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Abstract
Kernel-bypass technologies eliminate the overhead of traditional
OS stacks, offering direct access to high-speed I/O devices such
as network and storage. This paper argues that kernel-bypass is
no longer an optional optimization but a necessary architectural
strategy for I/O-heavy applications like database systems. The mo-
tivation stems from two trends: stagnating CPU performance and
rapid advances in I/O hardware, such as 800 Gbit/s NICs and SSDs
exceeding 12M IOPS. In our evaluation, we show that, given these
trends, it is no longer possible for DBMSs to saturate modern NICs
or SSDs with traditional kernel stacks. We thus urge the research
community to prioritize kernel-bypass technologies to fully harness
the potential of emerging hardware in database systems.

CCS Concepts
• Information systems → Parallel and distributed DBMSs;
Flash memory; • Networks→ Performance evaluation.
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1 Introduction
Kernel-bypass technologies enable I/O-heavy applications like data-
base systems to interact directly with hardware, eliminating costly
kernel overhead and significantly improving performance. Despite
these advantages and promising prior work [10, 13, 22, 26, 27, 31],
kernel-bypass remains underutilized by both industry and academia.
In this paper, we argue that kernel-bypass is no longer just an op-
timization; it is necessary to fully exploit modern hardware. This
urgency for kernel-bypass arises from two converging trends. First,
Moore’s Law, which historically provided steady CPU performance
gains, is reaching its limits. Second, advancements in I/O hardware
have accelerated significantly, exemplified by NICs reaching up to
800 Gbit/s and SSDs exceeding 12 million IOPS.

The core problem is that using I/O devices requires the CPU to
orchestrate operations. As such, traditional kernel-based I/O stacks
increasingly become CPU-bound. Prior work [8, 29] already stated
that the kernel stack in the case of networks consumes roughly
40% of the CPU cycles in OLTP workloads. While this finding is
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Figure 1: The CPU budget for saturating a 400G link using 64
cores is 686 cycles per 64B packet. The actual cost for kernel-
based stacks is significantly higher. User-space networking
like DPDK or RDMA is the only viable option, leaving room
for data structure lookups.
concerning, the situation we point to is even more severe: the over-
head of the kernel stack prevents modern hardware from
being utilized to its full potential. For example, a Mellanox
ConnectX-7 network interface card (NIC) can handle up to 280 mil-
lion 64-byte messages per second [12, 24]. On a typical 3 GHz CPU
with 64 cores, this message rate translates to only 686 CPU cycles
(3e9 𝑐𝑦𝑐𝑙𝑒𝑠 × 64 𝑐𝑜𝑟𝑒𝑠/280e6𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠) per message. As illustrated
in Figure 1, current kernel-based interfaces – including advanced
implementations like io_uring – require at least six times this cycle
budget per message. Utilizing the NIC using kernel-based stacks
would necessitate increasing the CPU budget sixfold(!) from 64 to
320 cores, which is infeasible even with modern CPUs.1

In contrast, kernel-bypass libraries such as DPDK and RDMA
handle messages using approximately 40 cycles per message (Fig-
ure 1), representing a roughly 100-fold improvement over kernel-
based interfaces. With 40 cycles per message, ample CPU cycles
remain available for meaningful work, such as hash table lookups
in key-value stores (c.f. Figure 1 right). Given that 800 Gbit NICs are
already available and 1.6 Tbit NICs are emerging [21], stagnating
CPU frequencies will further shrink the CPU budget per message,
reinforcing the necessity of kernel-bypass approaches. This trend
similarly applies to modern NVMe SSDs [15, 16].

The central contribution of this paper is to articulate the neces-
sity for kernel-bypass and issue a call to the research community
to investigate how to use these techniques in modern DBMSs. To
show this urgency, we systematically evaluate modern 400 Gbit
NICs and PCIe Gen5 SSD arrays. While our primary focus is on
networking, we also show that the same principles apply to storage:
modern SSD arrays exhibit similar overheads under kernel-based
stacks, further reinforcing the need for kernel-bypass technologies
across the entire I/O stack.

2 The Case for Kernel-bypass
As discussed earlier, utilizing modern NICs efficiently would require
the kernel stack to be 100 times more efficient. Despite significant
work on kernel optimizations – including io_uring – fundamental

1Moreover, multiple cores would have to share the same TX and RX queues on the
NIC, further restricting the feasibility of scaling to this large number of cores.
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Figure 2: Required number of cores to reach full link utiliza-
tion for different stacks. User-space networking is orders of
magnitude more efficient than the kernel for sending 64B
and 8KiB messages. The kernel-based stack cannot saturate
the link for 64B and needs 16×more cores for 8KiBmessages.

inefficiencies remain [9]. To understand where these inefficiencies
stem from, we analyze the cycle breakdown of a simple UDP transfer
of a 64-byte message using perf as shown in the table below:

Driver IP UDP Sockets App Other Total
Cycles: 549.56 703.99 1439.02 883.81 31.44 455.62 4,032
Percent: 13.63% 17.46% 35.69% 21.92% 0.78% 11.3% 100%

The data shows that UDP and Sockets consume the most cycles,
but nearly every component exceeds the theoretical CPU budget
(686 cycles). There is no high pole in the tent since the overhead
is distributed across the entire stack. Consequently, incremental
kernel improvements, including io_uring, are insufficient.

Instead of optimizing an inherently inefficient system, we should
abandon the kernel stack and develop database-aware networking
using kernel-bypass. Database systems, for instance, could avoid
kernel memory-management overhead by using techniques incom-
patible with the kernel [28]. The table shows that UDP processing
alone requires ≈1,500 cycles, much of which stems from memory
allocations, virtual memory manipulation, and data copies.

As shown in Figure 1, kernel-bypass stacks process messages
in just 40 cycles – two orders of magnitude fewer than kernel-
based approaches. This is surprising, given that both stacks perform
similar tasks, such as generating UDP messages and interfacing
with the NIC via a driver. The key advantage of kernel-bypass lies
in its ability to interface directly with the NIC from an application.
Bypassing the kernel removes costly system calls, context switches,
and kernel-to-user-space data copies. Direct hardware access also
enables polling-based I/O rather than interrupt-driven processing.
Polling can be significantly more efficient. This reduces latency and
improves throughput. As a result, databases can efficiently handle
high-speed workloads with CPU cycles left for DB operations.

To leverage kernel-bypass, two major stacks are commonly used
for networking: (1) The first is the Data Plane Development Kit
(DPDK)[3], a widely adopted user-space networking library that
enables direct access to NICs without kernel involvement. DPDK
achieves high-speed packet processing by polling directly on the
NIC’s TX and RX queues, allowing packets to be transferred via
Direct Memory Access (DMA) into the application’s memory. How-
ever, DPDK only provides raw access to the Ethernet layer, meaning
applications must implement higher-level protocols. Hence, multi-
ple user-space TCP stacks have been built on top of DPDK, including
F-Stack[2], Seastar[5], and mTCP[18]. These implementations ben-
efit from DPDK’s low latency, direct hardware access, and reduced

16+ cores

required for

full Bandwidth

Figure 3: Bandwidth measured with a single core. DPDK sat-
urates the network bandwidth earlier with a single core. The
Kernel stack achieves the lowest per-core bandwidth. Hence,
saturating the NIC is only possible with multiple cores.

CPU overhead. (2) The second major stack is RDMA (Remote Direct
Memory Access)[7, 19], which enables memory-to-memory com-
munication between nodes without CPU intervention. Like DPDK,
RDMA operates in user-space, bypassing the kernel networking
stack, but requires specialized hardware. However, RDMA further
eliminates the need for an active target CPU because the NIC can
directly write data into remote user-space memory. RDMA is a
reliable protocol and operates over InfiniBand or RoCE (RDMA
over Converged Ethernet)[8, 14].

3 An Evaluation on Modern Hardware
We established that kernel-bypass networking is more efficient
than kernel-based networking. A careful reader might argue that
while CPU frequency has stagnated, modern CPUs provide more
cores, which increases the amount of available CPU cycles for I/O.
To evaluate this claim, we conduct a set of microbenchmarks on
state-of-the-art hardware, covering both high-speed networking
and fast storage devices.

Experimental Setup. Our experiments are conducted on single-
socket servers equipped with AMD EPYC 9554P processors (64
cores, up to 3.75 GHz) with SMT disabled, and 768 GiB of RAM,
running Ubuntu 24.04 LTS on Linux kernel 6.15.0 with default ker-
nel flags. Each node features a PCIe5 Nvidia ConnectX-7 MT2910
RDMA NIC, configured for Ethernet and connected to a 400 Gbit In-
tel Tofino2 switch. We use RDMA with RoCE on the same network-
ing hardware. For storage experiments, we use a single server with
eight PCIe5 NVMe SSDs (Kioxia KCMY1RUG7T68), each capable of
2.45M random read IOPS, aggregating to a maximum throughput of
19.6M IOPS or 75GiB/s storage bandwidth. In practice, we measured
slightly higher performance at 20.65M IOPS.

3.1 I/O Performance on Modern Networks
Scaling to Network Line Rate. We begin by examining the number

of cores required to saturate a 400 Gbit NIC using different network
stacks. In this experiment, we scale the number of cores while
sending UDP messages of two sizes: small (64B) and large (8KiB).
Figure 2 (left) confirms that with small messages, fully utilizing the
packet rate of modern 400 Gbit NICs is infeasible with kernel-based
networking. However, DPDK achieves full saturation, reaching 280
million messages per second with just four cores.

With larger messages (Figure 2 right), bandwidth becomes the
limiting factor rather than packet rate. Saturating the link is easier in
this case because CPU overhead, such as system calls, is amortized



3.58 1.22 8.97

1.22 1.42

1.22

(13.7)

(3.49)

(1.81)

Sender and receiver software
overhead dominates overall latencyRDMA

Write

DPDK

Kernel

0µs 2µs 4µs 6µs 8µs 10µs 12µs 14µs
Time Spent per Message

Sender Wire Receiver

Figure 4: End-to-end latency breakdown comparison of ker-
nel, DPDK and RDMA. The latency of the kernel-bypass
stacks is significantly lower than that of the kernel stack.

over larger payloads. As a result, even kernel-based networking
can eventually utilize the link, but it requires 16 times more cores
than DPDK, which achieves full utilization with only a single core.

These experiments demonstrate that while high message rates
remain impractical for kernel-based networking, larger messages,
such as those in OLAP workloads, enable full link utilization. Nev-
ertheless, considering ongoing hardware advancements, NICs with
800 Gbit/s require approximately 32 CPU cores, while a 1.6 Tbit/s
link could potentially consume all 64 cores for kernel-based net-
working. This indicates that, even when larger messages partially
amortize overhead, kernel-bypass remains essential for future-
proofing OLAP systems as network speeds continue to increase.

Per-Core Throughput. Figure 3 shifts attention to the per-core
throughput for varying message sizes. DPDK and RDMA achieve
comparable peak performance for large messages. However, DPDK
saturates the network bandwidth earlier with a single core (partially,
since RDMA is reliable, while DPDK uses unreliable UDP), making it
well-suited for maximizing throughput while minimizing CPU load.
Reliable RDMA Writes consistently achieve a higher bandwidth
than the kernel-based UDP stack, which does not exceed 30Gbps
per core – even with large message sizes. The kernel stack scales
linearly up to 4KiB, and requires 16 or more cores to reach full link
utilization as shown in Figure 2.

Network Latency. Besides bandwidth utilization, network latency
is another critical metric for database systems, particularly in OLTP
transactions [11, 17, 30]. One might expect wire latency to domi-
nate end-to-end message delay, but our measurements reveal that
software processing, especially in the kernel stack, is the primary
source of overhead. We break down latency into sender, wire, and
receiver components to quantify this observation. To measure the
different components, we leverage the hardware time-stamping ca-
pabilities of the ConnectX-7 NICs after synchronizing their clocks.

As shown in Figure 4, wire latency is approximately 1.2𝜇𝑠 . A full
UDP transfer in the kernel stack – from user-space on the sender
to user-space on the receiver – takes 13.7𝜇𝑠 , nearly an order of
magnitude higher than the physical wire latency. This overhead
is unevenly distributed between the sender and receiver. DPDK
reduces total latency to 3.5𝜇𝑠 , with wire latency accounting for
35%, while sender and receiver processing each contribute 15%
and 40%, respectively. This breakdown demonstrates that kernel-
bypass improves throughput and significantly reduces message
latency, making it particularly attractive for latency-sensitive data-
base workloads such as OLTP transactions.

To further examine the latency overhead of the different network
stacks, we measure their end-to-end message latency and normalize
it to the RDMA latency in Figure 5. RDMA is the baseline since it
consistently achieves the lowest latency across all message sizes.
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Figure 5: End-to-end latency normalized to reliable RDMA
Writes. The other stacks’ overhead is constant, independent
of the message size. Hence, software processing overhead
dominates wire latency.

The figure shows latency for a single round-trip, including sender
processing, receiver processing, and wire transmission. The relative
overhead of each stack remains stable across message sizes. The
kernel stack exhibits the highest latency, up to 10× slower than
RDMA. Kernel NAPI [4] reduces this overhead through polling
within the driver, but is still 5× slower than RDMA2.

Besides NAPI, we evaluated AF_XDP [1], a recent Linux kernel
feature designed for high-performance packet processing. We ob-
served benefits when processing can be offloaded to the eBPF virtual
machine. However, in typical database scenarios represented by
our microbenchmarks, where user-space processing is necessary,
AF_XDP delivered latency and throughput comparable to – or in
some cases worse than – standard UDP. We therefore excluded this
baseline from the results.

TCP Overhead. Due to its reliability, TCP is more widely used
than UDP in database systems, e.g., for transaction coordination or
client-server communication [25]. We measure the TCP throughput
for different networking stacks to evaluate the impact of using
TPC over UDP. Figure 6 compares the previously reported raw
DPDK (unreliable) performance against F-Stack [2] (TCP on top
of DPDK) and kernel-based TCP. The figure shows the aggregated
bandwidth across all cores for varying message sizes. Despite using
kernel-bypass, F-Stack performs similarly to kernel-based TCP,
highlighting that TCP is a major source of overhead.

We also applied moderate TCP tuning and assigned multiple
connections to each core to ensure fair utilization. Nevertheless,
saturating a 400 Gbit link requires almost all 64 cores with either
TCP stack. In contrast, raw DPDK achieves peak throughput with
only a few cores. These results emphasize the inefficiency of TCP
for high-speed networking and the need for lighter, application-
specific transport protocols.

3.2 I/O Performance on Modern SSDs
Beyond networking, storage I/O is critical in database systems and
directly affects the performance of operations such as write-ahead-
logging [23]. In the advent of fast NVMe PCIe5 SSDs, minimizing
CPU cycles per I/O is essential to fully utilize the hardware band-
width and leave room for query processing or other database tasks.

CPU cost per I/O. Figure 7 presents an ablation study of stor-
age stack efficiency, reporting CPU cycles required per 4KiB read
2The Kernel (NAPI) baseline was excluded in the bandwidth experiments, since polling
offers no significant benefit in this context.



Figure 6: Comparison of a kernel-based and kernel-bypass
TCP stack. Compared to UDP, the overheads are evident, even
though F-Stack builds directly on top of DPDK.

I/O across various stacks. The theoretical CPU budget to satu-
rate 8 PCIe Gen5 SSDs [6] using 64 cores is 8.8K cycles per I/O
(3e9 𝑐𝑦𝑐𝑙𝑒𝑠 × 64 𝑐𝑜𝑟𝑒𝑠/21.6e6 𝐼𝑂𝑠). All kernel-based stacks – pread,
libaio, and io_uring – exceed this budget and cannot saturate the
SSD bandwidth. With io_uring optimizations, such as buffer regis-
tration and fixed file-descriptors, enabled (io_uring*), the kernel-
based stack is still an order of magnitude less performant than the
user-space alternatives like stock SPDK.

The kernel-bypass stacks like stock SPDK and a minimal custom
SPDK-variant, eliminating unnecessary indirections in SPDK [15],
complete read I/Os in as few as 294 and 183 cycles, respectively
– well below the computed theoretical threshold. These results
mirror our networking findings: kernel-bypass is essential for high
throughput and enabling additional computation alongside I/O
operations. User-space storage drivers are thus the only viable
option for interfacing with modern high-performance SSDs.

SSD Throughput. To highlight this finding further, we measure
the random read throughput across storage stacks for an increasing
number of cores, using the same setup with 8 PCIe5 SSDs. Figure 8
shows that kernel-bypass stacks, such as SPDK and our custom
SPDK-variant, achieve the SSDs’ full IOPS capacity (approximately
21M/s) with just 1–2 cores. In contrast, kernel-based stacks scale
poorly, requiring many more cores to approach saturation, with
some approaches (like pread) never reaching the hardware limit de-
spite using all available cores. These results highlight the overheads
of kernel-based I/O and underscore the importance of user-space
drivers for saturating modern storage devices in database systems.

3.3 Implications for Database System Design
Our evaluation demonstrates that both networking and storage
overheads in kernel-based approaches consume substantial CPU
resources that could otherwise be dedicated to query processing.
As hardware continues to advance with faster network and stor-
age devices, these overheads become increasingly problematic. To
remain computationally efficient, modern database systems must
adopt kernel-bypass techniques that minimize per-I/O overhead.
This is particularly crucial for analytical workloads that process
large volumes of data, and latency-critical transactional workloads,
where I/O latency directly impacts query performance.

4 A Call to the Database Community
Our research community must prioritize kernel-bypass technolo-
gies to fully benefit from future hardware advancements. Some

Figure 7: The CPU budget for saturating 8 PCIe5 SSDs [6]
using 64 cores is 8.8K cycles per 4KiB read IO. The actual
cost for kernel-based stacks is higher than the theoretical
budget. User-space storage drivers like SPDK are the only
viable option to saturate modern storage devices.
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Figure 8: Random read throughput across 8 SSDs. Stock and
custom SPDK reach peak IOPS with 1–2 cores. Kernel stacks
require many cores or fail to saturate the SSDs.

systems have already demonstrated the use of RDMA-based net-
working as an alternative kernel-bypass approach, reporting signif-
icant performance gains [13, 22, 26, 31]. Yet, only a few database
systems currently use kernel-bypass effectively, for example, Scyl-
laDB [27], Yellowbrick [10], and Oracle Exadata [26].

Several challenges currently limit wider adoption, creating op-
portunities for research to improve accessibility and usability.

First, implementing kernel-bypass is considerably simpler for
storage devices like SSDs, where standardized protocols such as
NVMe provide a precise specification for user-space libraries. NICs,
however, lack a universal specification, making the implementa-
tion of the user-space driver complex, typically requiring custom
solutions for each device. However, the increasing prevalence of
virtualized NICs in the cloud may offer a promising avenue: devel-
oping lightweight user-space network libraries tailored to a limited
set of standardized virtualized NICs.

Second, network protocols themselves might introduce complex-
ities. UDP lacks essential guarantees for reliable database communi-
cation, while TCP/IP, though more robust, is difficult to implement
efficiently in user-space. Even optimized TCP/IP implementations
like TAS [20] require roughly 2,000 CPU cycles per packet, still pro-
hibitive for high-performance databases. These overheads raise a
fundamental question: Do databases require all TCP/IP guarantees,
such as strict ordering, or can more efficient, application-specific
protocols be designed? Using database semantics, custom protocols
could reduce processing overhead while maintaining essential reli-
ability properties. Exploring such tailored approaches could further
enhance the viability and performance of kernel-bypass networking
in database systems.
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