,” W3C, 2013.

A. Bigerl, F. Conrads, C. Behning, M. A. Sherif, M. Saleem, and A. N. Ngomo,
“Extended example on Tentris.” https://tentris.dice- research.org/iswc2020/, 2020.
A. Addlesee, “Creating linked data.” https://medium.com/wallscope/creating-
linked-data-31c7dd479a9e. Accessed: 2022-08-04.

R. Griffin, “120 years of olympic history: athletes and results.” https://www.kaggle.
com/datasets/heeso037/120-years-of-olympic-history-athletes-and-results. Ac-
cessed: 2022-08-04.

S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, 1971.

L. G. Valiant, “The complexity of computing the permanent,” Theor. Comput. Sci.,
1979.

“Anaconda software distribution,” 2020.

1 D. Dua and C. Graff, “UCI machine learning repository,” 2017.

F. Nussbaum and J. Giesen, “Pairwise sparse + low-rank models for variables of
mixed type,” . Multivar. Anal., 2020.

E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik,
E. W. Draeger, E. T. Holland, and R. Wisnieff, “Pareto-efficient quantum circuit
simulation using tensor contraction deferral,” arXiv, 2017.

D. Liakh and USDOE, “Exatensor. computer software,” 2019.

B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R. Biswas, and S. Mandra,
“A flexible high-performance simulator for verifying and benchmarking quantum
circuits implemented on real hardware,” npj Quantum Information, 2019.

F. Pan, K. Chen, and P. Zhang, “Solving the sampling problem of the sycamore
quantum circuits,” Phys. Rev. Lett., 2022.

M.-0.Renou, D. Trillo, M. Weilenmann, T. P. Le, A. Tavakoli, N. Gisin, A. Acin, and
M. Navascués, “Quantum theory based on real numbers can be experimentally
falsified,” Nature, 2021.

M.-C. Chen, C. Wang, F.-M. Liu, J.-W. Wang, C. Ying, Z.-X. Shang, Y. Wu, M. Gong,
H. Deng, F.-T. Liang, et al., “Ruling out real-valued standard formalism of quantum
theory,” Physical Review Letters, 2022.

ISO/IEC 9075-2:2016, Database languages — SQL — Part 2: Foundation. 2016.

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. Brandao, D. A. Buell, et al., “Quantum supremacy using a pro-
grammable superconducting processor,” Nature, 2019.

X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang, “Yao.jl: Extensible, Efficient Frame-
work for Quantum Algorithm Design,” Quantum, 2020.

M. Raasveldt and H. Miihleisen, “Duckdb: an embeddable analytical database,” in
SIGMOD, 2019.

J. Gray and S. Kourtis, “Hyper-optimized tensor network contraction,” Quantum,
2021.

S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz, “k-way
hypergraph partitioning via n-level recursive bisection,” in ALENEX, 2016.

H. Q. Ngo, C. Ré, and A. Rudra, “Skew strikes back: new developments in the
theory of join algorithms,” SIGMOD Rec., 2013.

S. Chaudhuri and K. Shim, “Including group-by in query optimization,” in VLDB,
1994.

W. P. Yan and P. Larson, “Performing group-by before join,” in ICDE, 1994.

M. Eich, P. Fender, and G. Moerkotte, “Efficient generation of query plans con-
taining group-by, join, and groupjoin,” VLDB 7., 2018.

M. Boehm, A. Kumar, and J. Yang, Data Management in Machine Learning Systems.
2019.

D. Marten and A. Heuer, “Machine learning on large databases: Transforming
hidden markov models to SQL statements,” Open J. Databases, 2017.

L. Dy, “In-machine-learning database: Reimagining deep learning with old-school
SQL,” arXiv, 2020.

D. Jankov, S. Luo, B. Yuan, Z. Cai, J. Zou, C. Jermaine, and Z. J. Gao, “Declarative
recursive computation on an RDBMS,” Proc. VLDB Endow., 2019.

M. E. Schiile, H. Lang, M. Springer, A. Kemper, T. Neumann, and S. Giinnemann,
“In-database machine learning with SQL on gpus,” in SSDBM, 2021.

R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas, “The monte
carlo database system: Stochastic analysis close to the data,” ACM Trans. Database
Syst., 2011.

Z. Cai, Z. Vagena, L. L. Perez, S. Arumugam, P. J. Haas, and C. M. Jermaine,
“Simulation of database-valued markov chains using simsql,” in SIGMOD, 2013.

S. Luo, Z. J. Gao, M. N. Gubanov, L. L. Perez, and C. M. Jermaine, “Scalable linear
algebra on a relational database system,” in ICDE, 2017.

J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton, “MAD skills:
New analysis practices for big data,” Proc. VLDB Endow., 2009.

J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S.
Ng, C. Welton, X. Feng, K. Li, and A. Kumar, “The madlib analytics library or
MAD skills, the SQL,” Proc. VLDB Endow., 2012.

X. Feng, A. Kumar, B. Recht, and C. Ré, “Towards a unified architecture for
in-rdbms analytics,” in SIGMOD, 2012.

Y. Cheng, C. Qin, and F. Rusu, “GLADE: big data analytics made easy,” in SSIGMOD
(K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and A. Fuxman, eds.), 2012.
D. Abadi, A. Ailamaki, D. Andersen, P. Bailis, M. Balazinska, P. A. Bernstein,
P. Boncz, S. Chaudhuri, A. Cheung, A. Doan, et al., “The seattle report on database
research,” Commun. ACM, August 2022.

A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing neural
networks,” in Neural Information Processing Systems (NIPS), 2015.

E. M. Stoudenmire and D. J. Schwab, “Supervised learning with tensor networks,”
in Neural Information Processing Systems (NIPS), 2016.

S. Cheng, L. Wang, T. Xiang, and P. Zhang, “Tree tensor networks for generative
modeling,” Phys. Rev. B, 2019.

W. Huggins, P. Patil, B. Mitchell, K. B. Whaley, and E. M. Stoudenmire, “To-
wards quantum machine learning with tensor networks,” Quantum Science and
Technology, 2019.

L. Glasser, N. Pancotti, and J. I. Cirac, “From probabilistic graphical models to
generalized tensor networks for supervised learning,” IEEE Access, 2020.

https://obilaniu6266h16.wordpress.com/2016/02/04/einstein-summation-in-numpy/
https://obilaniu6266h16.wordpress.com/2016/02/04/einstein-summation-in-numpy/
https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html
https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html
https://optimized-einsum.readthedocs.io
https://tentris.dice-research.org/iswc2020/
https://medium.com/wallscope/creating-linked-data-31c7dd479a9e
https://medium.com/wallscope/creating-linked-data-31c7dd479a9e
https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results
https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results

	Abstract
	1 Introduction
	2 Background
	3 Einstein Summation in SQL
	3.1 Choosing a portable schema for tensors
	3.2 Mapping Einstein summation to SQL
	3.3 Optimizing contraction order in SQL

	4 Experiments
	4.1 Querying triplestore data
	4.2 Solving SAT problems
	4.3 Inference in graphical models
	4.4 Simulating quantum circuits

	5 Discussion: The role of query engines in Einstein summation
	6 Related Work
	7 Conclusions
	References

