
BtrBlocks: Efficient Columnar Compression for Data Lakes
Maximilian Kuschewski

maximilian.kuschewski@tum.de
Technische Universität München

David Sauerwein
david.sauerwein@fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg

Adnan Alhomssi
adnan.alhomssi@fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg

Viktor Leis
leis@in.tum.de

Technische Universität München

ABSTRACT

Analytics is moving to the cloud and data is moving into data lakes.
These reside on blob storage services like S3 and enable seamless
data sharing and system interoperability. To support this, many sys-
tems build on open storage formats like Apache Parquet. However,
these formats are not optimized for remotely-accessed data lakes
and today’s high-throughput networks. Inefficient decompression
makes scans CPU-bound and thus increases query time and cost.
With this work we present BtrBlocks, an open columnar storage
format designed for data lakes. BtrBlocks uses a set of lightweight
encoding schemes, achieving fast and efficient decompression and
high compression ratios.

CCS CONCEPTS

• Information systems→ Data compression.

KEYWORDS

data lake, query processing, compression, columnar storage

ACM Reference Format:

Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor
Leis. 2023. BtrBlocks: Efficient Columnar Compression for Data Lakes.
Proc. ACM Manag. Data 1, 2, Article 118 (June 2023), 14 pages. https://doi.
org/10.1145/3589263

1 INTRODUCTION

Data warehousing is moving to the cloud. Many organiza-
tions collect and analyze ever larger datasets, and, increasingly,
these are stored in public clouds such as Amazon AWS, Microsoft
Azure and Google Cloud. To analyze these datasets, customers use
cloud-native data warehousing systems such as Snowflake [29],
Databricks [25], Amazon Redshift [34], Microsoft Azure Synapse
Analytics [23] or Google BigQuery [47, 48]. Another trend in cloud
data warehousing is the disaggregation of storage and compute,
where the data is stored on distributed cloud object stores such as
S3, and where compute power can be spawned elastically on de-
mand. This architecture was pioneered by BigQuery and Snowflake

Authors’ addresses: Maximilian Kuschewski, maximilian.kuschewski@tum.de, Tech-
nische Universität München, ; David Sauerwein, david.sauerwein@fau.de, Friedrich-
Alexander-Universität Erlangen-Nürnberg, ; Adnan Alhomssi, adnan.alhomssi@fau.de,
Friedrich-Alexander-Universität Erlangen-Nürnberg, ; Viktor Leis, leis@in.tum.de,
Technische Universität München,

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
ACM on Management of Data, https://doi.org/10.1145/3589263.

btrblocks

parquet

parquet+snappy
parquet+zstd

S
3
 s

c
a
n
 li

m
it

o
n
 c

5
n
.1

8
x
la

rg
e

0

2

4

6

8

10

0 25 50 75 100

S3 Scan Throughput [gbps]

S
3
 S

c
a
n
s

p
e
r

D
o
lla

r

Figure 1: S3 scan cost and throughput (c5n.18xlarge) on the 5

largest Public BI Benchmark datasets

and even systems that initially started with a horizontally parti-
tioned, shared-nothing design like Redshift are transitioning to
disaggregated storage [24].
Data warehouses can become proprietary data traps. Cloud-
native datawarehousing systems are optimized for analytical queries
through vectorized processing [27] or compilation [50], and all sys-
tems rely on compressed columnar storage [21], which has become
a proven and mature technology. By default, most systems use pro-
prietary storage formats. The big downside of proprietary formats
is that they effectively trap the data in one system (or one vendor’s
ecosystem). Non-SQL analytics systems for machine learning or
business intelligence often have to first extract the data from the
data warehouse, which is not only cumbersome but also inefficient
and expensive for large datasets. Often this leads to several unneces-
sary data copies all residing in the same object store – multiplying
storage cost and making data changes difficult.
Data lakes and open storage formats. Data lakes enable inter-
operability across different analytics applications, including SQL-
based data warehousing and complex analytics [60]. They do this
by storing data on cloud object stores such as S3, and by relying on
open storage formats such as Parquet or ORC that can be accessed
by any analytics system. Given that the idea of data lakes is not new,
one may wonder why proprietary solutions are still more common
than open data lakes. We believe that this is due to two reasons.
First, networks used to be slow, making data lake access from ob-
ject stores relatively slow. Second, compared to their proprietary
cousins, Parquet and ORC are neither efficient in terms of scan
performance nor compact, which is why they are often combined
with general-purpose compression schemes like Snappy [11] or
Zstd [12]. While the network bottleneck has been solved with the
arrival of cheap 100 Gbit networking instances (e.g., c5n or c6gn in
AWS), in this paper we attack the second problem.
BtrBlocks. In this paper, we propose BtrBlocks ["bEt9ôbl6ks],
an open-source columnar storage format for data lakes. BtrBlocks

https://orcid.org/0009-0008-6724-7530
https://orcid.org/0009-0006-9191-8395
https://orcid.org/0009-0002-9806-8101
https://orcid.org/0000-0001-5676-8017
https://doi.org/10.1145/3589263
https://doi.org/10.1145/3589263
https://orcid.org/0009-0008-6724-7530
https://orcid.org/0009-0006-9191-8395
https://orcid.org/0009-0002-9806-8101
https://orcid.org/0000-0001-5676-8017
https://doi.org/10.1145/3589263

SIGMOD ’23, June 18–23, 2023, Seattle, WA Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, & Viktor Leis

is designed to minimize overall workload cost through low storage
cost and fast decompression. To achieve good compression on real-
world data, we combine seven existing and one new encoding
scheme, all of which offer fast decompression performance and can
be used in a cascade (i.e., RLE then Bit-packing). BtrBlocks also
includes an algorithm for determining which encoding to use for a
particular block of data. Figure 1 compares its scan speed and cost
with Parquet, the most common open data lake format. With real-
world data from the five largest datasets in the Public BI Benchmark,
scans using BtrBlocks are 2.2× faster and 1.8× cheaper due to
its superior decompression performance. This makes BtrBlocks
highly attractive as an in situ data format for data lakes.
Related Work and Contributions.Much of the existing research
on compression focuses on specific encodings for integers [30, 31,
42, 61], while work on compressing strings [26, 39] and floating-
point numbers [46] is more sparse. Furthermore, there is a surpris-
ing lack of end-to-end designs, i.e., a set of complementary encoding
schemes and an algorithm that decides between them. This work
consists of the following contributions: (1) A complete compression
design for relational data based on an empirically-selected set of
compression schemes that are introduced in Section 2. (2) A sam-
pling-based algorithm for choosing the best compression scheme
for any piece of data, discussed in Section 3. (3) A novel floating–
point scheme called Pseudodecimal Encoding, which we describe in
Section 4. (4) An extensive evaluation of BtrBlocks in Section 6
using the Public BI benchmark, a collection of real-world, hetero-
geneous, and complex business intelligence datasets. BtrBlocks is
open source and available at https://github.com/maxi-k/btrblocks.

2 BACKGROUND

Outline. In this section, we introduce existing open data lake for-
mats before describing the encodings used in BtrBlocks.

2.1 Existing Open File Formats

Parquet &ORC.Apache Parquet and Apache ORC are open source,
column-oriented formats widely supported by modern analytics
systems. Like BtrBlocks and most column stores, they apply block-
based columnar compression. Both are quite similar, but Parquet is
more widely used, which is why we focus on it.
Column encoding in Parquet. Parquet encodes columns using a
fixed selection of encoding schemes. The supported encodings are
Run-length Encoding (RLE), Dictionary, Bit-packing and variants
of Delta Encoding [13]. Which encoding to use is either specified
by the user or decided with hard-coded, implementation-specific
rules. After encoding chunks of multiple columns, Parquet bundles
the results into rowgroups. Multiple rowgroups are combined into
a Parquet file, with metadata about each stored in the footer.
Metadata & Statistics. Each Parquet file includes metadata, statis-
tics and lightweight indices. While important for query processing,
we believe these are misplaced in the data file. One would like to
prune data using statistics and indices before accessing a file through
a high-latency network. We thus follow a different approach by
decoupling compression from the rest of the file format: BtrBlocks
only produces blocks of compressed data with a configurable size.
Metadata, statistics and indices are completely orthogonal and may
be added on top or tracked separately.

Table 1: Encoding Schemes used in BtrBlocks

Scheme Reference Code Type

RLE our all
One Value our all
Dictionary our all
Frequency our all
SIMD-FastPFOR [42] [1] int
SIMD-FastBP128 [42] [1] int
FSST [26] [2] string
Roaring [43] [7] bitmap

Pseudodecimal Section 4 our float

Additional general-purpose compression. The set of available
encoding schemes in Parquet is small and the rules it uses to
choose per-column encoding schemes are simplistic. For example,
the default C++ implementation simply tries dictionary compres-
sion and leaves the data uncompressed if the dictionary grows too
large [3, 54]. As a result, the achieved compression ratios are low in
practice. To remedy this, encoded Parquet columns are often com-
pressed again with a general-purpose, heavyweight compression
scheme. The scheme is configurable [20] and the set of available
options includes Snappy, Brotli, Gzip, Zstd, LZ4, LZO and BZip2.
We show results for Zstd and Snappy, which provide two different
trade-offs between compression effectiveness and decompression
speed. LZ4 [14] behaved very similar to Snappy in our experiments.
Abetterway to compress.We found that general-purpose schemes
on top of simple encodings are quite inefficient to decompress and
thus refrain from using them. Instead, BtrBlocks expands on the
selection of lightweight encodings Parquet offers. Additionally, it
substantially improves the scheme selection algorithm and allows
for applying multiple encoding schemes recursively.

2.2 Compression Schemes Used In BtrBlocks

Combining fast encodings. The idea of BtrBlocks is to combine
multiple type-specific efficient encoding schemes that cover differ-
ent data distributions and therefore achieve a high compression
ratio while keeping decompression fast. Table 1 lists the encoding
schemes we use in BtrBlocks. BtrBlocks compresses columns of
typed data (integers, double floating-point numbers and variable-
length strings). Like many existing formats [8, 15, 26, 36, 38, 39, 53],
it divides each column into fixed-size blocks with a default size of
64,000 entries. Compressing blocks individually allows BtrBlocks
to react to changing data distributions by adapting the compression
scheme to the data in each block. Blocks also facilitate parallelizing
compression and decompression. BtrBlocks is based on a number
of existing encoding schemes, which we briefly describe below.
RLE & One Value. Run-length Encoding (RLE) is a ubiquitous
technique that compresses runs of equal values. Instead of storing
the run {42, 42, 42}, for example, we store (42, 3). One Value is a
specialization for columns with only one unique value per block.
Dictionary. Another simple but effective scheme is Dictionary
Encoding, which replaces distinct values in the input with (shorter)
codes. A lookup structure (the dictionary) maps each code to the
original distinct value. The data structure used for implementing

https://github.com/maxi-k/btrblocks

BtrBlocks: Efficient Columnar Compression for Data Lakes SIGMOD ’23, June 18–23, 2023, Seattle, WA

the dictionary is determined by the encoded type, e.g., an array
for fixed-size values and a string pool with offsets for variable size
values. In some lightweight formats [36], dictionaries are often the
only way of compressing strings.
Frequency. Skewed distributions, where some values are much
more common than the rest, are not uncommon in real-world
datasets. DB2 BLU [53] proposed a Frequency Encoding that uses
several code lengths based on data frequency. For example, a one bit
code can represent the two most frequent values, a three bit code
the next eight most frequent values, and so on [53]. In BtrBlocks,
we adapt Frequency Encoding based on our analysis of real-world
data [17]: Often, a column only has one dominant frequent value,
with the next most frequent values occurring exponentially less
often. We optimize for this case by only storing (1) the top value,
(2) a bitmap marking which values are the top value and (3) the
exception values which are not the top value.
FOR & Bit-packing. For integers, Frame of Reference (FOR) en-
codes each value as a delta to a chosen base value. For example,
instead of storing {105, 101, 113}, we can choose the base 100 and
store {5, 1, 13} instead. This can be useful in combination with Bit-
packing, which truncates unnecessary leading bits. After applying
FOR to our example sequence, we can bit-pack {5, 1, 13} using 4
bits for each value instead of 8 bits. However, the basic FOR scheme
does not work well with outliers: adding 118 to the example se-
quence would require us to use at least 5 bits for each value. Patched
FOR (PFOR) thus stores these outliers as exceptions and keeps the
smaller bitwidth for the rest of the values [61]. SIMD-FastPFOR and
SIMD-FastBP128 build on this idea and specialize the algorithms
and layout for SIMD [42]. We use these existing high-performance
implementations in BtrBlocks.
FSST. A large portion of real-world data is stored as strings [33, 49].
Fast Static Symbol Table (FSST) is a lightweight compression scheme
for strings [26]. It replaces frequently occurring substrings of up to
8 bytes with 1 byte codes. These codes are tracked in a fixed-size 255
entry dictionary: the symbol table. The symbol table is immutable
and used for an entire block of strings. Decompression is simple
and therefore fast: FSST uses codes from the compressed input as an
index into the symbol table and copies the substring to the output.
Compression is more involved because FSST needs to find a good
symbol table first. BtrBlocks either uses FSST to compress strings
from the input directly or applies it to a dictionary when beneficial.
NULL Storage Using Roaring Bitmaps. BtrBlocks stores NULL
values for each column using a Roaring Bitmap [43]. The idea be-
hind Roaring is to use different data structures depending on the
local density of bits. This makes it highly efficient for many data dis-
tributions [57]. BtrBlocks uses Roaring Bitmaps through an open
source C++ library that is optimized for modern hardware [7, 44].
Besides tracking NULL values, we also use Roaring Bitmaps to track
exceptions for internal encoding schemes like Frequency Encoding.
Cascading Compression. With FOR + Bit-packing, we mentioned
the idea of compressing the output of an encoding with another
encoding to further reduce space. This concept has been named
Cascading Compression [30]. Damme et al. [31] classify several en-
coding schemes into logical and physical compression schemes
and study how well they combine. They develop a gray-box cost
model for integer compression to tackle the problem of choosing
good schemes for a given dataset. However, they limit themselves

compress

Part 0 Part 1 Part 2 Part 3
64 64 64 64rand()64 64 64 64

Figure 2: Choosing a random sample from a column block

to integer columns and combinations of at most two algorithms
(single-level cascade). We present a more generic approach that han-
dles multi-level cascades and includes doubles and strings as well.
Additionally, our scheme selection algorithm avoids cost models
and opts for an easily-extendible sampling-based approach.

3 SCHEME SELECTION & COMPRESSION

Scheme selection algorithms. In Section 2.2, we presented en-
coding schemes for different data types. The effectiveness of these
encodings differs strongly depending on the data distribution. Given
a set of encodings, we therefore need an algorithm for deciding
which encoding is most effective for a particular data block. Sim-
ple, static heuristics as used by Parquet – such as always encoding
strings with dictionaries and always bit-packing integers – are not
capable of exploiting the full compression potential of a particular
dataset. Another approach would be to rely on data statistics. For
formats like Data Blocks [36] a small number of statistics such as
min, max and unique count are sufficient to select among a small
set of simple encodings (FOR, dictionary, single value). However,
for more complex encodings, simple statistics are not enough, and
a general solution would require to exhaustively compress the data
with each encoding. Even for a moderate number of encodings, this
would be prohibitively slow – even without taking cascading into
account, which could increase the search space exponentially.
Challenges. A better approach for encoding selection is to use
sampling. For this to work well, the sample must capture the dataset
characteristics relevant for compression. Random sampling, for
example, may not work well for detecting whether RLE is effective.
Simply taking the first k tuples, on the other hand, would result in
a very biased sample. Another challenge for the scheme selection
algorithm is to take cascading into account, i.e., it must decide
whether to encode already encoded data again.
Solution overview. In BtrBlocks, we test each encoding scheme
on a sample and select the scheme that performs best. As Section 3.1
describes, our sampling algorithm tries to find a compromise be-
tween preserving the locality of neighboring tuples and accurately
representing the entire data range. Section 3.2 describes how Btr-
Blocks integrates cascading with our sample-based scheme selec-
tion recursively. Given a block of data to compress, each recursion
level executes the following steps:

(1) Collect simple statistics about the block.
(2) Based on these statistics, filter non-viable encoding schemes.
(3) For each viable scheme, estimate the compression ratio using

a sample from the data.
(4) Pick the scheme with the highest observed compression ratio

and compress the entire block with it.
(5) If the output of the compression is in a compressible format,

then repeat from step 1.

SIGMOD ’23, June 18–23, 2023, Seattle, WA Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, & Viktor Leis

String

string poolcodes

Dict

Uncom-
pressed

Integer

Double

One
Value

valuesexceptions

Pseudo-
decimal

Uncom-
pressed

bitmap exceptions

Frequency

codes

Dict

Double IntegerRoaring
Bitmap

Double

RLE

valuelength

DoubleInteger

Integer

Uncom-
pressed

values lengths

RLE SIMD-
FastPFOR

codes

Dict

Integer Integer SIMD-
FastBP128

One
Value

Uncom-
pressed

Integer

One
Value

Integer

codes string pool

Dict +
FSST

FSSTInteger

FSST

Figure 3: Encoding scheme decision trees that we apply recursively

3.1 Estimating Compression Ratio with Samples

Choosing samples. To select the best scheme for each block, the
sample has to be representative of the data. The main trade-off is
between preserving spatial locality in the data while still capturing
the distribution of unique values across the input. At the same time,
samples have to stay small to keep scheme selection overhead low.
As Figure 2 illustrates, we propose to select multiple small runs
from random positions in non overlapping parts of the data. For
a chunk size of 64,000 values, we use 10 runs of 64 values each,
resulting in a sample size of 1% of the data. We have found this
method to yield a good compromise between compression speed
and estimation quality, and evaluate this in detail in Section 6.3.
Estimating compression ratio. BtrBlocks first collects statistics
like 𝑚𝑖𝑛, 𝑚𝑎𝑥 , unique count and average run length in a single
pass. Based on these statistics, it then applies heuristics to exclude
nonviable schemes: It excludes RLE, for example, if the average run
length is < 2 and Frequency Encoding if ≥ 50% of values are unique.
BtrBlocks then compresses the sample with each viable encoding
scheme to estimate the compression ratio of each scheme.
Performance.We evaluated the performance of this method for
sampling and compression ratio estimation on real-world data. Our
selection algorithm uses only 1.2% of the total compression time
while accurately estimating which compression scheme is best.

3.2 Cascading

Recursive application of schemes.After selecting a compression
algorithm, the output (or some part of it) may be compressed using
a different scheme. This is illustrated in Figure 3, with recursion
points denoting an additional possible compression step. The
scheme used for the additional step is again selected with our
compression ratio estimation algorithm. The maximum number
of recursions is a parameter of the compression algorithm, with
the default value set to 3. Once this recursion depth is reached,
BtrBlocks leaves the data uncompressed.
Cascading compression: An example. Taking an input of dou-
bles [3.5, 3.5, 18, 18, 3.5, 3.5], for example, the sampling
algorithm may determine that RLE is a good choice. This produces
two outputs: A value array of doubles [3.5, 18, 3.5] and a run
length array [2, 2, 2]. BtrBlockswill decide to compress the run
length array using One Value using the statistics. The value array is
also subject to a cascading compression step. Assuming the estima-
tion algorithm chooses Dictionary Encoding, this will yield a code

struct RLEData {u8 val_scheme, cnt_scheme, data[]}
double RLE::estimateRatio (Stats& s)

if(s.average_run_length < 2) return 0
return estimateFromSamples(stats);

u32 RLE::compress (u32* src, u32 cnt,
u8* dst, u8 recur)

RLEData& res = *((RLEStructure*)dst)
vector<u32> values, counts
... // <- RLE algorithm, writing to vectors
// cascading compression for values:
Scheme val_casc = pickScheme(values.data(),

cnt, res.data, recur-1)
res.values_scheme = val_casc.scheme_code()
u8* cnt_dst = res.data+val_casc.compress()
// cascading compression for counts:
Scheme cnt_casc = pickScheme(counts.data(),

cnt, cnt_dst, recur-1)
res.counts_scheme = cnt_casc.scheme_code()
return cnt_dest+cnt_casc.compress()-dst

Scheme pickScheme (u32* src, u32 cnt,
u8* dst, u8 recur)

if (!recur) return UNCOMPRESSED
auto stats = genStats(src, cnt)
auto scheme = UNCOMPRESSED; double min_cf = -1
for (auto& sc : pool)

double est = sc.estimateRatio(stats)
if (est != 0 && est > min_cf)

min_cf = est; scheme = sc
return scheme

Listing 1: Pseudocode of the scheme picking algorithm and

RLE as an example for an implemented scheme

array [0, 1, 0] and a dictionary [3.5, 18]. As the maximum
recursion depth is not yet reached, BtrBlocksmay decide to apply
FastBP128 to the code array in a final step. Decompression works
analogously, with each scheme storing what scheme it cascaded
into and applying the decompression algorithms in reverse order.
Code example. Listing 1 shows a crosscut of the entire cascad-
ing compression algorithm for integers using RLE as an example.
The RLE ratio estimation method stops early if the scheme

BtrBlocks: Efficient Columnar Compression for Data Lakes SIGMOD ’23, June 18–23, 2023, Seattle, WA

is not feasible, otherwise it uses the sampling algorithm. The dis-
played part of the RLE compress method shows the recursive
calls to the scheme picking algorithm. In this case, there are two
recursive calls: One for the values list and one for the run lengths.
The scheme picking algorithm simply tests all schemes if the
maximum recursion depth is not yet reached.
The encoding scheme pool. The result is a generic, extensible
framework for cascading compression that draws from a pool of
arbitrary encoding schemes. The scheme pool strongly affects the
overall behavior of BtrBlocks: With more schemes, compression
becomes slower because more samples have to be evaluated, but the
compression ratio increases. Adding more heavyweight schemes
may also increase the compression ratio but slows down decompres-
sion. We have chosen the set of schemes in BtrBlocks based on
our analysis of the diverse set of columns in the Public BI datasets.
To build up the encoding scheme pool BtrBlocks uses, we itera-
tively (1) found columns where its compression ratio was worse
than heavyweight schemes like Bzip2, (2) analyzed patterns in the
data, (3) added schemes that fit those patterns well and (4) pruned
schemes that did not improve compression enough or slowed down
decompression. The result is the list of schemes shown in Fig-
ure 3.

4 PSEUDODECIMAL ENCODING

Floating-point numbers in relational data. Prior research on
floating-point compression in relational databases is very sparse.
The lack of interest in floating-point compression schemes has a
historic reason: Relational systems usually represent real numbers
as Decimal or Numeric, which can physically be stored as inte-
gers. However, this is changing with the move to data lakes and
the subsequent integration with non-relational systems: Tableau’s
internal analytical DBMS, for example, encodes all real numbers
as floating-point numbers [56], and machine-learning systems rely
on floating-point numbers virtually exclusively.
Pseudodecimal Encoding. While some encoding schemes shown
in Figure 3 are applicable to all data types, the two bit-packing
techniques and FSST are not effective for floating-point numbers.
We thus introduce Pseudodecimal Encoding, a compression scheme
specifically designed for binary floating-point numbers. We es-
tablish the basic idea, the encoding logic and the integration into
BtrBlocks in this section, before describing efficient decompres-
sion in Section 5. We evaluate the scheme both separately and as
part of BtrBlocks as a whole in Section 6.5.

4.1 Compressing Floating-Point Numbers

Challenges. Pseudodecimal Encoding sprung from our analysis of
the Public BI Benchmark. We found that double-precision floating-
point numbers are frequently used where fixed-precision numbers
would be sufficient (and indeed better suited). A common example
is storing monetary prices such as $3.25 or $0.99 as floating-point
numbers. While such values may appear to be highly compress-
ible, there are two problems: First, their physical IEEE 754 repre-
sentation (1 sign, 11 exponent and 52 mantissa bits) means that
standard techniques such as FOR+Bit-packing are not effective.
This is because the most significant bits storing the exponent differ
strongly even for numbers that are numerically fairly close (e.g.,

const unsigned max_exp = 22, exp_exception = 23;
const double frac10[] = {1.0, 0.1, 0.01, ...};
struct Decimal {int digits, exp; double patch};
Decimal encode_single(const double input)

int exp; int digits; bool neg = input < 0
double dbl = neg ? -input : input
if (input == -0.0 && std::signbit(input))

goto patch // -0.0 is exception
// Attempt conversion
for (exp = 0; exp <= max_exp; exp++)

double cd = dbl / frac10[exp]
digits = round(cd)
double orig = ((double)digits) * frac10[exp]
if (orig == dbl) goto success

patch: // return exception in exponent, patch
return {0, exp_exception, input}

success: // return decimal; patch is ignored
return {(int)digits, exp, 0}

Listing 2: Pseudodecimal Compression algorithm

3.25 and 0.99). Second, some decimal numbers such as 0.99 can-
not be represented precisely in binary; the actual value stored is
0.98999..., which results in periodic and hard-to-compressmantissas
like 0xfae147ae147ae. In a lossless compression scheme such as
BtrBlocks, decompression has to yield a bitwise-identical output
to avoid changing semantics.
Floating-point numbers as integer tuples. As the name sug-
gests, Pseudodecimal Encoding uses a decimal representation for
encoding doubles. It does this using two integers: significant digits
with sign and exponent. For example, 3.25 becomes (+325, 2), as
in 325 × 10−2. But what happens to a double such as 0.9899 . . . ?,
which is 0.99 stored as a double? Intuitively, one would have to
store two integers (98999 . . . , 17) to be able to restore the precise
double value later. Surprisingly, storing (99, 2) suffices; this effec-
tively compresses the floating-point value 0x3fefae147ae147ae,
to a pair of integers (0x63, 0x2). Thus, the compression value
of Pseudodecimal Encoding is twofold: First, it strips apart IEEE
754 floating-point values into integers that are more easily com-
pressible. Second, it generates a compact decimal representation
for hard-to-compress doubles, which is often what users wanted to
store in the first place. To do this it has to find a compact decimal
representation as we describe next.
Encoding Algorithm. The Pseudodecimal Encoding algorithm
determines the compact decimal representation by testing all pow-
ers of 10 and checking whether any of them correctly multiply the
double to an integer value. Listing 2 shows this algorithm adapted
for encoding a single double instead of an entire block like in Btr-
Blocks. We store the inverse powers of 10 in a static table to avoid
recomputing them for every number1. The overloaded double num-
ber ±0.0 creates an issue because we encode the sign together with
the number as an integer. Thus, the algorithm handles negative
zero, as well as other special floating-point numbers like ±𝐼𝑛𝑓
1Conceptually, it might be more intuitive to divide by powers of 10, but multiplication
is slightly faster than division during decompression.

SIGMOD ’23, June 18–23, 2023, Seattle, WA Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, & Viktor Leis

and ±𝑁𝑎𝑁 , as exceptions. It stores these exceptions separately as
patches, together with doubles that it cannot encode as integers,
such as 5.5 × 10−42. We limit the number of bits used for the digits
and the exponent to 32 and 5, respectively. These properties ensure
that the encoding produces bitwise-identical results.

4.2 Pseudodecimal Encoding in BtrBlocks

Cascading to integer encoding schemes. Pseudodecimal Encod-
ing converts a column of floating-point numbers to two integer
columns and a small column of exceptions. BtrBlocksmay encode
these columns again using cascading compression:

Input

0.989…

3.25

-6.425

5.5e-42

Significant Digits

99,325,-6425
Exponents

2,2,3,23=ERR
Patches

5.5e-42

Double Integer

Integer

Double

SIMD-FastPFOR

RLE ...

Uncompressed

The depicted choices for the cascading compression are examples
and not fixed; BtrBlocks chooses the schemes using its sampling
algorithm as described earlier.
When to choose Pseudodecimal Encoding. There is data for
which Pseudodecimal Encoding is ill-fitted, like columns with many
exception values: Pseudodecimal Encoding slightly increases the
compression ratio, but decompression is slow because of the many
exception values. We thus disable the scheme for columns that have
more than 50% non-encodable exception values. Similarly, columns
with few unique values usually compress almost as well with dic-
tionaries, which have a much higher decompression speed. In the
context of BtrBlocks, we thus choose to exclude Pseudodecimal
Encoding for columns with less than 10% unique values.

5 FAST DECOMPRESSION

Decompression speed is vital. Renting compute nodes is one
of the main sources of cost in cloud data analytics [41]. Saving
cost is therefore best done by reducing the rental time of those
nodes. Considering a compression technique, we can do this by (1)
reducing network load time with a good compression ratio and (2)
reducing compute time with fast decompression. After achieving a
good compression ratio with our cascading compression algorithm,
we thus turn our attention to decompression throughput.
Improving decompression speed. As Table 1 shows, BtrBlocks
uses existing highly-optimized (SIMD) implementations of SIMD-
FastPFOR, SIMD-FastBP128, FSST and Roaring. In this section, we
describe fast implementations of the other encodings. All presented
performance numbers pertain to the Public BI Benchmark datasets
discussed in Section 6.1. We measure the performance improve-
ments “end-to-end”, meaning for an improved encoding scheme
𝐵 that is part of the cascade 𝐴 − 𝐵 −𝐶 , we measure the resulting
speedup in decompression across the entire cascade 𝐴 − 𝐵 −𝐶 .
Run Length Encoding. The standard RLE decompression algo-
rithm replicates the value of a length-𝑁 run 𝑁 times to the output.
To vectorize RLE using AVX2, we perform 8 (4) simultaneous repli-
cations for integer (double) runs. However, run lengths are often not
divisible by 8 (4), which we would need to handle in an expensive

void decodeRLEAVX (int *dst, int *runlen,
int *values, int runcnt)

// dst must have >= 32 additional bytes
for (int run = 0; run < runcnt; run++)

int *target = dst + runlen[run]
__m256i vals = _mm256_set1_epi32(values[run])
for (; dst < target; dst += 8)

_mm256_storeu_si256(dst, vals)
dst = target // SIMD may have overflowed

void decodeDictAVX (int *dst, const int *codes,
const int *values, int cnt)

int idx = 0 // not shown: 4x loop unroll
if (cnt >= 8)

while (idx < cnt-7)
__m256i codes = _mm256_loadu_si256(codes)
__m256i values = _mm256_i32gather_epi32(

values, codes, 4)
_mm256_storeu_si256(dst, values)
dst += 8; codes += 8; idx += 8

for (;idx < cnt; idx++) *dst++ = values[*codes++]

Listing 3: Vectorized RLE and Dictionary decompression

branch. We instead opt for writing behind the end of the output
buffer in this case. The buffer length is corrected afterwards as
shown on the last line of Listing 3 (top) . This gains an average of
76% end-to-end decompression performance for blocks that use RLE
at some point in their cascade. Integer columns even decompress
128% faster on average because RLE is commonly chosen by the
scheme selection algorithm. String dictionaries often use RLE to
compress the code sequence and thus also gain 78% performance
on average. Doubles gain 14% performance on average.
Dictionaries for fixed-size data. The standard decompression
algorithm for dictionaries simply scans the code sequence and re-
places each code with its value from the dictionary. We can copy
8 integer dictionary entries simultaneously using 8×32 = 256 bit
AVX2 vector instructions, as shown in Listing 3 (bottom) . Dou-
ble decoding works analogously with 4 entries. We also manually
unroll the loop 4 times for both data types. For any blocks that use
Dictionary Encoding in the cascade, we saw an end-to-end speedup
of 18% for integer decompression and 8% for double decompression.
String Dictionaries. We avoid copying strings during decompres-
sion. Instead, BtrBlocks replaces each code with the string length
and the offset (≈ pointer) of the uncompressed string. Offset and
length form a fixed-size 64 bit tuple, so we can use the same vector-
ized algorithm we use for double dictionary decompression. Just by
avoiding the string copy, we saw a speedup of more than 10× for
some low-cardinality columns. We additionally vectorize dictionary
decompression, which yields another 13% end-to-end speedup.
Fusing RLE and Dictionary decompression. The scheme se-
lection algorithm often compresses the (integer) code sequence of
a dictionary with RLE. It is thus worth optimizing for this case
specifically. The standard implementation generated by the cas-
cading algorithm first decodes runs of dictionary codes into an

BtrBlocks: Efficient Columnar Compression for Data Lakes SIGMOD ’23, June 18–23, 2023, Seattle, WA

Table 2: Public BI Benchmark (PBI) and TPC-H: Comparison of data types by volume (share) and compression ratio (compr.)

datatype String Double Integer Combined

dataset PBI TPC-H PBI TPC-H PBI TPC-H PBI TPC-H

metric share compr. share compr. share compr. share compr. share compr. share compr. compr. compr.
[%] [×] [%] [×] [%] [×] [%] [×] [%] [×] [%] [×] [×] [×]

Uncompressed 71.5 — 61.7 — 14.4 — 19.5 — 14.1 — 18.7 — — —
Parquet 51.0 7.10 64.1 1.63 36.6 1.99 14.0 2.35 12.5 5.73 21.9 1.45 3.37 1.69
Parquet+LZ4 39.8 12.05 46.8 3.65 44.6 2.16 18.4 2.94 15.6 6.07 34.8 1.49 4.72 2.77
Parquet+Snappy 39.3 12.23 45.0 3.92 44.9 2.15 19.2 2.91 15.7 6.05 35.8 1.49 4.79 2.85
Parquet+Zstd 33.6 17.13 40.0 5.27 50.1 2.30 23.3 2.87 16.3 6.97 36.7 1.74 6.05 3.41
BtrBlocks 43.6 11.32 54.9 4.26 41.9 2.36 16.2 4.58 14.5 6.70 28.9 2.46 5.28 3.79

Average 10.14 3.29 1.99 2.78 5.42 1.60 4.20 2.90

intermediate array and then looks those up in the dictionary. We
can fuse these operations and get rid of the intermediate array,
instead doing the dictionary lookup first and directly writing runs
of (offset, size) pairs. BtrBlocks does this in the vectorized manner
discussed previously, but only applies the technique if the average
run length is greater than 3 as we have found it to have a negative
impact otherwise. This increases the end-to-end decompression
performance for string columns using RLE by another 7%.
FSST. FSST exposes an API for decompressing a single string, taking
the encoded string offset and length as an argument [19]. We can
use this API to compress an entire block by simply calling it in a
loop for each string in the input data. This, however, moves CPU
time out of FSSTs optimized decompression loop and into edge-
case detection. We can avoid this overhead by passing the offset
of the first encoded string and the sum of all string lengths to
the decompression API instead. In microbenchmarks, this yielded
a reduction of 50 instructions per string, independent of string
length. Additionally, we can forgo storing the offsets and lengths of
compressed strings; storing uncompressed string lengths suffices.
Pseudodecimal.We implemented the decompression algorithm
of our novel double encoding scheme using vector instructions.
To reconstruct a double, the decompression simply multiplies the
significant digits of each value with the respective exponent. This
can be easily vectorized (_mm256_cvtepi32_pd, _mm256_mul_pd),
producing blocks of 4×64 bit doubles at once. However, exception
values that could not be encoded during compression complicate
matters: As explained in Section 4, Pseudodecimal Encoding stores
these exceptions separately as patches. The decompression algo-
rithm thus first checks for exceptions in each vectorization block us-
ing a Roaring Bitmap. If there are none, it proceeds with vectorized
decompression. Otherwise, it falls back to a scalar implementation
for the current block and inserts any patch values into the output.

6 EVALUATION

Test setup.We execute all experiments on a c5n.18xlarge AWS EC2
instance. Previous work suggests that c5n is a good instance for
analytics in the cloud, primarily because of its 100Gbps network-
ing [41]. It runs an Intel Xen Platinum 8000 series (Skylake-SP) CPU
with 36×3.5 GHz cores (72 threads), offers the AVX2 and AVX512
instruction sets and has 192GiB of memory. Code is compiled with

GCC 10.3.1 on Amazon Linux 2, kernel version 5.10. We use the
TBB library [16] for parallelization and disable hyperthreading. Our
benchmarks allocate and touch all memory beforehand to avoid
page faults. We repeat all measurements and average the results to
minimize the effects of caching and CPU frequency ramp-up.
Parquet test setup. For generating Parquet files, we tested both
the Apache Arrow (pyarrow 9.0.0) and the Apache Spark (pyspark
3.3.0) libraries. The only parameter change we made was setting
the rowgroup size in Apache Arrow to 217 because we found that
to be fastest. We implemented the actual benchmarks consuming
the generated Parquet files with the Arrow C++ library. This library
offers a high-level API based on Arrow constructs and a low-level
API that uses Parquet directly. The high-level interface was signifi-
cantly slower in our tests, so we chose the low-level API in all tests.
We parallelized decompression over both rowgroups and columns.

6.1 Real-World Datasets

Synthetic data. Analytical benchmarks such as TPC-H and TPC-
DS have proven useful for evaluating both traditional and cloud-
native query engines [55]. However, it is also well-known that their
data generation algorithms do not necessarily produce realistic data
distributions [33, 40, 56]. Assumptions like complete data normal-
ization, uniform and independent distributions, or most of the data
being integers do not reflect typical real-world data – particularly in
data lakes. We therefore argue that compression algorithms should
be evaluated using real-world rather than synthetic datasets.
The Public BI Benchmark. The large real-world collection of
datasets we chose to focus on is the Public BI Benchmark [33]. It
contains datasets derived from the 46 largest Tableau Public work-
books at the time of creation [56]. We thus expect its contents to
be more representative of what one might find in today’s large
data lakes: Data skew, denormalized tables, misused data types
(e.g. proliferation of strings) and non-uniform NULL representations
resulting from the variety of heterogeneous data sources. Addition-
ally, Tableau stores decimal values as floating-point numbers – a
data type which we found to be frequently underrepresented in
compression literature [56] and which is becoming more important
due to the proliferation of machine learning. To get a better under-
standing of the Public BI Benchmark and its effect on compression
performance, we first take a closer look at its datasets.

SIGMOD ’23, June 18–23, 2023, Seattle, WA Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, & Viktor Leis

+
 O

n
e
V

a
lu

e

+
 D

ic
ti
o
n
a
ry

+
 R

L
E

+
 F

re
q
u
e
n
c
y

+
 P

s
e
u
d
o
d
e
c
im

a
l

+
 O

n
e
V

a
lu

e

+
 F

a
s
tB

P
1
2
8

+
 F

a
s
tP

F
O

R

+
 D

ic
ti
o
n
a
ry

+
 R

L
E

+
 O

n
e
V

a
lu

e

+
 D

ic
ti
o
n
a
ry

+
 F

S
S

T
 D

ic
t

+
 R

a
w

 F
S

S
T

double integer string

1
2
3
4
5
6
7
8
9

10
11

C
o
m

p
re

s
si

o
n
 R

a
tio

+
 O

n
e
V

a
lu

e

+
 D

ic
ti
o
n
a
ry

+
 R

L
E

+
 F

re
q
u
e
n
c
y

+
 P

s
e
u
d
o
d
e
c
im

a
l

+
 O

n
e
V

a
lu

e

+
 F

a
s
tB

P
1
2
8

+
 F

a
s
tP

F
O

R

+
 D

ic
ti
o
n
a
ry

+
 R

L
E

+
 O

n
e
V

a
lu

e

+
 D

ic
ti
o
n
a
ry

+
 F

S
S

T
 D

ic
t

+
 R

a
w

 F
S

S
T

double integer string

0

5

10

15

20

D
e
c
o
m

p
.
S

p
e
e
d
 [
G

B
/s

]

Figure 4: Compression ratio and decompression throughput changes when successively enabling techniques, by data type

Public BI vs. TPC-H. Table 2 outlines the differences between
a real-world dataset and a generated dataset by comparing the
Public BI datasets with TPC-H data. We do this for each data type
separately. Because TPC-H can be generated on different scale
factors, we use the relative data volume of each data type as a
metric instead of an absolute amount. In addition to the uncom-
pressed format, for which we use our in-memory columnar binary
representation, we convert each dataset to Parquet using multiple
compression schemes, as well as BtrBlocks. We then reexamine
the data volume of each data type in the compressed formats, yield-
ing a compression ratio per data type and dataset. In the following,
we describe our observations about the differences between the
Public BI Benchmark and TPC-H in more detail.
Public BI vs. TPC-H: Strings. As Table 2 shows, the Public BI
Benchmark consists of 71.5% strings, compared to TPC-H with
61.7%. Additionally, many strings in the Public BI Benchmark are
structured, like URLs and product identifiers with common prefixes.
In contrast, the largest strings in TPC-H – the comment columns –
are random samples from a pool of test data. This has a large impact
on compression performance: Where the average compression ratio
for strings in the Public BI Benchmark is 10.2× across all measured
formats, it is only 3.3× in TPC-H.
Public BI vs. TPC-H: Doubles. Doubles make up 19.5% of the
data volume in TPC-H, but only 14.3% in the Public BI Benchmark.
Across all tested compression schemes, doubles compress with a
ratio of 1.99 in the Public BI Benchmark and 2.78 in TPC-H on
average. The most likely reason for this are the numeric ranges:
Double columns in TPC-H usually contain price data from one size
range. They are thus better suited for compression, especially with
Pseudodecimal Encoding introduced in Section 4.
Public BI vs. TPC-H: Integers. TPC-H consists of 18.7% integers
by volume, compared to the Public BI Benchmark with 14.1%. Ad-
ditionally, integers in the Public BI Benchmark compress with an
average factor of 5.4 across all measured formats, and only 1.6 in
TPC-H. This effect stems mainly from the unrealistically normal-
ized data TPC-H contains: Most integers are unique keys or foreign
keys, and few columns contain runs or repeating patterns. In con-
trast, the Public BI Benchmark contains denormalized tables where
joins result in runs and repeating patterns. This is clearly visible, for
example, in samples from the largest two Public BI datasets [9, 10].
Extreme cases like the all-zero integer column “RealEstate1/New
Build?” shown in Table 4 are also missing from TPC-H.
Adapting for evaluation.We use a subset of the datasets included
in the Public BI Benchmark and adapt them to our use case. From

each dataset, we only use the largest table: for example, we only
use TrainsUK1_Table4 from the TrainsUK1 dataset. We do this
because the tables in each dataset are often derived from each other
and thus very similar; using only one table per dataset prevents over-
representing the data mix of larger datasets. Due to their negligible
sizes, we also exclude the datasets IUBLibrary, IGlocations and
Hatred1 as well as the date and timestamp columns (which can
be represented as integers). This adapted subset of the Public BI
Benchmark totals 119.5 GB of binary data when loaded intomemory.
It contains 43 tables, each containing between 6 and 519 columns,
57 on average. Overall, there are 2451 columns with diverse data
shapes and distributions. Even though this makes the Public BI
Benchmark much more suitable for designing and evaluating a
compression scheme, we also perform experiments with TPC-H so
that BtrBlocks can be more easily compared with related work.

6.2 The Compression Scheme Pool

Measuring the impact of individual techniques. The list of en-
coding techniques BtrBlocks tests with each cascading step forms
a trade-off between compression ratio and decompression speed.
We evaluated this by successively adding techniques to the pool
and measuring the resulting compression ratio and decompression
speed. Figure 4 shows one sequence of technique additions for each
data type. For this experiment, we use a single thread for decom-
pression to avoid measuring noise created through concurrency.
Impact on compression ratio. For doubles, Dictionary Encoding
and Pseudodecimal Encoding have the largest impact with a 95%
and 20% respective improvement. Still, as expected, doubles are in-
herently less compressible than integers and strings. We achieve the
best average compression ratio on strings, where Dictionary Encod-
ing yields the largest improvement (7×). Using FSST to compress
an existing dictionary improves the compression ratio by another
51%. FSST applied to raw data slightly improves compression ratio
and decompression speed. One Value barely increases the average
compression ratio, but has a large impact on some columns both in
compression ratio and speed (cf., Table 4).
Impact on decompression speed. One Value is also fastest in
terms of decompression for doubles and integers, yielding an aver-
age respective throughput of 8.9 and 11.8 GB/s. For string decom-
pression, Dictionary Encoding increases throughput from 9.4 GB/s
to 19.6 GB/s. This is because in BtrBlocks, Dictionary Encoding
only decompresses the code sequence into pointers to the dictionary
contents and can forgo copying strings.

BtrBlocks: Efficient Columnar Compression for Data Lakes SIGMOD ’23, June 18–23, 2023, Seattle, WA

10×6440×16 5×12880×8
1×640320×2

640×1

Best Single

Range

Individual

Tuples

50

60

70

80

90

100

Sampling Strategy

C
o
rr

e
c
t
C

h
o
ic

e
s

[%
]

Figure 5: Correct scheme choices per strategy (𝑁 = 640)

e
n
tir

e
 b

lo
c
k

1
0
×
4
0
9
6

1
0
×
2
0
4
8

1
0
×
1
0
2
4

1
0
×
5
1
2

1
0
×
2
5
6

1
0
×
1
2
8

1
0
×
6
4

1
0
×
3
21
0
×
1
61
0
×
8

optimum
+ 1%
+ 2%
+ 3%
+ 4%
+ 5%
+ 6%
+ 7%
+ 8%

0.1 1.0 10.0 100.0

Sampled Tuples [%] (log)

D
a
ta

 S
iz

e

Figure 6: Public BI compressed size for different sample sizes

6.3 Sampling Algorithm

Sampling research questions. Accurately estimating the com-
pression ratio for different schemes requires choosing a good sam-
pling algorithm. We do this by answering two research questions:

(1) Given a fixed sample size, what is the best sampling strategy?
(2) How does sample size relate to scheme selection accuracy?

We score sampling strategies based on the percentage of correctly
selected schemes, which we compute as follows: We compress the
first block (64k tuples) of every column in the Public BI Benchmark
using every scheme, including cascades, and determine the scheme
with the best compression ratio: the optimal scheme. We do the
same again for each sampling strategy, compressing the sample
instead of the entire block. If a sampling strategy chooses the op-
timal scheme or a scheme at most 2% worse than the optimal, we
consider the scheme choice to be correct2.
Best strategy for a fixed sample size. Figure 5 shows the percent-
age of correctly selected schemes for different sampling strategies
that always sample 640 tuples (=̂1% of a 64k block). It includes ex-
treme cases like sampling random individual tuples or choos-
ing a single tuple range , which perform worst. The main take-
away is that sampling multiple small chunks across the entire block
improves accuracy compared to other strategies, though there is
little difference between strategies that choose chunks of ≥ 16 tu-
ples. This confirms the intuition that the sample needs to capture
both data locality and data distribution across the entire block.
Impact of sample size.We now want to evaluate the impact of
the overall sample size on compression ratio. Figure 6 shows the
loss in compression ratio compared to the best possible cascade for
different sample sizes. Larger samples yield a better compression
ratio at the cost of exponentially growing CPU overhead.
2Allowing almost-optimal schemes filters cases where two scheme cascades compress
the same data almost equally well, e.g., Dict→RLE vs RLE→Dict.

U
n
c
o
m

p
re

s
s
e
d

S
ys

te
m

 A

S
ys

te
m

 B

S
ys

te
m

 C

P
a
rq

u
e
t

S
ys

te
m

 D

P
a
rq

u
e
t+

L
Z

4

P
a
rq

u
e
t+

S
n
a
p
p
y

b
tr

b
lo

c
ks

P
a
rq

u
e
t+

Z
st

d

1

2

3

4

5

6

7

8

C
o
m

p
re

s
si

o
n
 R

a
tio

Figure 7: Public BI compression ratios for proprietary column

stores (A-D), Parquet and BtrBlocks

Sampling in BtrBlocks. For BtrBlocks , we thus choose to
sample 10 × 64 tuples =̂ 1% of each block by default. This takes up
1.2% of CPU time during compression and results in 77% correct
scheme choices. With these choices, BtrBlocks compresses only
3.3% worse than the optimum on average.

6.4 Compression

Compression ratio. We designed BtrBlocks with relational data
in mind, e.g., storing aligned columns that form tuples. We thus
compared its compression ratio with four relational column stores
on the Public BI datasets. These systems base their compression
on internal proprietary formats. To show as complete a picture
as possible, we also added the most popular open source format,
Apache Parquet, to the comparison. Parquet provides different built-
in high-level compression options. Figure 7 displays the combined
results, showing that BtrBlocks beats every format except the
heavyweight Zstd compression on Parquet.
Compression speed. Starting from a CSV file, compression with
both Parquet and BtrBlocks consists of two steps: (1) Convert the
CSV file to an in-memory format and (2) convert the in-memory
format to the compressed final form. Our single-threaded compres-
sion speed results are similar to Parquet, both beginning from CSV
and the in-memory format:

From CSV From binary Compr. Factor

BtrBlocks 38.2MB/s 75.3MB/s 7.06×
Parquet+Snappy 38.0MB/s 41.9MB/s 6.88×
Parquet+Zstd 37.3MB/s 41.0MB/s 8.24×

6.5 Pseudodecimal Encoding

Evaluation outside of BtrBlocks. Pseudodecimal Encoding
is a novel double compression scheme we designed based on our
observations about data in the Public BI Benchmark. To assess its
effectiveness, we want to measure its compression factor outside
of BtrBlocks. However, similar to FOR, Pseudodecimal Encoding
does not usually reduce data size on its own; instead, it prepares
the data for compression with another scheme like Bit-packing or
RLE. This makes Pseudodecimal Encoding a good fit for the cascad-
ing compression applied by BtrBlocks, but it also complicates a
standalone evaluation because the compression cascade conflates
measurements from all used schemes. To remove this effect, the
following evaluation of Pseudodecimal Encoding applies a fixed

SIGMOD ’23, June 18–23, 2023, Seattle, WA Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, & Viktor Leis

Table 3: Compression Ratios of Pseudodecimal Encoding

(PD), other double schemes (Public BI, large double columns)

Column FPC Gorilla Chimp Chimp128 PDE

CommonGov./10 1.2 1.1 1.5 1.9 1.8
CommonGov./26 15.1 48.0 28.0 6.9 75.0

CommonGov./30 6.4 7.0 7.6 5.0 7.8

CommonGov./31 9.3 14.3 13.3 5.6 23.4

CommonGov./40 14.3 38.0 25.0 6.7 54.6

Arade/4 .95 1.1 1.2 1.6 1.9

NYC/29 1.5 2.1 2.5 1.7 1.0
CMSProvider/1 1.5 1.7 1.8 2.4 1.6
CMSProvider/9 2.7 2.3 3.4 2.4 6.6

CMSProvider/25 .98 .98 1.1 1.2 1.0
Medicare/1 1.2 1.4 1.5 2.0 1.5
Medicare/9 2.6 2.3 3.4 2.3 6.3

two-level cascade: We first compress data using Pseudodecimal
Encoding and then always compress the output with FastBP128.
Comparing to existing double schemes. We first compare Pseu-
dodecimal Encoding to the well-known existing double compres-
sion schemes FPC [28] and Gorilla [51], and the recently proposed
Chimp and Chimp128 [46]. Table 3 shows the compression ratio of
these schemes on the largest non-trivial (e.g., more than one value)
Public BI double columns. Pseudodecimal Encoding (PDE) does not
compress columns with high-precision values well, like the longi-
tude coordinate values in NYC/29. However, it often outperforms
other schemes on columns with less precision, like the abundant
pricing data columns.
Effectiveness inside BtrBlocks. In order to provide a benefit
as part of the scheme pool in BtrBlocks, Pseudodecimal Encoding
also has to outperform general purpose schemes like Dictionary
Encoding and RLE. We compare these schemes by again applying
a fixed two-level cascade, where the output of each scheme is al-
ways compressed with FastBP128. We also include non-cascading
FastBP128 to check our reasoning that Bit-packing (BP) should
rarely be effective on IEEE 754 floating point values:

Column BP Dict. RLE PDE

Gov./10 .99 1.6 1.0 1.8

Gov./26 60.9 4.4 187 75.0
Gov./30 4.7 2.9 6.9 7.8

Gov./31 12.2 4.5 15 23.4

Gov./40 38.1 4.4 91.5 54.6
Arade/4 .99 1.3 .96 1.9

Column BP Dict. RLE PDE

NYC/29 1.1 2.5 1.6 1.0
CMS./1 .99 1.6 1.5 1.6

CMS./9 1.0 5.6 .99 6.6

CMS./25 .99 .88 .97 1.0

Medi./1 .99 1.6 1.2 1.5
Medi./9 1.0 5.4 .99 6.3

Pseudodecimal Encoding (PDE) loses on columns with large runs
or few unique values, where RLE and Dictionary Encoding are
best. But there are columns where Pseudodecimal Encoding offers
a significant benefit over other schemes. We thus believe it to be a
valuable addition to the BtrBlocks encoding scheme pool.

6.6 Decompression

Open source formats. We compared our compression ratio with
proprietary systems in Section 6.4. However, these systems do
not allow us to introspect compression and decompression time

Public BI

TPC-H

Figure 8: Compression ratio vs. in-memory decompression

bandwidth on the Public BI Benchmark (top) and TPC-H

(bottom) for Parquet, ORC and BtrBlocks on c5n.18xlarge

independent of other system parts. In the following, we thus focus
on the widely used open source formats Parquet and ORC. We
described our Parquet configuration at the beginning of Section 6.
ORC test setup.We generated Apache ORC files using the Apache
Arrow library (pyarrow 9.0.0). Using default settings, ORC files
tended to grow large, preventing parallelism. We thus changed the
dictionary_key_size_threshold parameter from the default (0)
to the default of Apache Hive (0.8). We changed the LZ4 compres-
sion strategy from the default (SPEED) to COMPRESSION for the same
reason. Changing the stripe size – the equivalent of the rowgroup
size for Parquet – did not change the performance in our multi-
threaded tests, so we kept the default value. The actual benchmarks
use the ORC C++ library, which cannot read files directly from mem-
ory. For a fair comparison, we implemented a custom variant of
orc::InputStream that reads directly out of an in-memory buffer.
Like with Parquet, we parallelized by both stripes and columns.
In-memory Public BI decompression throughput. Figure 8
(top) shows our results for the datasets we selected from the Public
BI Benchmark as described in Section 6.1. We plot the compression
ratio against decompression throughput (e.g., uncompressed size /
decompression time) for Parquet, ORC and BtrBlocks. While Zstd
compression is better with both Parquet and ORC in terms of com-
pression ratio, BtrBlocks is superior in terms of decompression
speed. It decompressed 2.6×, 3.6× and 3.8× faster than Parquet,
Parquet+Snappy and Parquet+Zstd on average, respectively.
Decompression of Parquet vs. ORC. Interestingly, every Par
quet variant performs better than its ORC counterpart in terms
of decompression speed: Uncompressed ORC is 4.1× slower to

BtrBlocks: Efficient Columnar Compression for Data Lakes SIGMOD ’23, June 18–23, 2023, Seattle, WA

Table 4: Compression ratios and decompression throughput on a random Public BI Benchmark column sample

Decomp. Speed Compr. Ratio

Dataset/Column Type ↓ Size Btr Zstd Btr Zstd Scheme Value Example
[MB] [GB/s] [GB/s] [×] [×] (Root)

SalariesFrance/LIBDOM1 string 34.0 70.2 10.4 1,862.6 3,068.1 Dictionary null,null
MulheresMil/pcd string 59.9 20.3 3.7 240.5 418.7 Dictionary “”,””,””
Redfin2/property_type string 24.7 33.6 3.5 1,262 1,598.5 Dictionary All Residential
Motos/Medio string 94.2 30.8 2.4 5,048.8 2,504.1 OneValue CABLE,CABLE,. . .
NYC/Community Board string 89.9 15.0 1.6 8.0 13.6 Dict+FSST 01 BRONX,04 BRONX
PanCreactomy1/N[. . .]STREET1 string 149.2 17.1 1.4 5.2 7.9 Dict+FSST 5777 E MAYO BLVD
Provider/nppes_provider_city string 77.9 12.4 1.3 5.2 6.6 Dict+FSST null,BETHESDA,ATHENS
PanCreactomy1/N[. . .]CITY string 77.9 11.8 1.2 5.1 7.7 Dict+FSST null,PHOENIX,RALEIGH
Uberlandia/municipio_da_ue string 22.7 2.7 0.9 10.4 28.5 Dictionary Maceió,Curitiba,Curitiba
RealEstate1/New Build? integer 74.5 26.6 3.1 13,055.7 1,653.5 OneValue 0,0,0,. . .
Medicare1/TOTAL_DAY_SUPPLY integer 33.0 7.1 1.0 2.4 2.2 FastPFOR 26994,18930,7691
Uberlandia/cod_ibge_da_ue integer 28.8 3.5 0.8 3.0 3.5 FastPFOR 2704302,3547304,1200203
Eixo/cod_ibge_da_ue integer 28.8 4.0 0.8 3.0 3.5 FastPFOR 2704302,3547304,1200203
Telco/CHARGD_SMS_P3 double 22.2 5.8 2.0 11.5 14.0 Dictionary 0,0,0
Telco/TOTA_OUTGOING_REV_P3 double 22.2 6.6 1.8 10.5 13.8 Dictionary 0,0,0
Telco/RECHRG[. . .]USED_P1 double 22.2 2.3 1.7 4.4 5.9 Frequency 83.2833,3.05,9.5999
Motos/InversionQ double 107.6 11.0 1.3 4.6 6.8 Dictionary 0,0,0
Telco/TOTAL_MINS_P1 double 22.2 3.1 0.7 2.7 2.4 Pseudodec. 0,0,0
Redfin4/median_sale_price_mom double 24.9 4.3 0.7 1.3 1.7 Dictionary null,null,null

decode than uncompressed Parquet as measured on the Public BI
Benchmark. For Snappy and Zstd, the respective factors are 4.2×
and 2.4×. The difference in compression ratio for the compressed
variants of both formats is at most 8%, even though ORC without
compression is 28% larger than uncompressed Parquet.
Per-column performance. Table 4 facilitates more low-level in-
sights on how the compression ratio and decompression speed of
BtrBlocks compare to Parquet+Zstd. It shows metrics for a ran-
dom sample of Public BI columns and lists the encoding scheme
that BtrBlocks used for the first cascading step of the first block.
BtrBlocks outperforms Parquet+Zstd in terms of compression
speed, and comes close in terms of compression factor. The table
also shows a sample from the first 20 entries of each column [17],
which may not be representative of the data distribution in the en-
tire column. This illustrates the necessity of a well-crafted sampling
algorithm for deciding on encoding schemes.
In-memory TPC-H decompression throughput.We performed
another decompression experiment with data from TPC-H and
show the results in Figure 8 (bottom). The average decompression
throughput of all schemes is less on TPC-H because it compresses
worse. Still, BtrBlocks decompresses 2.6×, 3.9× and 4.2× faster
than Parquet, Parquet+Snappy and Parquet+Zstd, respectively.

6.7 End-to-End Cloud Cost Evaluation

Is Parquet decompression fast enough? Slow decompression in
network scans translates to a higher query execution time and thus
higher query costs. Looking at Figure 8, however, every Parquet
variant achieves an in-memory decompression throughput of over
50GB/s. With the 100Gbit =̂ 12.5 GB/s networking of c5n.18xlarge,
it seems like network bandwidth is the bottleneck and scans cannot

benefit from faster decompression. This, however, is a false conclu-
sion stemming from the definition of decompression throughput.
Decompression throughput and network bandwidth. Decom-
pression throughput is usually measured using the uncompressed
data size, e.g.,𝑇𝑢 =

uncompressed size
decompression time . This is themetric that Figure 8

shows and it is the relevant metric for the data consumer. But when
loading data over a network, decompression throughput has to be
higher than the network throughput in terms of compressed data size.
Otherwise, the network bandwidth is not yet fully exploited and
decompression is CPU bound. We thus introduce another metric
for decompression throughput, 𝑇𝑐 =

compressed data size
decompression time , essentially

dividing𝑇𝑢 by the compression factor. We will see how this impacts
the scan cost in our end to end cloud cost evaluation.
Measuring end-to-end cost. Because what matters in the end for
analytical processing in the cloud is cost, we explicitly evaluate
the cost savings BtrBlocks brings. For scans from S3, this cost
consists of two parts:

• We need an EC2 compute instance to load data to, which
has an hourly rate of $3.89 in the case of our test instance
c5n.18xlarge [4, 18].

• Every 1,000 GET requests to S3 cost $0.0004; the amount of
data returned by each request is irrelevant.

Thus, to compute the cost of a scan, it suffices to count the number
of requests and measure the scan duration. The S3 performance
guidelines recommend fetching 8MB or 16MB chunks per request
for maximum throughput [5]; we chose 16MB chunks for this exper-
iment. Consequently, one S3 chunk consists of multiple BtrBlocks
blocks that add up to 16MB or slightly less. Parquet data is gener-
ated by Apache Spark, which splits it into multiple files by default.

SIGMOD ’23, June 18–23, 2023, Seattle, WA Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, & Viktor Leis

Table 5: S3 Scan Cost on the largest 5 Public BI workbooks

S3 𝑇𝑢 S3 𝑇𝑐 Scan cost Normalized Cost

Format [GB/s] [Gbit/s] [$] [×]
BtrBlocks 174.6 86.2 0.97 1.00

Parquet 56.1 52.6 2.47 2.61
+Snappy 77.6 33.2 1.74 1.84
+Zstd 78.6 24.8 1.70 1.77

We have no control over the size of these files, but they usually
range from 5.5 to 24MB. Some of the datasets from the Public BI
Benchmark are too small to get a useful throughput measurement
for, so we exclude tables that have a CSV file size of less than 6GB.
End-to-end cost test setup. Our benchmark uses the S3 C++
SDK [6] to load compressed chunks of various formats from S3
and then decompresses them in-memory like a query processing
engine might. We implement our own memory pool on top of the
abstractions provided by the S3 SDK in order to measure the raw de-
compression speed without the inefficient stream implementations
the SDK provides by default. We map threads to chunks returned by
S3 one-to-one because this turned out to be the most efficient tech-
nique. The requests themselves are issued asynchronously and then
added to a global work queue to achieve maximum throughput.
Loading individual columns. OLAP queries rarely read entire
tables, but instead select individual columns across one or many
tables. Our first experiment thus loads individual columns from
S3 and decompresses them. We choose the columns using random
queries from the five largest Public BI datasets, e.g., our benchmark
only fetches columns that a given query scans. We find that Btr-
Blocks scans are 9× cheaper than the compressed Parquet variants
and 20× cheaper than uncompressed Parquet, on average. We also
measured the cost for loading columns from all 22 TPC-H queries.
In TPC-H, Parquet is 5.5×, Parquet with Snappy 3.6× and Parquet
with Zstd 2.8× more expensive than BtrBlocks on average.
Cost comparability. However, we do not think this experiment
represents the contributions of BtrBlocks particularly well be-
cause a different factor causes the high performance difference
we measured. Parquet bundles multiple columns into one file and
stores column offsets in a metadata footer at the end of the file. Thus,
to load a single column in Parquet, a client has to perform three
separate but dependent requests to S3: fetch the metadata length,
fetch the metadata, fetch the partial file containing the column [54].
The alternative is loading the entire file and then decompressing
the column locally, which we often found to be faster. In contrast,
the BtrBlocks S3 metadata implementation uses one file per col-
umn and bundles metadata for the entire table in a separate file.
But metadata handling is not an issue we are trying to address
with BtrBlocks; in fact, we argued that metadata is orthogonal
and should be handled separately in Section 2. We thus perform a
different experiment for comparing the scan cost with Parquet.
Loading entire datasets. Instead of loading individual columns,
we now load entire datasets from S3 and measure the combined
compute instance and request cost. For this experiment, we can
forgo loading metadata and just load whole files instead. The mea-
sured difference in cost can thus be entirely attributed to the novel

compression scheme BtrBlocks introduces. As with the previous
experiment, we used the five largest datasets from the Public BI
Benchmark. We load each dataset 10,000 times and average the
measured cost and throughput to get rid of network effects.
Cost of loading full datasets. Table 5 shows that BtrBlocks loads
these datasets 2.6× cheaper than uncompressed Parquet and 1.8×
cheaper than Parquet with Zstd/Snappy on average. No Parquet-
based format can exploit the network bandwidth; BtrBlocks al-
most does at 𝑇𝑐 = 86Gbps, which is close to the throughput our S3
client achieves with uncompressed data at 91Gbps. This reaffirms
the importance of 𝑇𝑐 as a measurement of decompression through-
put when loading data over the network; Figure 1 further illustrates
this point. Considering this benchmark does not include any CPU
time for query processing, we can expect the cost difference in an
actual OLAP system to be even higher.

6.8 Result Discussion

Is BtrBlocks only fast because of SIMD? Section 5 describes
low-level decompression optimizations that BtrBlocks includes,
most of which use SIMD and often improve performance substan-
tially. One might deduce that BtrBlocks decompresses so much
faster than existing formats solely because of these low-level opti-
mizations, not because of its high-level design. If this were the case,
we could simply improve the implementation of Parquet instead of
designing a new format. We checked this by implementing scalar
versions of every decompression algorithm in BtrBlocks. Running
the experiments from Section 6.6 again, in-memory decompression
is slowed down by 17%. This, however, is still 2.3× faster than the
fastest Parquet variant. We conclude that substantially improving
Parquet requires more than low-level optimizations such as SIMD.
Update the standard or create a new format? Yet, improving
existing widespread formats such as Parquet is more desirable than
creating a new data format: For users, there would be no costly
data migration, no breaking changes and fast decompression just
by updating a library version. Unfortunately, our experiments indi-
cate that low-level improvements are not enough, and integrating
larger parts of BtrBlocks – such as new encodings and cascading
compression – into Parquet will cause version incompatibilities.
Such a “Parquet v3” would not share much with the original besides
the name, with no actual benefit to existing users of Parquet. In-
stead, we have open-sourced BtrBlocks and hope that compatible
improvements will find their way into Parquet, while also building
a new format based on BtrBlocks that is independent of Parquet.

7 RELATEDWORK

Columnar Compression. There is a large body of work on colum-
nar compression in databases [21, 22, 61]. Below, we discuss a
selection that relates most closely to BtrBlocks.
SQL Server.With the introduction of column store indexes, SQL
Server offers an optional column-based storage layout [38]. It di-
vides data into aligned row groups, each of which contains segments
of columns.With column store indexes, SQL Server also adds colum-
nar compression. The system compresses each column segment
individually in three steps: (1) encode everything as integers, (2)
reorder rows inside each row group and (3) compress each column.
During the encoding step, SQL Server translates strings to integers

BtrBlocks: Efficient Columnar Compression for Data Lakes SIGMOD ’23, June 18–23, 2023, Seattle, WA

using Dictionary Encoding. In more recent work, it optimizes the
resulting dictionaries further by keeping short strings instead of
translating them to 32 bit integers [37]. Numeric types are encoded
as integers by finding the smallest common exponent in each seg-
ment and multiplying with it. For integer types, SQL server strips
common leading zeros in each segment and then applies FOR en-
coding to reduce data range. After encoding, the system reorders
rows inside each row group to optimize for encoding using RLE.
Finally, it compresses either using RLE or Bit-packing. How exactly
SQL Server chooses which scheme to use is not published. From
the evaluation using Microsoft-internal datasets, this compression
technique achieves a weighted average compression factor of 5.1×.
DB2 BLU. Like SQL Server did with column store indexes, IBM
added a column-based storage layout to DB2 with DB2 BLU [53].
Unlike SQL Server, BLU stores multiple columns segments together
on a single fixed-size page. Column segments are encoded using
the previously mentioned Frequency Encoding. Additionally, each
page may be compressed again using local dictionaries and offset-
coding based on the local data distribution. As with the compression
schemes used in SQL Server, DB2 BLU aims to allow for query
processing on compressed data, like early filtering on range queries.
However, due to the bitwise encoding schemes used, point access is
more involved and requires unpacking tuples first. Like BtrBlocks,
DB2 BLU uses bitmaps to indicate NULL values.
SIMD decompression and selective scans. There is a large body
of work discussing the use of SIMD and SIMD-optimized data lay-
outs to speed up decompression and column scans. Polychroniou et
al. [52] implement SIMD-optimized versions of common data struc-
ture operations and compare them against their scalar counterparts.
Joint work by SAP and Intel focuses on fast predicate evaluation
and decompression in column stores using SSE and AVX2 [58, 59].
Vertical BitWeaving [45] and ByteSlice [32] propose separating the
bits of multiple values in a radix-like fashion, such that the 𝑘-th bits
of these values reside adjacently in memory, thus enabling short-
circuited predicate evaluation. Motivated by the observation that
predicates often act on multiple columns simultaneously, Johnson
et al. [35] propose storing multiple columns together in a bank,
such that the resulting compressed partial tuples fit into a word.
Using a custom-designed algebra on these packed words facilitates
bandwidth- and cache-friendly computation.
Compressed data processing in BtrBlocks. Most of these
academic papers, as well as SQL Server and DB2 BLU, facilitate
some kind of partial query processing directly on the compressed
data. This makes sense in proprietary systems where processing
and storage are tightly integrated. We believe that open formats,
in contrast, should optimize for raw decompression speed first:
This way, systems can expect speed improvements without having
to build their query processing around a single format. Note that
BtrBlocks can, in principle, also support processing compressed
data if the used schemes support it.
HyPer Data Blocks. The in-memory HTAP system HyPer intro-
duced Data Blocks to reduce the memory footprint of cold data.
Because HyPer targets both OLTP and OLAP, Data Blocks has to
preserve fast point access [36]. As such, it only uses lightweight
encoding schemes that keep the data byte-addressable: One Value,
Ordered Dictionary Encoding and Truncation. After splitting the data
into blocks, HyPer decides which scheme is optimal based on the

statistics collected about that block. Truncation is a specialized ver-
sion of FOR Encoding where the frame of reference is the𝑚𝑖𝑛 value
of each block. Ordered Dictionary Encoding is feasible because
blocks are immutable and do not need fast updates. HyPer chooses
the dictionary code size based on the amount of unique values,
and ordering the dictionary allows it to evaluate range predicates
on compressed data. To further increase the processing speed on
compressed data, every block also contains an SMA (small material-
ized aggregate) and a lightweight index that improves point-access
performance. The authors report compression factors of up to 5×.
SAP BRPFC. With Block-Based Re-Pair Front-Coding (BRPFC), SAP
introduced a new compression scheme for string dictionaries [39].
This work is motivated by an internal analysis that showed the
string pools required by Dictionary Encoding make up 28% of
SAP HANAs total memory footprint. The system already uses
block-based Front-Coding to compress dictionaries. Given sorted
input strings, this encoding replaces the common prefix of subse-
quent strings with the length of the prefix. For example, [SIGMM,
SIGMOBILE, SIGMOD] compresses to [SIGMM, (4)OBILE, (5)D].
HANA further improves this technique by adding Re-Pair com-
pression, which replaces substrings in the data with shorter codes
using a dynamically generated grammar for each block. They apply
the resulting algorithm to blocks of data that fit in the cache to
increase compression speed. Additionally, the authors designed a
SIMD-based decompression algorithm to improve access latency.
However, decompression is still too slow for our use case: Based
on the reported access latency, one can calculate a sequential de-
compression throughput of ≤100MB/s [26]. This decompression
performance is not sufficient for our use case, which is why we did
not include a similar compression technique in BtrBlocks.
Latency on data lakes. BRPFC optimizes for per-string access la-
tency because this is an important metric in an in-memory database
like HANA. As a data format that targets data lakes, BtrBlocks
does not profit from this: Access latency matters little when fetch-
ing large chunks of data over a high-latency network. We thus
chose to optimize throughput and decompression speed instead.

8 CONCLUSION

We introduced BtrBlocks, an open columnar compression format
for data lakes. By analyzing a collection of real-world datasets, we
selected a pool of fast encoding schemes for this use case. Addi-
tionally, we introduced Pseudodecimal Encoding, a novel compres-
sion scheme for floating-point numbers. Using our sample-based
compression scheme selection algorithm and our generic frame-
work for cascading compression, we showed that, compared to
existing data lake formats, BtrBlocks achieves a high compres-
sion factor, competitive compression speed and superior decom-
pression performance. BtrBlocks is open source and available at
https://github.com/maxi-k/btrblocks.

ACKNOWLEDGMENTS

Funded/Co-funded by the EuropeanUnion (ERC, CODAC, 101041375).
Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them.

https://github.com/maxi-k/btrblocks

SIGMOD ’23, June 18–23, 2023, Seattle, WA Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, & Viktor Leis

REFERENCES

[1] October 11, 2022. https://github.com/lemire/FastPFor.
[2] October 11, 2022. https://github.com/cwida/fsst.
[3] October 14, 2022. https://github.com/apache/arrow/blob/

883580883aab748fe94336cbed844f09e015178f/cpp/src/parquet/column_writer.
cc#L1376.

[4] October 14, 2022. https://aws.amazon.com/ec2/pricing/on-demand/.
[5] October 14, 2022. https://docs.aws.amazon.com/AmazonS3/latest/userguide/

optimizing-performance-guidelines.html.
[6] October 14, 2022. https://aws.amazon.com/sdk-for-cpp/.
[7] October 4, 2022. https://github.com/RoaringBitmap/CRoaring.
[8] October 4, 2022. https://orc.apache.org/specification/ORCv1.
[9] October 6, 2022. https://github.com/cwida/public_bi_benchmark/blob/master/

benchmark/CommonGovernment/samples/CommonGovernment_1.sample.
csv.

[10] October 6, 2022. https://github.com/cwida/public_bi_benchmark/blob/master/
benchmark/Generico/samples/Generico_1.sample.csv.

[11] September 20, 2022. https://github.com/google/snappy.
[12] September 20, 2022. https://github.com/facebook/zstd.
[13] September 20, 2022. https://parquet.apache.org/docs/file-format/data-pages/

encodings/.
[14] September 20, 2022. https://github.com/lz4/lz4.
[15] September 20, 2022. https://parquet.apache.org/.
[16] September 21, 2022. https://oneapi-src.github.io/oneTBB/.
[17] September 24, 2022. https://github.com/cwida/public_bi_benchmark.
[18] September 24, 2022. https://aws.amazon.com/ec2/instance-types/c5/.
[19] September 27, 2022. https://github.com/cwida/fsst/blob/master/fsst.h#L144.
[20] September 29, 2022. https://arrow.apache.org/docs/cpp/api/utilities.html?

highlight=lz4#compression.
[21] Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel

Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Found. Trends Databases 5, 3 (2013), 197–280.

[22] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-
sion and execution in column-oriented database systems. In SIGMOD Conference.
ACM, 671–682.

[23] Josep Aguilar-Saborit and Raghu Ramakrishnan. 2020. POLARIS: The Distributed
SQL Engine in Azure Synapse. Proc. VLDB Endow. 13, 12 (2020), 3204–3216.

[24] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychro-
niou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subramanian,
and Doug Terry. 2022. Amazon Redshift Re-invented. In SIGMOD. 2205–2217.

[25] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson,
Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa
Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bus-
sel, Herman Van Hovell, Maryann Xue, Reynold Xin, and Matei Zaharia. 2022.
Photon: A Fast Query Engine for Lakehouse Systems. In SIGMOD. 2326–2339.

[26] Peter A. Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: Fast Random
Access String Compression. PVLDB 13, 11 (2020), 2649–2661.

[27] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR. 225–237.

[28] Martin Burtscher and Paruj Ratanaworabhan. 2007. High Throughput Compres-
sion of Double-Precision Floating-Point Data. In DCC. IEEE Computer Society,
293–302.

[29] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In SIGMOD. 215–226.

[30] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner. 2017.
Lightweight Data Compression Algorithms: An Experimental Survey. In EDBT.
72–83.

[31] Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich, and Wolf-
gang Lehner. 2019. From a Comprehensive Experimental Survey to a Cost-based
Selection Strategy for Lightweight Integer Compression Algorithms. ACM Trans.
Database Syst. 44, 3 (2019), 9:1–9:46.

[32] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. ByteSlice: Pushing
the Envelop of Main Memory Data Processing with a New Storage Layout. In
SIGMOD Conference. ACM, 31–46.

[33] Bogdan Ghita, Diego G. Tomé, and Peter A. Boncz. 2020. White-box Compression:
Learning and Exploiting Compact Table Representations. In CIDR.

[34] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for Simpler
Data Warehouses. In SIGMOD Conference. ACM, 1917–1923.

[35] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret Swart. 2008. Row-
wise parallel predicate evaluation. Proc. VLDB Endow. 1, 1 (2008), 622–634.

[36] Harald Lang, TobiasMühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on Compressed
Storage using both Vectorization and Compilation. In SIGMOD. 311–326.

[37] Per-Åke Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson, Mostafa Mokhtar,
Michal Nowakiewicz, Vassilis Papadimos, Susan L. Price, Srikumar Rangarajan,
Remus Rusanu, and Mayukh Saubhasik. 2013. Enhancements to SQL server
column stores. In SIGMOD. 1159–1168.

[38] Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Sriku-
mar Rangarajan, Aleksandras Surna, and Qingqing Zhou. 2011. SQL server
column store indexes. In SIGMOD. 1177–1184.

[39] Robert Lasch, Ismail Oukid, Roman Dementiev, Norman May, Süleyman Sirri
Demirsoy, and Kai-Uwe Sattler. 2019. Fast & Strong: The Case of Compressed
String Dictionaries on Modern CPUs. In DaMoN. 4:1–4:10.

[40] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB
9, 3 (2015), 204–215.

[41] Viktor Leis and Maximilian Kuschewski. 2021. Towards Cost-Optimal Query
Processing in the Cloud. PVLDB 14, 9 (2021), 1606–1612.

[42] Daniel Lemire and Leonid Boytsov. 2012. Decoding billions of integers per
second through vectorization. CoRR abs/1209.2137 (2012). arXiv:1209.2137
http://arxiv.org/abs/1209.2137

[43] Daniel Lemire, Gregory Ssi Yan Kai, and Owen Kaser. 2016. Consistently faster
and smaller compressed bitmaps with Roaring. CoRR abs/1603.06549 (2016).

[44] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, François
Saint-Jacques, and Gregory Ssi Yan Kai. 2017. Roaring Bitmaps: Implementation
of an Optimized Software Library. CoRR abs/1709.07821 (2017).

[45] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: fast scans for main memory
data processing. In SIGMOD Conference. ACM, 289–300.

[46] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022. Chimp:
Efficient Lossless Floating Point Compression for Time Series Databases. PVLDB
15, 11 (2022), 3058–3070.

[47] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis of
Web-Scale Datasets. PVLDB 3, 1 (2010), 330–339.

[48] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min,
Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive SQL
Analysis at Web Scale. PVLDB 13, 12 (2020), 3461–3472.

[49] Ingo Müller, Cornelius Ratsch, and Franz Färber. 2014. Adaptive String Dictionary
Compression in In-Memory Column-Store Database Systems. In EDBT. 283–294.

[50] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB 4, 9 (2011), 539–550.

[51] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin
Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. Proc. VLDB Endow. 8, 12 (2015), 1816–1827.

[52] Orestis Polychroniou and Kenneth A. Ross. 2015. Efficient Lightweight Compres-
sion Alongside Fast Scans. In DaMoN. ACM, 9:1–9:6.

[53] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis Pandis, Berni Schiefer,
David Sharpe, Richard Sidle, Adam J. Storm, and Liping Zhang. 2013. DB2 with
BLU Acceleration: So Much More than Just a Column Store. PVLDB 6, 11 (2013),
1080–1091.

[54] Alice Rey, Michael Freitag, and Thomas Neumann. 2023. Seamless Integration
of Parquet Files into Data Processing. In BTW (LNI, Vol. P-331). Gesellschaft für
Informatik e.V., 235–258.

[55] Alexander van Renen and Viktor Leis. 2023. Cloud Analytics Benchmark. PVLDB
16, 6 (2023), 1413–1425.

[56] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In DBTest. 1:1–1:6.

[57] JianguoWang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson. 2017.
An Experimental Study of Bitmap Compression vs. Inverted List Compression.
In SIGMOD. 993–1008.

[58] ThomasWillhalm, Ismail Oukid, IngoMüller, and Franz Faerber. 2013. Vectorizing
Database Column Scans with Complex Predicates. In ADMS@VLDB. 1–12.

[59] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Schaffner. 2009. SIMD-Scan: Ultra Fast in-Memory Table Scan
using on-Chip Vector Processing Units. Proc. VLDB Endow. 2, 1 (2009), 385–394.

[60] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lakehouse:
ANewGeneration of Open Platforms that Unify DataWarehousing andAdvanced
Analytics. In CIDR.

[61] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. 2006. Super-
Scalar RAM-CPU Cache Compression. In ICDE. 59.

https://github.com/lemire/FastPFor
https://github.com/cwida/fsst
https://github.com/apache/arrow/blob/883580883aab748fe94336cbed844f09e015178f/cpp/src/parquet/column_writer.cc#L1376
https://github.com/apache/arrow/blob/883580883aab748fe94336cbed844f09e015178f/cpp/src/parquet/column_writer.cc#L1376
https://github.com/apache/arrow/blob/883580883aab748fe94336cbed844f09e015178f/cpp/src/parquet/column_writer.cc#L1376
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance-guidelines.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance-guidelines.html
https://aws.amazon.com/sdk-for-cpp/
https://github.com/RoaringBitmap/CRoaring
https://orc.apache.org/specification/ORCv1
https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/CommonGovernment/samples/CommonGovernment_1.sample.csv
https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/CommonGovernment/samples/CommonGovernment_1.sample.csv
https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/CommonGovernment/samples/CommonGovernment_1.sample.csv
https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/Generico/samples/Generico_1.sample.csv
https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/Generico/samples/Generico_1.sample.csv
https://github.com/google/snappy
https://github.com/facebook/zstd
https://parquet.apache.org/docs/file-format/data-pages/encodings/
https://parquet.apache.org/docs/file-format/data-pages/encodings/
https://github.com/lz4/lz4
https://parquet.apache.org/
https://oneapi-src.github.io/oneTBB/
https://github.com/cwida/public_bi_benchmark
https://aws.amazon.com/ec2/instance-types/c5/
https://github.com/cwida/fsst/blob/master/fsst.h#L144
https://arrow.apache.org/docs/cpp/api/utilities.html?highlight=lz4#compression
https://arrow.apache.org/docs/cpp/api/utilities.html?highlight=lz4#compression
https://arxiv.org/abs/1209.2137
http://arxiv.org/abs/1209.2137

	Abstract
	1 Introduction
	2 Background
	2.1 Existing Open File Formats
	2.2 Compression Schemes Used In BtrBlocks

	3 Scheme Selection & Compression
	3.1 Estimating Compression Ratio with Samples
	3.2 Cascading

	4 Pseudodecimal Encoding
	4.1 Compressing Floating-Point Numbers
	4.2 Pseudodecimal Encoding in BtrBlocks

	5 Fast Decompression
	6 Evaluation
	6.1 Real-World Datasets
	6.2 The Compression Scheme Pool
	6.3 Sampling Algorithm
	6.4 Compression
	6.5 Pseudodecimal Encoding
	6.6 Decompression
	6.7 End-to-End Cloud Cost Evaluation
	6.8 Result Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

