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ABSTRACT
This paper explores the intersection of operating systems and data-
base systems, focusing on the potential of specialized kernels for
cloud-native database systems. Although the idea of custom, DBMS-
optimized OS kernels is old, it is largely unrealized due to the de-
mands of hardware compatibility and the reluctance of users to
install specialized operating systems. However, the cloud and the
database-as-a-service model make custom OS kernels realistic for
the first time. Among specialized OS kernel architectures, uniker-
nels stand out for relying on a single address space, eliminating the
need for costly process isolation that is provided by general-purpose
operating systems. They offer benefits such as the elimination of
system call overhead, direct access to hardware, and reduced com-
plexity. Beyond these immediate advantages, unikernels offer a
unique opportunity: the possibility to revisit dated POSIX APIs.
By allowing direct interaction with modern hardware primitives,
unikernels pave the way for the development of novel abstractions
that are not confined to the limitations of older APIs, opening doors
to a new era of co-designed, high-performance cloud-native data
processing systems and OS kernels.
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1 INTRODUCTION
Operating Systems and Database Systems. In a USENIX ATC
2021 keynote [49], Timothy Roscoe defined operating systems as
a “software that multiplexes [a] machine’s hardware resources, ab-
stracts the hardware platform, and protects software principals
from each other using the hardware”. In other words, operating
systems provide a uniform, abstract interface to the hardware, and
isolate different processes accessing the hardware. However, hard-
ware abstraction and process isolation are not for free – particularly
for high-performance database systems that want full control over
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the hardware. In principle, it therefore always made sense [21, 53]
to have custom, DBMS-optimized OS kernels that offer better per-
formance and more suitable OS APIs.
Why Have Custom OS-Kernels Not Been Successful? In prac-
tice, DBMS-optimizedOS kernels never gainedwidespread adoption
for two main reasons. First, few users would buy a DBMS that re-
quires installing a custom OS as a prerequisite. Second, since users
have different hardware setups, such a custom OS would have to
implement and maintain drivers for a myriad of devices. Therefore,
outside of narrow niche use cases, database systems simply had to
adapt to the restrictions of general-purpose operating systems.
Why This Time Is Different: Cloud. We believe that the transi-
tion to the cloud makes the use of custom OS kernels much more
realistic. Instead of shipping DBMS software to customers who
install it on-premise, database systems are increasingly offered as
ready-to-use virtual-machine images or as hosted services in public
clouds. As a consequence, custom kernels only need to be installed
by the DBMS vendor, not the user, who can benefit from a custom
kernel without having to administer it. Equally important, in any
public cloud, it is sufficient to support only a handful of hardware
devices. AWS EC2, for example, supports booting custom OS ker-
nels. A DBMS running on any recent EC2 instance only needs to
implement two drivers: an AWS-specific EFA driver for networking
and a generic NVMe driver for storage. For cloud-native database
systems, this makes custom kernels a realistic option.
OS Architecture Continuum. OS architectures vary in their
degree of isolation: Microkernels [37] maximize isolation by segre-
gating OS components (e.g., file systems) into separate processes.
Monoliths, e.g., Linux or Windows, only distinguish between user
and kernel space, executing bug-prone drivers [10, 47] with su-
pervisor privileges. Container-based virtualization [40, 41] also
falls into the monolith category, as it relies on namespace-isolated
heavy-weight processes. Library OSes [2, 19] and the cloud-targeted
unikernels [29, 31, 38], which are the focus of this work, co-locate
all components into one address space without privilege isolation.
Kernel Integration.We argue that unikernels are an ideal foun-
dation for cloud-native database systems as their lack of isolation
allows for a deep DBMS/kernel integration. With a unikernel, any
thread can directly access any kernel data structure and hardware
device. Hypervisor-based virtualization, where each VM runs a sin-
gle service, ensures tenant isolation in the cloud (See Section 3.1 for
a discussion of security implications). For many cloud services, the
overhead of running a general-purpose OS, like Linux, is redundant,
as there are no other processes or users to isolate from. Unikernels,
therefore, eliminate this unnecessary layer of isolation.
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Figure 1: Models of DBMS/OS cooperation

Unikernels Benefits. For high-performance database manage-
ment systems, unikernels offer several compelling advantages. (i)
There is no (cost for) privilege-level transitions. (ii) Applications
can directly control hardware and manipulate virtual-memory page
tables. (iii) Isolation is a major source of OS implementation com-
plexity; hence, unikernels can be smaller, simpler, and more pre-
dictable. (iv) Due to their simplicity, unikernels boot much more
quickly than general-purpose kernels.
New Abstractions. Although the benefits listed above are signif-
icant, we believe the most profound advantage of unikernels lies
in their ability to move beyond the decades-old POSIX API. Exist-
ing APIs severely limit what is possible: for example, using mmap
it is not possible to implement ARIES-style write-ahead logging
with in-place writes [11]. Unikernels make it both straightforward
and efficient to develop new abstractions based on the primitives
provided by modern hardware such as the page tables, TLB, and
inter-processor interrupts. For example, the virtual-memory page
table becomes a simple radix data structure that can be manipulated
directly instead of having to rely on expensive and functionally lim-
ited system calls. The co-design of data processing systems and OS
kernels offers the unique opportunity to develop new abstractions
without being restricted to APIs that were designed for single-core
systems with scarce memory.

2 OPERATING SYSTEMS AND DBMSS
Before we present specific ideas that are enabled by co-designing
database systems and unikernels in Section 3, let us first discuss
why the current state of operating systems falls short for high-
performance data processing systems.
Traditional Abstractions. In addition to user and process iso-
lation, the main task of an operating system kernel is to manage
hardware. Specifically, an OS provides a uniform abstraction over
hardware and multiplexes it among different users. The four main
hardware resources most relevant for database systems are CPU
cores, main memory, storage, and networking. In the traditional
model, the OS provides the abstraction threads of execution, which
the OS scheduler dynamically maps to CPU cores. Storage and
network I/O are done through synchronous, blocking system calls.
When a thread blocks on an I/O operation, it is not scheduled until
the device signals completion via an interrupt. In this model, the OS
controls all scheduling decisions and receives all hardware signals.

Traditional AbstractionWorkedWell for DBMS. As Figure 1(a)
illustrates, a straightforward way to implement a DBMS on top of
the traditional OS abstraction is to have one thread (or process) for
each client connection. Each thread listens on a network socket for
incoming requests using a blocking system call. If a request arrives,
the OS schedules the thread for execution on some CPU core. The
thread can then process the query and eventually return the result
to the client through another blocking socket system call. During
query execution, buffer-pool page misses may result in storage
I/O system calls and therefore additional context switches. This
model is easy to use, conceptually elegant, and provides a clean
separation of concerns between the DBMS and OS. The DBMS
relies heavily on the abstractions provided by the OS. Through
blocking system calls (and, when needed, preemptive multitasking)
the OS is in full control and can ensure that all hardware resources
are well utilized. In a world where (disk and network) I/O was
relatively slow in comparison to the CPU, the model was efficient
due to negligible context switching overhead. Consequently, this
synchronousmodel has historically been very successful, remaining
the basis for widely-used systems like PostgreSQL.
Traditional Abstraction On Modern Hardware. Unfortunately,
on modern hardware, the synchronous model runs into severe per-
formance problems. Modern storage devices are very fast, which
means that the kernel CPU overhead of I/O stack CPU can be sus-
tantial1. Storage devices are also highly parallel: a single modern
SSD, for example, is capable of simultaneously executing on the
order of 100 I/O requests and over one million requests per second.
Consequently, it is nearly impossible to exploit modern storage
devices using blocking I/O system calls [23]. A second, more con-
ceptual, problem with the traditional model is that it does not take
intra-query parallelism into account, which is crucial on modern
hardware with dozens of CPU cores. Intra-query parallelism is chal-
lenging because it breaks the one-to-one mapping between client
connections and threads.
Asynchronous I/O andWorker Thread Scheduling. To address
the challenges associated with synchronous I/O and intra-query
parallelism, modern high-performance database systems therefore
schedule I/O requests and CPU cores themselves. To do this, they
launch as one worker thread per CPU core [33], rely on asynchro-
nous I/O interfaces such as io_uring [23], and avoid OS services
such as software RAID and the file system [22]. In this model, the
1On Linux, every I/O operation takes on the order of 10,000 CPU cycles.
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database system has to decide how many threads to use for each
query, which means that it requires a scheduler that ideally consid-
ers other currently-running queries and whether they are I/O or
CPU-bound. The DBMS also has to manage I/O requests, with the
OS becoming a mere intermediary passing asynchronous requests
to asynchronous hardware devices. Note that these scheduling and
I/O decisions used to be the main purpose of an OS. On modern
hardware, the only way to achieve good performance is through
low-level OS interfaces, which push most of the responsibilities to
the application. Thus, the OS cannot fulfill its traditional role as
coordinator between the application and the hardware.
Kernel Bypassing. The high bandwidth of modern I/O devices
causes substantial CPU load just for moving data to the CPU. For
example, two recent studies showed that exploiting the bandwidth
of eight NVMe SSDs [23] or of one 100 Gbit Ethernet NIC [17]
requires roughly half the CPU cores – despite using the state-of-the-
art io_uring interface. This has motivated the trend to bypass the OS
using user-space libraries such as DPDK (for networking) and SPDK
(for storage I/O). The approach is illustrated in Figure 1(b) and can
reduce the CPU load in high-throughput situations considerably [14,
23]. However, user-space I/O always relies on polling rather than
interrupts, for which Linux provides no means to forward device
interrupt requests (IRQs) as asynchronous events to the user space.
When the request rate is low, polling wastes CPU cycles and leads
to unnecessary power consumption because it prevents CPU cores
from reducing their clock frequency. Data-plane OSes, such as
IX [8], Arrakis [48] or the demikernel [60], offer a generalized
approach to kernel-bypass APIs. However, they rely on hardware
features not available in virtualized guest OSes (SR-IOV [8, 48]) or
aim to keep the problematic [4, 6, 11, 18, 55, 57] POSIX API [60].
Instead of kernel bypass, in this work, we aim for kernel integration.
Conclusion. Despite being elegant, traditional synchronous OS
abstractions cannot achieve good performance on modern hard-
ware. High-performance database systems are therefore forced to
implement CPU and I/O scheduling themselves. This can even go
so far as bypassing OS device drivers and higher-level abstractions
altogether through user-space I/O. However, if the only way of
getting good performance is to do everything in the application,
why use a general-purpose OS anyhow?

3 CO-DESIGNING UNIKERNELS AND DBMS
This section starts by discussing unikernels and then describes ideas
for how they can be used to improve database systems.

3.1 What Unikernels Offer
Unikernels. Unikernels are lightweight operating systems specif-
ically designed for the cloud. The main idea is to compile the ap-
plication and the OS kernel into one system image running in a
hypervisor-based virtualized environment. The hypervisor allows
the application to run in kernel mode and execute in the same
memory address space as the kernel, as Figure 1(c) illustrates. As
we mentioned in the introduction, this property makes unikernels
simple (tens of thousands of lines of code instead of millions) and
efficient (no system call overhead, no process/user isolation cost).
The unikernel approach was pioneered by the Mirage system [39],
which relied on the OCaml programming language.

OSv. Later unikernels such as OSv [29] and Unikraft [31] implement
the standard Unix API POSIX, making them programming-language
agnostic. We chose OSv (rather than the more recent Unikraft) due
to its good multi-core support and its clean, readable, and efficient
C++ code. OSv supports x86_64 and arm64 as well as multiple
virtualization technologies such as QEMU/KVM, Xen, and Fire-
cracker [1]. Therefore, OSv can be developed and debugged locally
using QEMU. During development, unikernel-based deployments
are debugged using standard debuggers like gdb. In this setting,
the debugger runs on the host OS and the developer can easily
inspect the application and kernel code. In production, OSv can be
executed either using a KVM-virtualized EC2 instance or using a
bare-metal EC2 instance running Firecracker. The former might be
suitable for handling the base load, while the latter for handling
fluctuating workloads in a function-as-a-service-like way.
POSIX Versus New Abstractions. OSv runs many applications
out-of-the-box or with only minimal modifications [46]. However,
because POSIX is large and includes many obscure features, all
unikernels implement only a subset of POSIX. Indeed, it would
not be a good idea to be 100% compatible with Linux, since this
would destroy the simplicity of unikernels. Instead, we argue for
co-designing the DBMS with the unikernel by implementing novel
DBMS-specific abstractions on virtualized cloud hardware. Only the
simplicity of unikernels makes this approach realistic. For example,
the entire virtual memory subsystem of OSv is located in one file
(core/mmu.cc) containing 2,100 lines of C++ code. For comparison,
the corresponding code in Linux (mm/*) is over 110,000 lines of
C code. Most of this subsystem implements isolation or obscure
features that are not relevant for database systems.
UnikernelsOfferNewHardware Primitives.Running theDBMS
in kernel mode offers direct access to the (virtualized) hardware
and primitives that Linux, due to its shared-machine model, does
not expose to the user space. As demonstrated by DUNE [7], direct
and efficient access to these primitives brings significant perfor-
mance opportunities. A unikernel-based DBMS can exploit such
opportunities while remaining compatible with virtualized cloud
environments. Specifically, we believe that the following hardware
primitives can be exploited by database systems:

• CPU: preemption primitives, sleep/power states
• Virtual Memory: page table and TLB manipulation
• Hypervisor: memory ballooning and CPU hot-plugging
• I/O: direct access to submission and completion queues,

interrupt control, device configuration

Unikernel Security. Due to their simplicity, unikernels have a
vastly reduced attack surface [54]. However, they may lack stan-
dard security measures (e.g., address and privilege isolation) and
common hardening techniques (e.g., guard pages, address space lay-
out randomization) [54]. While the latter are mere implementation
deficits, the former is not problematic in cases where a unikernel
hosts a single tenant. After all, the big prize for an attacker is obtain-
ing illegal access to the database, and escalating a user-space vul-
nerability to kernel space brings limited additional benefits. Thus,
database security primarily depends on application/DBMS security
rather than the isolation traditional OSes can provide. Moreover, it
is possible to introduce hardware-assisted isolation, such as Intel
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MPK for thread or range isolation [35], and privilege isolation with-
out address virtualization [24, 26]. Finally, widely-used OS kernels
are not free of security bugs. For example, due to recurring kernel
exploits, Google has disabled io_uring in ChromeOS, on Android,
and on production servers [30].

3.2 Compute Scheduling Opportunities
User-Space Tasks Have Problems. As discussed in Section 2,
modern database systems are forced to schedule CPU tasks and I/O
operations themselves if they want to fully exploit modern hard-
ware. For example, LeanStore uses core-pinned worker threads that
maintain a queue of user-space tasks [23]. When a task has a page
miss, it submits an asynchroneous I/O request, enqueues itself, and
then switches to another task (using user-space stack switching).
Although this approach is efficient, it effectively re-implements the
OS scheduler in user space and is not robust for two reasons. First,
a CPU-intensive task may monopolize the CPU core because user-
space schedulers have no access to the raw preemption mechanism
(i.e., hardware timers, cross-core activations). Therefore, preemp-
tive user-space scheduling has to rely on extensive and relatively
inefficient kernel support [3, 25] to hide the preemption machinery
or it has to emulate a bare-metal environment on top of expensive
OS abstractions (i.e. POSIX signals [42]). Second, if the user-space
task unintentionally blocks, the core is temporarily wasted as the
OS is not aware of other waiting tasks.
Unikernel Threads Are Lightweight and Offer Preemption.
User-space scheduling is only necessary because kernel-level threads
are expensive. A context switch in Linux takes at least 1us [9], while
switching between stacks in user space takes only 10ns [23]. In
unikernels, there is no distinction between user-space tasks and
kernel-level threads; threads can suspend themselves, manipulate
the run queue on another core, block preemption, or interleave their
execution like co-routines. At the same time, the OSv scheduler has
a full picture of all threads and can preempt each of them if they
monopolize the CPU. Getting rid of OS-invisible user-space tasks
avoids scheduling gaps, makes all logical DBMS jobs visible, and
the DBMS can track system-resource utilization.
DBMS-Aware Scheduling. Once the scheduler gains control and
visibility over tasks, we can also tackle the intra-query parallelism
problem raised in Section 2. Currently, the DBMS has to decide
how many threads to use for each query. However, we argue that
it would be better if the scheduler could ask logical jobs to paral-
lelize themselves. In this design, all required information for good
scheduling decisions (CPU load, I/O utilization, job priorities, etc)
is available in one place and cheap to obtain. In a unikernel, such a
scheduler is much easier to implement because context switches
are cheap and we get the capability of preemptively interrupting
threads. In Section 4, we show how ad-hoc work distribution can
speed up otherwise competing operations.

3.3 Virtual Memory Opportunities
UsingVirtualMemory For Features, Not For Isolation.General-
purpose operating systems primarily use the virtual-memory hard-
ware (e.g., MMU and TLB) to separate the user space and kernel
space and to isolate processes from each other. Without the need

for isolation, unikernels can provide direct control over the virtual-
memory hardware and enable new use cases. Specifically, we see
three opportunities for database systems.
Caching. Virtual memory can be exploited to implement highly
efficient buffer management by using the virtual memory page
table as hardware-assisted indirection table. In earlier work [32],
we showed that this can be implemented in Linux using either slow,
existing system calls (vmcache) or by extending Linux with faster
system calls (exmap). With a unikernel, implementing a caching
design becomes both faster and simpler.
VM-Aware Algorithms and Data Structures. Virtual memory
(VM) has also been used to implement snapshotting [28, 51], dy-
namic data structures [34, 50], and large page sizes [32, 44]. Despite
their conceptual elegance, these proposals have not been widely
adopted. We believe that a major reason for this is that VM primi-
tives are slow and do not scale in Linux [11, 32]. For example, using
its pagemap interface to check if a random 4KiB page within a 4GiB
area is present takes 1.8 us–4.8 us on a 16-core VM; with OSv it
takes 40 ns–44 ns. An alternative way to reduce the overhead of
VM operations is to use huge (2MiB) pages, and we plan to support
both page sizes. However, huge pages are not always beneficial
for OLTP workloads with random access patterns. Scalable and
efficient 4 KiB VM operations therefore enable more new cases.
Memory Allocation. Another use case for VM is memory allo-
cation for intermediate query processing results, which occur at a
high rate for in-memory query processing [16] and often require
large contiguous VM ranges (e.g. for hash tables). For such alloca-
tions, existing memory allocators have two options: (A) They can
either directly pass each (de)allocation to the OS with mmap() and
munmap(), which causes on-demand page faults after every new
allocation. With Linux, such page faults scale poorly: Installing a
4 KiB page with 1 thread takes 1.05 us and 4.17 us with 16 threads.
(B) General-purpose allocators, such as jemalloc, therefore may
keep the memory in-process, which poses the risk of memory frag-
mentation due to variable allocation sizes. In unikernels, option
A becomes more attractive as the huge VM address space (≥ 256
TiB) eases fragmentation and page-faulting is faster and poten-
tially more scalable: a lock-free page-fault fast path that installs a
preallocated frame takes between 0.5 us (1 thr.) and 1.29 us (16 thr.).

3.4 Hypervisor Opportunities
Giving the DBMS access to lower levels does not have to stop at the
kernel level; paravirtualization [5] extends it to the hypervisor. For
example, the hypervisor can reclaim overcommitted memory by
manipulating the OS state without guest interaction [56]. A DBMS
could even expose its memory allocator state to the hypervisor,
allowing for more efficient memory ballooning and therefore more
effective memory over-provisioning. And with para-virtualized
CPU hot-plugging, the DBMS can directly request additional CPU
cores as needed [59]. Allowing the DBMS to exchange information
with the hypervisor and dynamically change memory and CPU
allocations can thus be used to improve resource utilization.

3.5 I/O Opportunities
NVMe Storage. Today, almost all storage devices use the standard-
ized NVMe protocol, which means that only one driver is needed
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for storage. NVMe is also quite simple: we implemented a basic
prototype driver supporting reads and writes in several hundred
lines of code. NVMe is based on queues that can be accessed by both
the host CPU and the storage device. After allocating one or more
submission and completion queues and registering them with the
device, submitting operations merely involves writing to the sub-
mission queue. Once an I/O operation is finished, it will appear in
the completion queue, and through DMA the data will appear at the
desired location in memory. It is noteworthy that this mirrors the
asynchronous, queue-based I/O model that modern OS interfaces,
such as io_uring, employ. Basically, io_uring merely provides an
additional queue on top of the NVMe queue that causes substantial
CPU overhead [23]. A unikernel-based design can simply expose
NVMe queues to the DBMS, bypassing this unnecessary layer.
Networking. Unfortunately, network cards are not as standardized
as storage devices. In AWS EC2, all modern instances use the Elastic
Network Adapter (ENA), on which we plan to initially focus. An-
other challenge with networking is that in addition to a low-level
packet interface, database systems generally also require support
for TCP, e.g., by using a user-space implementation of TCP [27].
An alternative to TCP would be to rely on Amazon’s Elastic Fabric
Adapter (EFA) [61], which supports the Scalable Reliable Datagram
(SRD) protocol. This is a packet-based reliable but unordered proto-
col. Packets sent will eventually arrive, but not necessarily in the
same order they were sent. We believe that co-designing the DBMS
communication stack with SRD could be a very good way to avoid
the CPU overhead of TCP.
Interrupts and Power Management. Achieving maximum per-
formance with modern storage and network requires polling rather
than interrupts-based I/O [14, 23]. The problem with polling is that
it becomes very wasteful in terms of power consumption when the
event rate is low. In low-throughput scenarios, it is better to switch
to interrupts and disable polling. In contrast to kernel-bypassing
approaches, unikernels allow enabling, disabling, and routing in-
terrupts dynamically depending on the workload.

4 EVALUATION: VIRTUAL MEMORY
The goal of this section is to demonstrate one specific example of
DBMS-unikernel co-design. We focus on virtual memory snapshot-
ting, comparing the Linux VM subsystem with a tightly-integrated
OSv implementation.
Benchmark Setup. We conduct our benchmarks within a virtual
machine with 16 cores and 12 GiB of DRAM, which is sufficient
physical memory for all experiments. We disabled memory bal-
looning to avoid unpredictable memory-access slowdowns caused
by hypervisor-level fragmentation. Within the VM, we used Linux
(v6.1.0, Debian Unstable) or OSv (8c792811d) as operating systems.
We execute the VM on top of a physical machine with an AMD
EPYC 9554P processor (64 cores, 128 HW threads, 384 GiB DRAM,
1 NUMA domain) and used QEMU (v8.0.2) with hardware-assisted
virtualization (KVM). Our modified OSv version, the used bench-
marks, and the resulting data is available [15].
Copy-on-Write Memory Snapshots. Fast snapshots of memory
regions are a useful primitive, for example, to separate read-only
OLAP queries from OLTP transactions. The original design of Hy-
Per [28] used the fork() system call as a snapshotting mechanism.

More fine-grained snapshotting variants have been proposed as
well [51]. In both cases, the key idea is to leverage the OS’ capa-
bility to create a consistent copy-on-write snapshot of a process
for an OLAP job. Although fork-based snapshotting was the key
original idea behind HyPer [28], due to involved OS overheads
and lack of control the idea was eventually abandoned in favor of
software-based MVCC [45]. It may be time to revisit this idea.
Microbenchmark. For our scenario, we allocate a 4GiB anony-
mous memory mapping on which 𝑛 OLTP threads execute random
updates using atomic fetch-and-add operations. Every 3 seconds,
we initiate a concurrent OLAP job, which creates a read-only copy-
on-write snapshot and subsequently scans over the snapshot, ac-
cumulating 32-bit integers; afterward, it destroys the snapshot. As
the OLAP job runs, the OLTP threads continue to manipulate the
primary buffer, inducing frequent page faults to resolve established
copy-on-write mappings with an actual copy. In this benchmark, it
is likely that all copy-on-write (CoW) mappings are resolved before
the OLAP job finishes. We show the results as copy, scan, update,
or destroy throughput in GiB per second in Figure 2.
Linux. For Linux, we use fork() to create the snapshot and run
the OLAP job single-threaded in a separate process. Linux estab-
lishes 60 GiB of copy-on-write mapping per second, while snapshot
destruction is six times slower due to the poor scalability of Linux’
buddy page-frame allocator [58]. While the OLAP process runs,
the OLTP threads achieve a 89 percent lower throughput as Linux
performs one TLB shootdown per CoW page fault.
OSv. As unikernels, by design, do not support fork(), we extend
OSv with a copy-on-write snapshot primitive, inspired by snap-
shot_vma() [51], and apply it to the OLTP/OLAP scenario. Fur-
thermore, we introduce two further techniques that highlight the
possibilities of our co-design approach: parallel snapshots (compute
opportunity, Section 3.2) and reader-side TLB invalidation (memory
opportunity, Section 3.3).
Parallel Snapshotting.With parallel snapshots, we speed up the
creation of snapshots. In Linux, the OLTP threads compete with
the snapshot creation for page-table locks and induce frequent
TLB shootdowns, slowing down the snapshot request of the OLAP
thread. In OSv, during snapshot creation, we let OLTP threads
that trigger a CoW fault assist the OLAP thread with the creation
process. In this process, OLAP and OLTP threads share the page-
table writer lock and coordinate their page-table copying with
atomic instructions. In a general-purpose OS, such a writer-lock
sharing and CPU-time donation from the page-fault context is hard
to implement and undesirable.
Reader-Side TLB Invalidation. As a second technique, we in-
troduce reader-side TLB invalidation. For snapshotted regions, we
removed the global TLB shootdown from the page-fault handler,
which is usually required to inform other cores about a resolved
CoW mapping to avoid stale reads. In OSv, the DBMS runs in su-
pervisor mode, which allows readers to proactively refresh the TLB
before accessing a snapshotted page. In our benchmark, the OLTP
threads perform a single-page TLB invalidation for every transac-
tion while a snapshot exists. In a DBMS, one could place this TLB
invalidation in the buffer manager’s fix() operation.
Results. In Figure 2, we see that our OSv-based implementation
outperforms Linux: (i) Creating snapshots is faster as more cores
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Figure 2: Snapshot Copy-On-Write Benchmark

help to copy the page tables. (ii) OLAP scan and the OLTP transac-
tions are faster as they are not interrupted by frequent TLB shoot-
downs. (iii) Snapshot destruction is faster as we have to perform
less bookkeeping compared to Linux (i.e., no reverse mapping).
Allocator Optimization. To further improve on snapshot de-
struction we also tried to parallelize this operation. However, the
contention in OSv’s frame allocator even reduced the throughput.
Therefore, we created a NoFree variant that removes the allocator
from the measurement and only collects freed frames in an array,
similar to the process-local memory pools of ExMap [32]. If assisted
by all OLTP threads, snapshot destruction now scales linearly with
the number of cores, becoming 96 times faster than Linux.
Memory Bandwidth. Page tables are 1/512 of the VM space. Hence,
the create and destroy primitives process page tables at 1.5 and
2GiB/s respectively. Due to reference counter updates inducing a
random-access pattern, this falls below the peakmemory bandwidth
(~395 GiB/s). Hiding this latency with prefetching could accelerate
these VM operations significantly. Hence, although we already
outperform Linux, the performance of VM snapshotting can be
improved even further, e.g., using prefetching.
Summary. Using snapshotting as an example use case, we showed
that (modified) unikernels enable superior performance for manip-
ulating virtual memory. The optimizations described in this section
were implemented in less than 1,000 lines of code.

5 RELATEDWORK
The tension between the abstractions of general-purpose operat-
ing systems and the requirements of database systems has been
observed already five decades ago [21, 53].While there have been at-
tempts at DBMS-specific operating systems, for example, as part the
Gamma [13] project, almost all widely-used database systems rely
on standard operating systems. More recent DBMS/OS co-design
projects include DBOS [36, 52], MxKernel [43], and COD [20].

Like our proposal, DBOS focuses on the cloud, in particular
on orchestrating distributed compute nodes. Currently, DBOS is
based on Firecracker and it could be combined with a unikernel.
We therefore believe that the ideas presented in this paper are
complementary with the DBOS project.

MxKernel emphasizes the potential superiority of uninterrupt-
ible run-to-completion tasks over threads for executing query plans
on heterogeneous architectures. In contrast, we will consider all
important resources (CPU, memory, I/O) and aim for cloud-native
DBMS system where the hardware pool is highly standardized.

From a high-level perspective, the COD proposal from 2013 [20]
shares many of the goals of our work. COD emphasizes the need
to “open up the OS” and design new declarative interfaces between
the DBMS and the OS. Ten years later, the transition to the cloud
and the existence of unikernels finally make this approach realistic.
To the best of our knowledge, this is the first paper that specifically
focuses on the advantages of unikernels for DBMS/OS co-design.

6 TOWARDS UNIKERNEL-BASED DATA
PROCESSING IN THE CLOUD

Unikernels in Cloud Data Planes.Many cloud-native systems
are internally decomposed into several components. Snowflake, for
example, consists of a multi-tenant control plane that performs
management tasks and per-tenant data plane clusters that executes
queries [12]. We do not strive to replace Linux for all components,
but only for the performance-critical and resource-intensive data
plane. In cloud-native systems, this data-plane layer is usually an
elastic and resouce-intensive component. This makes the fast boot
times of unikernels (<1s) highly useful. An integrated scheduling
approach also allows for balancing the current resource demand
with the cloud provider’s pricing model.
Performance and Simplicity Through Novel Abstractions.
Much of the complexity of today’s high-performance data pro-
cessing systems comes from having to explicitly manage modern
hardware because the existing OS abstractions are not up to the
task. In other words, database systems effectively already perform
the traditional hardware management job of operating systems –
but without having the low-level tools an OS has. Our vision of a
unikernel-based cloud-native DBMS with a co-designed, hardware-
centric, zero-cost hardware interface not only has the potential for
higher efficiency, but it can also simplify crucial DBMS tasks such
as CPU scheduling, memory management, and I/O. Over time, we
envision the emergence of new unikernel-level abstractions, which
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may prove useful not just for database systems but also for other
demanding applications such as high-performance computing and
machine learning. Finally, let us mention that unikernels may also
make it more efficient to exploit not just commodity hardware, but
also accelerators such as FPGAs, TPUs, or DPUs.
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