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Abstract—Most Database Management Systems (DBMSs) sup-
port arbitrary-sized objects through the Binary Large OBjects
(BLOBs) data type. Nevertheless, application developers usually
store large objects in file systems and only manage the metadata
and file paths through the DBMS. This combined approach has
major downsides, including a lack of transactional and indexing
capabilities. Two factors contribute to the rare use of database
BLOBs: the inefficiency of DBMSs in such workloads and
the interoperability difficulties when interacting with external
programs that expect files. To address the former, we present
a new BLOB allocation and logging design that exhibits lower
write amplification, reduces WAL checkpointing frequency, and
consumes less storage than the conventional strategies. Our
approach flushes each BLOB only once and features only a single
indirection layer. Moreover, using the Filesystem in Userspace
framework, BLOBs can be exposed as read-only files, allowing
unmodified applications to directly access database BLOBs. The
experimental results show that our design outperforms both file
systems and DBMSs in handling large objects.

Index Terms—Database management systems, Operating sys-
tems, File systems, User interfaces, Large objects, Strings

I. INTRODUCTION

Data management systems are ubiquitous. DBMSs are com-
monly used for addressing a wide and heterogeneous range
of real-world data management problems, offering valuable
features such as ACID transactions and declarative queries.
Their performance has been significantly optimized through
decades of dedicated research and engineering, making them
the default choice for diverse data management needs.
Large objects are stored as files. One major exception to
the dominance of DBMSs is large binary objects. Although
most DBMSs support the Binary Large Object (BLOB) and
arbitrary-length string (CLOB, VARCHAR, TEXT) data types,
proprietary or specialized data such as audio, image, video,
and document objects are usually stored as files rather than
inside the database system. Imagine an application that man-
ages medical X-ray images: most developers would probably
store all structured application data (including the patient data,
image metadata, and file paths) in a DBMS, but the image data
in a file system.
Downsides of files. Storing large objects in a file system
separately from the application data (which is maintained in
a DBMS) has several downsides:

• Durability: File systems and DBMSs have separate and
independent durability regimes (fsync vs. commit). Imag-
ine a situation where a crash occurs during the insertion of
a new X-ray image and its record: depending on whether
fsync or commit is executed first, one may end up either

with an X-ray scan without a patient record, or a patient
record without its associated X-ray image.

• Transactions: File systems do not support transactions,
making it difficult to perform multi-file operations cor-
rectly. Consider an administrator updating a web applica-
tion, which modifies multiple configuration and resource
files. Without atomic multi-file operations (i.e., transac-
tion), incomplete updates may occur, e.g. configurations
in config files may reference deprecated resource files,
leading to software inconsistencies and instability.

• Indexing: File systems lack support for indexing file
content or metadata, which is beneficial in many situ-
ations. For instance, indexing facilitates tasks such as
deduplicating files based on file content or organizing the
files in ascending order by their last modification date.

• Performance: As we will show in Section V, accessing
files can be slow due to system call overheads [1, 2].

Downsides of BLOBs. Given these problems, one may won-
der why storing BLOBs in database systems is uncommon. We
attribute this to two primary factors. First, database systems are
not optimized for handling BLOBs1, with file systems often
proving more efficient. Second, BLOBs are often accessed not
just by the storage systems, but also by external programs
that require the input data in files. Consider, for example, a
computer vision tool for classifying images, or a web server
serving image data for a content management system. In both
cases, the images will be expected as files. Having to copy
BLOBs to the file system for interoperability with external
programs would exacerbate many drawbacks of storing large
objects within the DBMS.
Contributions. As pointed out in a CIDR keynote by Hannes
Mühleisen [26], there is little research on managing large
binary objects and strings in DBMSs. This work aims to
close this gap. First, we present techniques for efficiently
managing BLOBs in database systems, showing that a DBMS
can outperform state-of-the-art file systems. To achieve this,
we propose a new BLOB physical storage format and logging
scheme for DBMSs. We write every BLOB only once to the
storage while ensuring its crash consistency, and use a single-
layer indirection called Blob State to obtain the on-storage
location of every BLOB. This differs from existing approaches
that write every object twice [11, 14, 10, 9, 24, 23, 15, 19] and
use multi-level indirection layers to store BLOB [20, 11, 15, 6,

1One notable exception is SQLite, which is specifically advertised for use
cases that would normally rely on file systems [2, 25].



TABLE I
LARGE OBJECT IMPLEMENTATIONS IN THE EXT4 FILE SYSTEM AND SEVERAL WIDELY-USED DBMSS

System Physical storage format Max size Read cost Indexing - Prefix limit Duplicated copies
Ext4 file system Multi-level extent tree [3] 16TB [4] High2 Not supported Journal [5]4

PostgreSQL TOAST relation [6] 4TB [7] Medium1 8191 bytes [8] WAL [9, 10]
SQLite Linked-list of pages [11] 2GB [12] High2 Arbitrary size [13] WAL [11, 14] & Index [13]

SQL Server Tree-like structure of pages [15] 2GB [16] High2 Not supported [17, 18] WAL [19]
MySQL/InnoDB Linked-list of pages [20] 4GB [21] High2 767 bytes [22] DWB3 & Redo [23, 24]

Our design Extent sequence 10PB5 Low Arbitrary size None6

1 Multiple lookup/scan to read a BLOB 2 Many indirection layers, I/O and computation interleave 3 Double-Write Buffer
4 Mount with data=journal 5 Theoretically 5.76×1017 YB with 127 extents and 4KB page, details in Section III 6 Except BLOB update

3, 5]. Second, we solve the interoperability issue with external
programs using Filesystem in Userspace (FUSE) interface.
We expose large objects as read-only files, allowing external
software to directly access DBMS-managed BLOBs without
code modifications. Overall, with our approach, applications
managing BLOBs gain all functional benefits of DBMSs (e.g.,
transactions and indexing) without sacrificing performance or
complicating interoperability with external programs.

II. BACKGROUND

A. Limitations of Existing Approaches

In the following, we describe how PostgreSQL, SQLite,
Microsoft SQL Server, and MySQL/InnoDB manage BLOBs,
and contrast them with Ext4, the default file system of Linux.
Ext4: Hierarchical extent tree. The standard file system in
Linux, Ext4, maintains files in a multi-layer structure [3], as
the following figure shows:

In
od

e i_block

header extent
index

extent
index

ext4_extent_idx

node
header

extent
index

extent
index

ext4_extent_idx

node
header

extent
index

extent
index

ext4_extent

node
header extentextent

Data block Data block

Ext4 builds an extent tree structure for every file larger than
512MB. The extent tree helps translate the file logical address
to the corresponding physical blocks [3, 27]. It is complex (for
good reasons, which we will discuss in Section III). However,
extent tree also has some limitations, one particular issue is the
tree traversal overhead. That is, accessing data in Ext4 requires
navigating through several layers of the extent tree, mixing I/O
and computation, which may reduce the performance.
Inefficient storage format in DBMSs. The surveyed DBMSs
utilize either an auxiliary structure [20, 11, 15] or a relation
to manage the BLOB chunks [6]. In the first approach used
in MySQL, SQLite, and SQL Server, the DBMSs store every
BLOB in multiple overflow pages, which are chained together
using a linked list or a tree. Consequently, queries will access
the overflow pages sequentially one after another [20, 11, 15],
resulting in I/O interleaved with computation and thus higher
query latency. The second method, The Oversized-Attribute

Storage Technique (TOAST) implemented by PostgreSQL [6],
does not force I/O and computation to interleave. It organizes
the BLOB chunks (and metadata) in a separate “TOAST”
table. Consequently, every BLOB read involves two relation
lookups (the main relation and the TOAST table) in addition
to one scan to read all chunks. Because every TOAST page
contains only four chunks by default [6], read operations must
scan through multiple database pages to retrieve the BLOB
content. In summary, these indirections significantly contribute
to the explanation of why accessing BLOBs is not always
efficient.
Excessive BLOB writes. To ensure BLOB integrity, DBMSs
write every entry at least twice to the storage, both to the
database and log [11, 14, 10, 9, 24, 23, 15, 19]. This design
has two consequences. First, it increases the log size and thus
triggers WAL checkpointing more frequently, which slows
down the database operations [28, 29]. Second, it increases
write amplification excessively, reducing the longevity and
performance of the storage device if the DBMS runs on
top of an NVMe SSD [30, 31, 32]. When mounted with
data=journal option, the Ext4 file system behaves sim-
ilarly with the content of the new file also being written to the
journal [3, 5].
Unnecessary BLOB copies. All systems maintain at least two
copies of every BLOB, one in the database and one in the log.
SQLite is the worst in terms of storage consumption because
it includes whole BLOBs in WITHOUT-ROWID index, and
it also logs the BLOB content from both the database and
index [14]. In total, SQLite creates at least four copies per
BLOB if both WAL and WITHOUT-ROWID index are enabled.
BLOB indexing limitations. Amongst the surveyed systems,
only SQLite supports full BLOB indexing. However, SQLite
doubles the content of those objects, storing them in both
the main relation and the BLOB index (WITHOUT-ROWID
index [13]), and thus is not recommended if the object size
is huge [13]. PostgreSQL and MySQL/InnoDB only index
BLOB prefixes [22, 8], while SQL Server disallows indexing
BLOB data altogether [17, 18].
Summary. Table I summarizes the existing approaches and
contrasts them with our solution. We ensure BLOB durability
without writing it more than once. Additionally, our single-
layer BLOB storage format is lightweight, simplifying BLOB
operations. Finally, we support BLOB indexing like SQLite
but require no BLOB copy, saving storage consumption.



III. LARGE OBJECT LIFE-CYCLE

In this work, we assume that the DBMS runs on an NVMe
SSD with a buffer cache that supports fixed-size pages. In most
DBMSs, the page size is usually 4-64 KB. The buffer manager
heavily relies on page translation, which maps a page identifier
(PID) to an in-memory pointer that refers to the page content.
We refer to those in-memory pointers as buffer frames.

A. Extent Management

Existing approaches in DBMSs are ineffective. Current
DBMSs implement either an auxiliary index structure to
manage overflow pages or use a system relation to manage
BLOB chunks. Despite being simple, these approaches have
many limitations as described in Section II. This leads to an
intriguing question: what if we implement the extent tree in
DBMSs specifically for BLOB management?
Why extent tree? There are several reasons behind the extent
tree. First, file systems should be efficient even in obscure
scenarios, including the hole-punching operation that deletes
middle extents and reclaim their space. Second, file systems
use a best-effort approach to allocate new extents by seeking
the largest free space available. Altogether, file systems store
a file as an arbitrary number of extents of arbitrary size, which
requires the extent tree to manage them effectively.
Are those requirements avoidable in DBMSs? We believe
the answer is yes because typical applications either generate
static objects, store multiple versions of objects, or replace
object completely [19]. The operations in such scenarios –
create/replace, read, and delete – do not interact with middle
extents. Analogously, Amazon S3, a widely-used object stor-
age system, also restricts user interactions to entire BLOBs,
disallowing partial updates and removals [33].
Extent sequence. We suggest storing BLOBs as a flat list of
extents (an extent is a contiguous range of physical pages),
termed extent sequence. By enforcing exponential growth on
this list – ensuring subsequent extents are always larger than
previous ones – we can limit the size of this list while
supporting huge BLOBs. In other words, the list of extent
is small but still represent any arbitrarily sized BLOB.
Reducing BLOB metadata. The metadata necessary for
BLOBs comprises the extent offset (the PID of the head page)
and the extent size (number of pages). We propose replacing
the extent size metadata with a table, which determines the
extent size using the static extent position, thus halving the
size of BLOB metadata. We call this table extent tier.
Extent tier: Constraint & goals. A good tier table is crucial
to how the system manages large objects. That is, it affects
maximum BLOB size, simplicity and efficiency of BLOB
operations, amount of BLOB metadata, and storage utilization.
Existing formulas such as Power-of-Two and Fibonacci are not
suitable because of their high space consumption [34], i.e.,
50% wasted space for Power-of-two and 38.2% for Fibonacci,
hence a new formula is required.
Extent tier: Proposed formula. Instead, we propose a new
formula that utilizes storage more effectively. First, we logi-
cally split the tiers into multiple levels, and each level has the

same number of tiers, e.g., if the system has 10 levels and
each level comprises 10 tiers, then the number of tiers is 100.
Any tier after this has the same size as the largest tier. For
any arbitrary tier, given its level and its position within that
level (both counters start at 0), the size of that tier is:

(level + 1)no_tiers_per_level − position × (level + 2)position

With 10 tiers per level, the first two levels (20 tiers) are:

Level 0 1 2 4 8 16
32 64 128 256 512

Level 1 1k 1.5k 2.3k 3.5k 5.2k
7.8k 11.7k 17.5k 26.2k 39.4k

Assuming a 4KB page size, an extent sequence of 127
extents following this config can store a BLOB up to 10PB.
Balancing storage utilization and max size. This formula
improves the storage utilization compared to Power-of-Two
and Fibonacci. For instance, given a 4KB page size and five
tiers per level, the wasted space for a 20MB BLOB is 25%.
This number decreases as the BLOB size increases, dropping
to 7.3% when the BLOB is 51GB. However, an 127-extent
sequence only supports a BLOB up to 246GB with this setting.
Increasing tier count per level allows larger BLOBs with a
trade-off of lower storage utilization. With 30 tiers per level,
the first level already support a 4TB BLOB, and the storage
utilization of a BLOB fitting 120 extents is 20%, which is still
better than both Power-of-Two and Fibonacci.
Tail extent: Arbitrarily-sized extent. For static BLOBs, the
last extent may contain unused space, resulting in internal frag-
mentation. To prevent that, we allocate exactly one arbitrarily-
sized extent, termed tail extent, to replace the last extent. For
instance, in the example illustrated in Figure 1, the normal
strategy (Figure 1(a)) allocates three extents, and the last one
has one empty page. With tail extent, as Figure 1(b) depicts,
the DBMS allocates only two extents to store "Foo and Bar"
and stores the rest in three consecutive pages.

B. Blob State

Format. We bundle all BLOB metadata into a single structure
named Blob State. Every Blob State refers to only one BLOB.
Specifically, Blob State comprises the following properties.

• Size: Size of the referred BLOB.
• SHA-256: The computed SHA-256 of the BLOB, is used

for BLOB durability & indexing.
• SHA-256 intermediate digest: The 32-byte intermediate

SHA-256 hashed signature (i.e., before the last 512 bits
of the BLOB and padding), used for BLOB growth
operations.

P4 P11P10
Foo and Bar

P15
and extra Bar

P16 P17

(a) Normal Blob State Sz: 6 pages Extent PID:

P18

P4 P10 P15

(b) BS with Tail Extent Sz: 6 pages Extent PID: P4 P10 TE: P15, 3 Pages

Extent 1 Extent 2 Extent 3 in case (a)

Fig. 1. A BLOB of 6 pages and two possible Blob States



(a) Overflow pages + BLOB physical logging (b) Extent sequence + Blob state + Async BLOB logging
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Fig. 2. Traditional design in popular DBMSs (a) vs. our proposed approach (b)

• Prefix: First 32 bytes of the BLOB. We will explain the
usage and motivations behind Prefix and SHA-256 for
BLOB indexing in Section III-F.

• Tail Extent: A pair of a Page ID and the number of pages.
Will only be populated if the BLOB has a tail extent.

• Number of Extents: The number of extents (excluding
tail extent) used to store the content of the BLOB.

• An Array of Head Page PID: A dynamic array of Page
IDs, all of which refer to the head page (first page) of all
extents. By combining this array with the extent tier, the
system can determine the physical address of all extents.

Physical BLOB size. As explained earlier, with extent se-
quence and extent tier, a small number of extents can represent
a huge BLOB. Therefore, the flexible array of the head page
PID is not necessarily long, allowing the Blob State to be small
in size while still referencing an arbitrarily-sized BLOB. For
example, with the number of tiers per level is 8, a Blob State
of 801 bytes can refer to a BLOB of more than 16TB – the
maximum file size that Ext4 supports [4].
Example. Figure 1 illustrates a Blob State for a 6-page BLOB.
If the DBMS allocates the BLOB normally (Figure 1(a)), the
Blob State will contain three extents: P4, P[10..11], P[15..18].
If the BLOB contains a tail extent (Figure 1(b)), the Blob
State will only have two extents: P4 and P[10..11], and the
tail extent starts at P15, spanning three pages.
Where to store Blob State. The DBMS should physically
store the Blob State with the tuple for the BLOB column.
Consider a sample relation of an Integer primary key and a
BLOB column. Every row of this relation should store Blob
State for its associated BLOB column. All BLOB accesses
will first query this relation for the Blob State and then load
all the extents using the retrieved Blob State.

C. Durability

Redundant BLOB writes in conventional logging. Fig-
ure 2(a) depicts the BLOB allocation and logging approach
deployed in major DBMSs. In this approach, the DBMSs break
each BLOB into multiple chunks and store BLOB chunks on
random pages. After the allocation, all the BLOB parts are
copied to the WAL buffer, which is flushed to the non-volatile
storage later. All these BLOB chunks will also be written out
to storage later during the buffer eviction process. That means,
every BLOB is written to storage at least twice.

Asynchronous BLOB logging. Our approach neither appends
BLOB content to the WAL nor writes the BLOB during
buffer eviction. Instead, we write all BLOB chunks during the
transaction commit. Figure 2(b) shows our design. First, the
DBMS reserves the smallest extent sequence to store the new
BLOB, i.e., two extents for a three-page BLOB in the example.
After that, the system creates a Blob State, stores this Blob
State in the corresponding relation, and then appends it to the
WAL buffer. Upon transaction commit, the DBMS triggers
multiple asynchronous I/O requests to flush the WAL buffer
(which contains the Blob State) and the extent sequence. Note
that the DBMS only writes the dirty pages to storage, e.g.,
only P[15..17] of the 3rd extent in Figure 1.
BLOB Recoverability. To ensure recoverability, the DBMS
must guarantee that the Blob State is durable before writing
the extents. This is because if the BLOB is flushed before
the Blob State is durable and then the DBMS crashes, the
extents are lost and unusable, leaving unusable holes within
the DBMS. Therefore, we write and call fsync() to persist
the WAL buffer (which contains Blob State) before writing the
extents. When a crash happens between the two events, during
Analysis phase of the recovery process, we can use the SHA-
256 checksum to validate the BLOB content. If BLOB content
is faulty, the transaction committing that BLOB is considered
failed and added to the UNDO transaction list.
BLOB eviction. Conventional methods additionally write all
BLOBs during eviction because all pages storing BLOB
content are marked dirty after the allocation. In contrast,
we flush all BLOBs at transaction commit, thus all BLOB
extents2 are clean, eliminating the extra write. However, before
completing the flush, concurrent transactions may evict one
of the extents, causing the buffer pool to drop or replace
the corresponding frame(s) with other page(s). We prevent
that using an atomic prevent_evict flag per extent, set
to true post allocation and reset to false upon the extent
flush is complete. Buffer manager does not evict extents with
prevent_evict=true, avoiding undefined behaviors.

D. Operations
BLOB read. To load a BLOB, DBMS first looks up the BLOB
relation to obtain the Blob State. Using this Blob State, DBMS

2Our solution evicts/synchronizes BLOB accesses on extent granularity. We
will discuss more on this later in Section III-G.
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Fig. 3. Append new content to an existing BLOB

determines which extents are not in the buffer pool, assuming
these extents consist of N pages. Then, the DBMS allocates N
buffer frames for all those extents and reads the extents using
a single asynchronous IO system call.
BLOB deletion and extent reusability. The extent tier design
helps us reuse the deleted extents efficiently. Because tiers are
static, it is sufficient to manage a list of free extents per tier.
During BLOB removal, the start PID of all extents is added to
a temporary list. At transaction commit, the DBMS moves the
free extents from the temporary list to the free lists according
to the extent tier. Subsequent transactions can either pick a
free extent in these free lists or allocate a fresh one.
Growing a BLOB. In the example shown in Figure 3, we
append a four-page chunk (Bar and extra Bar) to a 2-page
BLOB. Because the last extent lacks space to store new
content, DBMS allocates more extents (one in the exam-
ple), and then memcpy() new data to the available space.
Afterward, the DBMS adds the two dirty extents to the to-
flush list but only writes the dirty pages (P11 and P[15..17]
in the example). Then, DBMS re-calculates the SHA-256
signature by resuming previous SHA calculation (based on
the stored intermediate SHA digest) with new appended data,
i.e., preceding BLOB data is not loaded into the buffer pool.
Finally, the DBMS updates the Blob State to reflect the latest
details of the BLOB. For a BLOB with a tail extent, the DBMS
can grow that object by cloning the tail into a new normal
extent and following a similar procedure.
Updating a BLOB. To update a BLOB, the DBMS determines
the extent(s) that should be modified. After that, for each
extent, DBMS either (1) creates a delta log which contains the
difference between the old and the new data, appends the log
record to the WAL buffer, and then in-place updates the extent,
or (2) allocates a clone extent of the same tier, then updates
this clone and the corresponding metadata in the Blob State.
These two schemes are better in different situations, i.e., in the
first scheme, new data is written twice, while the second writes
old data one more time. Evaluating the cost of both schemes
and selecting the better approach at runtime is straightforward.
Nevertheless, because most applications primarily interact with
entire BLOBs, we argue that writing data twice (either old or
new data) in this scenario is acceptable.

E. Interoperability With File Systems

External apps mainly use files. One limitation of storing
large objects in DBMSs is that such systems do not provide

file APIs, which is the primary method for external programs
to access BLOBs [35]. For example, computer vision libraries
such as Tesseract OCR [36, 37] or OpenCV [38] work with
image files instead of raw binary image data. One workaround
is to copy the BLOBs into the file systems, which may be
expensive and potentially hide the efficiency of our design. An-
other way is to rely on an IO wrapper over binary data similar
to [39], yet it incurs extra complexity on external programs.
Such a wrapper is also not ubiquitous across programming
languages and thus can not be deployed everywhere.
Filesystem in Userspace. One solution is to integrate with
Filesystem in Userspace (FUSE) [40, 41] to provide the file
system interface with DBMSs. FUSE is the most popular
framework in Unix OS that allows non-privileged users to
implement their file system in user space [41] without neces-
sitating kernel code modifications. By integrating with FUSE,
we can facilitate seamless interoperability between the DBMS
and file systems, and applications can access their BLOBs in
DBMSs without modifying the source code.
Relation as a directory. Consider a scenario where users
want to store images within the DBMS, and now they want
to expose those images as read-only files. All the images can
be managed within the following relation:

CREATE TABLE image (
filename VARCHAR PRIMARY KEY, content BLOB)

With FUSE, assuming the mount point of the sample
DBMS is /foo/bar, users can access all images in
/foo/bar/image directory. At the same time, users can
also store BLOBs in other relations which appear in dif-
ferent directories. For example, documents can be stored in
document relation, and users can interact with those BLOBs
as files in /foo/bar/document directory.

1 int FUSE_open(char *path) { // open() system call
2 db->StartTransaction();
3 return 0;
4 }
5 int FUSE_flush(char *path) { // close() system call
6 db->CommitTransaction();
7 return 0;
8 }
9 // pread() system call

10 int FUSE_read(char *path, u8 *buf, u64 size, i64
offset) {

11 // 1. Check whether file exists or not
12 auto &[relation, filename] =

ExtractRelationAndFileName(path);
13 BlobState state = db->LookUp(relation, filename);
14 if (state == nullptr) { return -ENOENT; }
15 // 2. Path exists, read the BLOB
16 assert(state->size > offset);
17 size = std::min(size, state->size - offset);
18 db->ReadBlob(state, [&](std::span<u8> blob) {
19 std::memcpy(buf, blob.data() + offset, size);
20 });
21 return size;
22 }

Listing 1: FUSE integration: Pseudo code for read operation



Expose BLOBs as read-only files. Listing 1 shows how to
implement read operation in FUSE integration. To ensure
subsequent reads on the same BLOB are consistent, we wrap
all read inside a transaction. This is achieved by implement-
ing open and flush FUSE operations (which are triggered
by open() and close() system calls, respectively) to start
and commit a transaction (lines 1 to 8). For read operation,
the DBMS first looks up the relation (e.g., table image) to
check if the file exists (lines 12 to 14). If the file exists, we use
the Blob State to load the BLOB content and copy that to the
user buffer (lines 17 to 20). Other read-only operations such
as getattr are implemented similarly to read, i.e., a point
query to obtain the Blob State to satisfy those operations.

F. Indexing

Problems of current approaches. Popular DBMSs either
index only BLOB prefixes that misses many records, or store
full BLOBs in all tree nodes of secondary indexes including
inner nodes, increasing tree height significantly and reducing
performance. One solution is to use TOAST storage [6] and
index the BLOB IDs based on their content. However, this
requires tight coordination between relation APIs (e.g., tree
scan) and indexing, which is hard to implement correctly.
Blob State index. Instead, by implementing a comparator for
Blob State, index structures can store the Blob States in sorted
order according to their BLOB content. This mirrors the above
approach proposed for TOAST, which uses BLOB IDs as the
indexed key. The difference is that the Blob State index avoids
working with other relations, and it also accesses BLOB data
directly, thus being cheaper and less complicated. Note that
the indexing structure is untouched, and DBMSs can use any
data structure like B-Tree or ART [42].
SHA-256 and BLOB prefix. For point queries, comparing
entire BLOBs per every comparison is inherently expensive.
Instead, we suggest using SHA-256 for more efficient BLOB
equality checks3. Analogously, for range queries, a complete
BLOB comparison may be unnecessary. A cheaper option is
to store the BLOB prefix inside the Blob State, allowing the
comparator to skip BLOB dereferencing in some situations.
Incremental comparator for Blob State. Because the com-
parator will be extensively used during the index operations,
comparing the full BLOB content of two Blob States in a
comparator is costly and possibly unnecessary. Instead, we
propose to compare Blob States incrementally. Assuming
that the two Blob States do not contain a tail extent. For
point queries, the comparator evaluates the SHA-256 values
embedded in the two Blob States and returns the result. Range
queries involve additional steps: after the equality check, we
use the embedded prefix for a cheap range check. If the two
BLOBs have the same prefix, then we compare all the extents
of the two BLOBs incrementally. Finally, if those extents are

3We acknowledge that SHA-256 may not be theoretically foolproof for
equality checks. However, the fundamental reliance of Bitcoin on SHA-256
to resist collision attacks [43, 44] implies its practical suitability for critical
applications, including DBMSs, in ensuring reliable uniqueness checks.

identical, then one of the two BLOBs is the prefix of the other,
so we compare the size of the two objects and return the result.
Semantic index for BLOB. There are situations where in-
dexing the semantic meaning of BLOBs is more appropriate
than the raw binary data. One way to implement that is
to support index based on a function or scalar expression
computed from the BLOB attribute of the relation, similar
to Expression Index in PostgreSQL [45]. With Blob Tuple,
the DBMS can dynamically compute the derived data for the
Blob Tuple comparator during query execution. Below is one
example regarding how users interact with the semantic index:

CREATE UDF classify(blob) -> TEXT;
CREATE INDEX foo image(classify(content));
SELECT * FROM image WHERE classify(content)=’cat’;

In this example, the Blob Tuples are sorted according to
the classify() UDF. During SELECT, the DBMS scans
through all Blob Tuples classified as cat and returns those data
records to the user.

G. Extent Synchronization And Eviction

Synchronization: Coarse-grained vs. fine-grained. To ac-
cess/evict an extent from the buffer pool, we can either
use fine-grained synchronization (one latch per page) or use
coarse-grained latching (synchronize on the first page of the
extent). The former design is more complex and may introduce
overheads. For example, when N threads attempt to read the
same extent of N pages from storage, all workers contend for
N latches, each wins one and then calls pread() to fetch
one page. Contrarily, with coarse-grained latching, only one
worker will call pread(), allowing the remaining workers to
work on other tasks. Therefore, we opted for coarse-grained
latching for extent synchronization/eviction.
Fair extent eviction. In the coarse-grained extent synchroniza-
tion design, the eviction probability of an extent may be similar
to that of a normal page. However, we argue that an N-page
extent should have an eviction probability N times higher than
a single page. To do that, we adjust the eviction probability
of every page and extent according to its size:

if (rand(MAX_EXT_SIZE) ≤ extent_size[pid]) Evict();

H. Discussion

Tail extent vs. Extent tier formula. Tail extent completely
resolves the storage utilization issue compared to the tier
formula, but it slows down BLOB growth operations. That
is, appending new data to a BLOB with a tail extent is
more expensive than that for a normal BLOB because of the
extent clone operation, which includes one extent allocation
and memcpy() data from the tail extent to the new extent.
Generally, the tail extent should be used if the workloads do
not involve growth operations. We summarize the differences
in the table below:

internal frag. growth op.
tail extent minimal slow

extent tier formula low fast



Concurrency control for BLOBs. The primary focus of this
work is orthogonal to BLOB concurrency control. However,
let us mention one possible design: to use a Single-Version
Concurrency Control protocol such as 2PL [46], OCC [47],
or Silo [48] on the Blob State relation. For example, with
2PL, when transaction A wants to update a BLOB, it acquires
an exclusive lock on the record that contains the required Blob
State and then modifies the BLOB content. Now, transaction
B concurrently accesses the same Blob State and then finds
out that the required tuple is locked by transaction A. Conse-
quently, transaction B aborts or waits according to any conflict
resolution scheme [49, 50, 51, 52, 53, 54].

IV. VIRTUAL-MEMORY ASSISTED OPERATIONS

As Section II discussed, popular DBMSs implement com-
plex and inefficient mechanisms to store large objects, primar-
ily due to their reliance on buffer management designs that
only support fixed-size pages. Recent work on buffer manage-
ment relies on virtual memory to implement a buffer man-
ager that allows variable-sized pages. The proposed methods,
vmcache and exmap [55], simplify the implementation and
enhance the performance of BLOB operations compared to
the previous buffer pool designs. This section details how our
design benefits from these new buffer management techniques.

A. Virtual-Memory Assisted Buffer Manager

Problems of fixed-size pages. With fixed-size pages, DBMSs
arrange extents and pages as arbitrary disjointed buffer frames,
i.e., most BLOBs are not represented as contiguous memory.
As a result, either external libraries must work explicitly with
BLOB chunks, e.g., for regex search, external libraries apply
regex matching on every BLOB chunk, or the DBMS must
allocate a big memory chunk and then memcpy() BLOB
content to this memory block before processing, consuming
memory bandwidth extensively.
vmcache. A recent work, vmcache [55], exploits the virtual
memory to implement a simple yet effective buffer manager.
This technique helps manage BLOBs for two reasons. First,
vmcache presents an extent as contiguous memory and needs
only one page translation per extent to retrieve the buffer
frame(s). Contrarily, previous buffer pool designs (e.g., hash
table or pointer swizzling [56, 57, 58]) trigger exactly N
page translations for the same task. Second, assuming we
can adjust the mapping of virtual to physical memory in user
space during runtime, vmcache can present a list of disjointed
memory blocks (i.e., extent sequences) as contiguous memory.
Virtual memory remapping. One potential method that
allows virtual memory remapping is Rewired User-space
Memory Access (RUMA) [59]. However, RUMA slows vm-
cache down significantly in out-of-memory workloads due to
its memory management method4. Instead, based on exmap
which provides performant and scalable page table manipu-
lation primitives [55], we propose virtual memory aliasing,

4RUMA uses an in-memory file and SHARED mmap() to manage OS page
table. In this design, page eviction requires fallocate(PUNCH_HOLE) to
free the physical memory of the memory file, which is very slow.
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a technique that copies the physical addresses of an extent
sequence and maps that to a free virtual memory space,
presenting disjointed extents as contiguous memory.

B. Virtual Memory Aliasing

Operations. We depict virtual memory aliasing in Figure 4.
First, when a transaction reads a BLOB of multiple disjointed
extents, it retrieves the Blob State and loads all the extents into
the buffer manager. After that, the transaction requests a free
contiguous range of virtual addresses (termed aliasing area),
and then calls memory aliasing operation on this aliasing
area. Consequently, exmap updates the page table to map the
physical addresses of the aliasing area to that of all the extents.
Finally, users access the aliasing area which depicts the BLOB
content as a single contiguous memory block.
Aliasing area: Constraints. It is reasonable to bound the
required number of virtual addresses. Because the largest
object is limited by the maximum buffer pool size, the aliasing
area is unnecessary to be bigger than that. One may wonder
whether to use N separated aliasing areas for N workers so
concurrent workers do not need to synchronize. However, this
approach consumes an excessive number of virtual addresses,
i.e., ten workers with a database size of 160GB requires
approximately 420M virtual addresses.
Aliasing area: Proposed design. The following figure illus-
trates the design of the aliasing area:

N logical blocks1. Small BLOB Worker-local
aliasing area

2. BLOB  worker_local_size
Shared aliasing area

1st 2nd 3rd .... N-th

Same size with buffer pool

Workers

Every worker has one exclusive worker-local aliasing area.
In the first case, when BLOBs are smaller than size of
the worker-local area (worker_local_size), the worker
uses its local area without contention with other workers.
Otherwise (case 2), the worker requests free contiguous virtual
addresses from a shared pool (shared aliasing area). The
shared pool is split into N logical blocks, with each block is
similar in size to the worker-local area. During reservation, the
worker exclusively uses a range of contiguous logical blocks
sufficiently large to alias the BLOB. The DBMS uses a range
lock to synchronize concurrent accesses to the shared area.



Lightweight synchronization on shared area. An intriguing
finding is that, with an appropriate worker-local size, we can
limit the number of logical blocks to a small amount while also
capping the number of virtual memory addresses. Assuming
the buffer pool is 160GB, i.e., shared area is also 160GB. If
the worker count is 10 and the size of a worker-local area is
1GB, then the number of logical blocks is 160 and the total
size of the aliasing areas is 170GB, which is only 6.25% bigger
than the buffer manager. And because the number of blocks
is small, we can use a simple range lock using a bitmap and
compare-and-swap, i.e., in the above example, the bitmap only
has 160 bits which corresponds to 3 uint64_t.
Overhead: TLB shootdown. One issue is that the worker
must invalidate the mapping between the virtual addresses of
the aliasing area and the physical memory pages. This involves
clearing the corresponding page table entries and invalidating
the TLB cache (i.e., TLB shootdown), which interrupts all
CPU cores and clears the TLB of all CPUs. Although the
overheads can be nonnegligible [60, 55], we argue that mem-
ory aliasing substantially simplifies BLOB operations and is
cheaper than the malloc() and memcpy() combination.
We will explain this later in Section V-E.
Size of worker-local area. The worker-local area needs not
to be big because the BLOB size constraint is small in
practice [61, 62, 63]. With a proper configuration like 1 GB,
the shared area will be rarely used. Even if the worker uses
the shared aliasing area, i.e., BLOB is bigger than the local
area, the contention on the shared area is insignificant to other
operations. Further elaboration on this will be provided in
Section V-F.

V. EVALUATION

In this section, we empirically show that our approach
depicts superior performance to file systems in BLOB man-
agement – although we disable fsync() for all competitor
DBMSs and file systems – while still offering qualitative
benefits like transactional semantics and durability.

A. Experiment Setup

Implementation. We integrate our proposed techniques, de-
noted as Our, into LeanStore [57], an open source storage
engine. In this version of LeanStore, we implement vmcache
and exmap [55] as the buffer manager. The default size of
the buffer pool is 32GB. Our implementation uses distributed
per-thread write-ahead logging with page-level dependency
tracking [28, 64], combined with group commit [65, 66].
Hardware & OS. We ran all experiments on a single-socket
machine with an Intel Core i7-13700K (16 cores, 32 hardware
threads), 64GB DRAM, and a Samsung SSD 980 Pro M.2 as
the storage. For OS, we use Linux 6.2 with exmap installed.
Competitors: DBMSs. We compare our implementation
against three popular DBMSs: PostgreSQL [67], MySQL/Inn-
oDB [68], and SQLite [69]. We do not evaluate DuckDB [70]
because there exists a comparison between SQLite and
DuckDB in BLOB workloads [2], and also because DuckDB
was not designed for managing large objects.

DBMS config. For PostgreSQL and MySQL, we configure to
connect to the server using a Unix socket. We use a 32GB
buffer pool for MySQL and SQLite, and a 16GB shared
buffer for PostgreSQL as recommended [71]. Since this work
focuses on BLOB buffer and storage management which is
orthogonal from transactional aspects, we run all DBMSs
in the lowest transactional isolation level offered. To ensure
fair comparisons with file systems, we disable both BLOB
compression and fsync() for all competitor DBMSs.
Competitors: File systems. We also evaluate our design
with four file systems: Ext4 [3], XFS [72], BtrFS [73], and
F2FS [74]. For the Ext4 file system, we mount it with
two options: data=journal and data=ordered, and
we refer to them as Ext4.journal and Ext4.ordered,
respectively. With Ext4.journal, data is also written to
the journal. On the other hand, Ext4.ordered only writes
file metadata to the journal and only does so after the data is
flushed to the secondary storage.
File system config. We disable readahead because it is or-
thogonal to the core operation. As stated earlier, we do not
use fsync() for all file system benchmarks because it would
become the dominant overhead in every file system benchmark
if it was enabled. Moreover, our implementation uses group
commit so the critical path usually does not involve I/O.

B. Evaluation of BLOB Logging

Experiment information. We evaluate our logging scheme
using synthetic YCSB workloads with different payload sizes.
Specifically, we use five configurations: 120 bytes, 100KB,
10MB, one workload with a random size between 4KB and
10MB, and 1GB. The working dataset of all experiments fits in
memory. We run the following experiments in single-threaded
mode with a read ratio of 50%. We use a simple memcpy()
as the BLOB read operator. BtrFS is not shown because its
performance is almost identical to Ext4 ordered.
Baselines. We implemented two baselines: Our.ht and
Our.physlog. Our.ht uses a traditional hash table buffer
pool instead of vmcache+exmap, thus not benefit from vir-
tual memory aliasing. Our.physlog employs all techniques
except async BLOB logging. Instead, it appends every large
object to the write-ahead log. To accommodate BLOBs larger
than the WAL buffer, we split every BLOB into small segments
and append these segments to the WAL buffer.
120B payload. First, we evaluate all systems with normal
YCSB and show the result in Figure 5. All file systems
and SQLite provide higher throughput than PostgreSQL and
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Fig. 5. YCSB benchmark with normal payload size (120B)
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Fig. 6. YCSB benchmark with BLOB payload. fsync() is turned off for all systems except Our, Our.ht, and Our.physlog

MySQL because these systems only operate in main-memory.
In contrast, PostgreSQL and MySQL incur additional commu-
nication and (de)serialization overheads. Our DBMS provides
at least 3.5× higher throughput compared to other systems.
100KB payload. As Figure 6(a) shows, MySQL and Post-
greSQL provide poor throughput, also because of the net-
work and serialization overheads of these DBMSs. All file
systems have comparable throughput (including BtrFS), ex-
cept Ext4.journal. Ext4 journal exhibits bad performance
because includes I/O in the execution time while other file
systems do not, and it also triggers journaling operations
more excessively. One notable observation is that SQLite is
faster Ext4.journal, i.e., it does not trigger I/O during
transaction execution. All file systems are slower than Our and
Our.ht because of system call overheads. Our.physlog
is 11% slower than the Our because of the WAL operations.
10MB payload: All systems vs. Our. Figure 6(a) shows
that PostgreSQL and MySQL still depict bad performance.
For file systems, Ext4.journal remains the slowest due
to the journaling. SQLite is slower than Ext4.journal
in this experiment because it triggers WAL checkpointing
aggressively (2.5 checkpoints per BLOB write [2]). Other
file systems provide comparable throughput, all are at least
13% slower than Our because of one extra memory copy
call. That is, file systems cause two memory copy, i.e., one
from pread() system call and another from the BLOB read
operator in the application. Contrarily, only one memory copy
is required in Our because it replaces pread() with the
lightweight virtual memory aliasing.
10MB payload: Our.physlog vs. Our. Our.physlog is
slower than Our, provides 30% less throughput, mainly
because the hot path includes time waiting for the group
committer to flush the BLOBs. That is, because the BLOB
size is as big as the configured WAL buffer, transactions
must spend considerable time waiting for the group commit

to finish. By increasing the size of the WAL buffer (e.g., from
10 MB to 50 MB), this overhead becomes smaller, but the
overall throughput is still lower than that of Our.
Mixed 4KB-10MB payload. Popular DBMSs exhibit poor
performance in this experiment, as depicted in Figure 6(c).
Ext4.journal is the worst amongst all file systems, trail-
ing Ext4.ordered by 45%. Surprisingly, the performance
differences between Our and file systems are larger than in
previous experiments because of OS file size modification
overhead, which includes ftruncate() to resize files and
new buffer allocation in the page cache. On the other hand,
Our and Our.ht handle this workload without imposing
extra overhead. This also explains why Our.physlog is
faster than file systems in this experiment.
1GB payload. As illustrated in Figure 6(d), all enterprise
DBMSs perform poorly. Specifically, the PostgreSQL client li-
brary returns Statement parameter length overflow, and SQLite
gives BLOB too big error, leading to benchmark failure. Two
baselines and file systems perform similarly, and they show at
least 70% less throughput than Our. This experiment exhibits
the benefits of our proposal compared to existing techniques.
Hash table buffer pool vs. vmcache+exmap. In the ex-
periment shown in Figure 6, Our.ht surpasses all other
systems, showing the advantages of the proposed BLOB
designs. Still, Our.ht is not as performant as Our because
(1) vmcache+exmap is lightweight and more performant
than hash table [55] and (2) Our.ht does not benefit from
virtual memory aliasing. We will demonstrate the differences
further in Section V-E.

C. Evaluation of Metadata Operations

Description. In the experiment illustrated in Figure 7, we
compare the efficiency of metadata operations between our
approach and file systems. To do that, we either retrieve the
Blob State of 10 consecutive BLOBs or call fstat() on ten
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Fig. 7. Metadata operations in our approach vs. file systems

consecutive files in all file systems. We do not evaluate the
competitor DBMSs because they are not performant enough
as shown in previous experiments. The BLOB payload size in
this experiment is 100KB.
Result. As being shown, all file systems have similar perfor-
mance. Our DBMS provides 15.6× more throughput than all
file systems. This is because our approach maintains all BLOB
metadata in a B-Tree index that provides efficient lookup/scan
queries, while metadata operations of file systems are very
slow [1, 2], resulting in significant differences.

D. Evaluation of Proposed Extent Data Structure

Description. This experiment evaluates the proposed phys-
ical storage format using real read-only Wikipedia analytic
datasets. First, we collect English Wikipedia analytic data,
specifically the article size and their corresponding views,
and build a database based on this distribution. The total size
of all articles in this experiment is 23GB. During the initial
phase, we insert random data according to the article sizes.
In the benchmark phase, we pick a random article according
to the article views and execute a memcpy() to simulate the
article read. Similar to the previous experiment, we do not
evaluate the widely-used DBMSs (i.e., PostgreSQL, MySQL,
and SQLite). We run all benchmarks in two modes: when
all data resides in memory (hot cache) and when all data is
evicted. Because this is a read-only workload, the file system
journal is unlikely to affect system performance, and thus, we
do not evaluate Ext4 journal mode.
Hot cache experiment. In the experiment illustrated in Fig-
ure 8, we keep the page cache (or buffer manager) untouched
after loading initial data. This figure shows that our DBMS
outperforms all file systems by at least 40%. There are two
reasons. First, the overheads of fstat, open, and close
in file systems are significant, while our approach does not
suffer from that as Section V-B shows. Second, pread() in
file systems causes extra memory copy from kernel space to
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Fig. 9. BLOB Read evaluation (cold cache)

user space, while we use virtual memory aliasing which avoids
one memory copy operation.
Cold cache experiment. Figure 9 depicts the performance of
all systems when the page cache (or buffer pool) is empty. All
file systems perform similarly, and Ext4 shows the highest per-
formance among them. Our DBMS consistently outperforms
all file systems, at least 2.9× at the start of the benchmark.
This is because our proposed storage format is more simple
than that of file systems, as described earlier in Section III.
Therefore, our DBMS is better at utilizing the NVMe SSD
compared to file systems, i.e., the upper bound read I/O of
Ext4 is 59MB/s, while that of our DBMS is 174MB/s. And,
when the buffer cache gets full quicker, our DBMS can serve
more only-in-memory transactions, thus resulting in a 3.9×
difference in throughput at the end of this experiment.

E. Benefits of vmcache & exmap

Description. Our constantly outperforms Our.ht through-
out the experiments in Figure 6, proving the effectiveness
of vmcache+exmap for BLOB operations. This is mainly
because vmcache+exmap is better at read operations than
the traditional hash table buffer cache. In this experiment,
we further analyze the benefits of vmcache+exmap using a
read-only in-memory YCSB workload. Similar to the logging
experiment in Section V-B, we use a simple memcpy() as
the BLOB read operator.
Result. As Figure 10 illustrates, both Our and Our.ht
perform similarly for small BLOBs (100KB), and actually, the
hash table approach is slightly faster than vmcache+exmap.
This is because TLB flush is more expensive than malloc()
& memcpy() when BLOBs are small. However, with bigger
BLOBs, 1MB and 10MB, Our surpasses Our.ht signifi-
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cantly, up to 2.1× when the worker count is 16 and 10MB
BLOB. There are two reasons; the first is that the cost of
the memcpy() becomes considerable. Second, malloc()
creates an anonymous memory block to be filled later by the
memcpy(), causing page faults and allocation.
Key: memcpy() saturate memory hierarchy. Another obser-
vation is that the Our.ht can not scale to 16 workers when
the BLOB size is either 1MB or 10MB. For the first case, i.e.,
when the BLOB size is 1MB and 16 workers, the combined
size of the client-side buffer and the internal DBMS memory
block for the BLOB exceeds L3 cache capacity (30MB in our
machine), leading to contention at L3 cache. In the latter case,
the 16-workers variant not only contends for the L3 cache, but
it also saturates the available memory bandwidth because of
two memcpy() calls.

F. Shared-Area Synchronization Overhead

Description. To evaluate the synchronization overhead, we run
a YCSB read-only workload with 10MB BLOBs. We run the
benchmark with 16 workers, and the maximum buffer size
is 128GB. We use two worker-local sizes: 4MB and 16MB.
With the 4MB setting, the local area is smaller than a BLOB,
so transactions ask for free virtual addresses from the shared
aliasing area, which incurs contention overhead. For the 16MB
setting, because the worker-local area is bigger than the BLOB,
no synchronization overhead occurs.

TABLE II
OVERHEAD OF SHARED-AREA SYNCHRONIZATION

Use shared area
(wrk-local size) txn/s instruct. cycles

kernel
cycles

cache
misses

Yes (4MB) 3,453 1,311k 14M 714k 14k
No (16MB) 3,477 1,321k 14M 703k 14k

Result. Table II depicts that the two variants perform similarly.
All statistics such as the number of cycles, cache misses,
instructions, and kernel cycles are all almost analogous. As
a result, the throughput of both variants is similar. Therefore,
the extra overhead caused by the synchronization on the shared
area is trivial, while providing all necessary functionalities and
also limiting the number of virtual addresses.

G. Extent Reusability

Description. In this experiment, we evaluate the free extent
management design by constantly allocating and deleting
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Fig. 11. Performance at different storage utilization. All systems eventually
stop at full storage capacity. System performance is stable before the storage
utilization reaches 80%.

objects. Specifically, we perform two operators: (1) allocate
a BLOB of random size between 1MB and 10MB, and (2)
delete a random BLOB. The allocation ratio is 80%, and the
deletion ratio is 20%. Because allocation is 4× more frequent
than deletion, the storage capacity will increase with time
until the database/file system is full. We fix the database size
(partition size in the case of file systems) to 32GB. For Ext4,
the journal mode will reduce both the storage utilization and
the throughput, hence we do not evaluate Ext4.journal,
i.e., the Ext4 in this experiment is Ext4.ordered.
Result. As Figure 11 shows, almost all file systems except
F2FS drop in throughput when the storage nearly reaches
its limit. This is because those file systems use complicated
mechanisms to prevent fragmentation, which will not work
well when the storage is almost full. Our extent recycling de-
sign, on the other hand, is lightweight and effective at reusing
deallocated extents, thus can maintain system performance in
different storage utilization states. This also proves that our
design works reasonably well with mixed payload size, both
in terms of performance and storage utilization.

H. BLOB Indexing

Description. To evaluate the Blob State index, we compare
it with the 1K prefix index which presents the approach used
in MySQL and PostgreSQL. The indexed data is the English
Wikipedia [75], which contains many big articles. In this
dataset, 43 percentile of the article is larger than 767 bytes,
which is the indexing limit of MySQL [22]. For PostgreSQL
limit, i.e., 8191 bytes [8], it is 95 percentile.

TABLE III
STATISTICS OF TWO INDEXING VARIANTS

Variant
miss
(%)

build time
(ms)

size
(MB) # leaf

throughput
(lookup/s)

Blob State 0% 350 88 22k 443k
1K Prefix 17% 1,323 737 187k 438k

Result. As Table III shows, the Blob State index can store
all articles in the index, i.e., miss(%)=0, while the prefix
index can not serve 17% of all queries. This is because many
documents have the same prefix, and the prefix index can
only store one of them. Contrarily, the Blob State index can
differentiate the articles using their full content and hence can
index all articles. Furthermore, Blob State index creates signif-
icantly fewer leaf nodes (22k compared to 187k), resulting in
faster construction time and lower storage consumption (3.8×
and 8.4×, respectively). Besides, because we implement prefix
compression which is preferable to prefix index [76], both
indexes have the same tree height and thus provide similar
lookup performance.

I. Real Write-Intensive Workload: Git Clone

Description. We contrast our approach with file systems using
a simulated Git Clone benchmark. To do that, we collect the
filesystem-level traces of the following git command:

git clone --depth 1 git@github.com:torvalds/linux.git



We implement the simulated workload according to the traces
and run the workload in single-threaded mode. The size of the
experimental dataset is 1.28GB.

TABLE IV
GIT-CLONE BENCHMARK

System time (ms) instructions kernel cycles
Our 906 65k 9k
Ext4.ordered 1,834 256k 81k
Ext4.journal 2,330 311k 108k
BtrFS 1,688 194k 66k
F2FS 2,112 236k 97k
XFS 1,464 188k 56k

Result. As illustrated in Table IV, file systems fail behind
our DBMS significantly, largely because of the overheads of
metadata operations: fstat, close, and especially open.
Specifically, Ext4 ordered spends 36% of the execution time
on open for file creation. This number for fstat and
close are 4.8% and 1.6%, respectively. XFS performs the
best because it only spends 36.6% of the execution time
on system calls, the least compared to other file systems.
Our approach, however, mitigates this overhead, i.e., replacing
all three system calls with efficient B-Tree operations as
demonstrated in Section V-C.

VI. RELATED WORK

Ubiquitous BLOB storage: File systems. File systems have
always been one of the core research areas of computer
science, and they have adapted to manage objects of various
sizes, including large objects. One benefit regarding large
objects that file systems have over DBMSs is access simplicity
and efficiency. That is, file systems support direct access to
BLOB data, while DBMSs introduce additional overheads
during BLOB operations such as transactional processing,
logging, networking overhead, and many more.
Large object management in DBMSs. There is little work
on BLOB management in DBMSs, which partly explains the
prevalence of file systems. To our knowledge, there are only
two academic works on this topic, both conducted before
2010, and these works primarily focused on the performance
characteristics of DBMSs. In 2006, Sears et al. [19] argued
that file systems are better than DBMSs for large objects,
and provided some comparative BLOB benchmarks between
SQL Server and NTFS file system. Subsequently, in 2008,
another study delivered experimental results of different BLOB
workloads of several DBMSs, discussing the performance
bottlenecks of these systems [77]. SQLite is the only DBMS
optimized for BLOB operations, and its team even suggest that
SQLite can replace file systems for such tasks [78, 25]. Still,
as discussed throughout this paper, there are many opportuni-
ties for improvement in SQLite, an observation that aligns
with findings from numerous previous studies [79, 13, 2].
Nevertheless, with our proposed techniques, we challenge
the conventional wisdom and prove that DBMSs can provide
superior performance to file systems for BLOB management.
Networks. As Section V-B shows, networking is one primary
overhead of MySQL and PostgreSQL, partially explaining

why SQLite significantly outperforms the two client-server
DBMSs. Existing works on improving the DBMS network
stack fall into two categories: (1) avoid unnecessary compu-
tation in the network stack and (2) utilize modern hardware.
Some notable techniques for the first category include a new
data serialization method for large result sets [80], pushing
DBMS logic to the kernel space to mitigate the networking
overhead of DBMS proxy [81]. For the second category,
some studies focused on utilizing RDMA for remote data
accesses [82, 83, 84, 85] or leveraging NVMe over Fab-
rics [86, 87, 88]. One particular work that can placed in both
categories: Fent et al. [89] proposes to replace conventional
network protocols (e.g., TCP over Ethernet) with a novel
communication library that provides unified APIs for adaptive
selection of RDMA and Shared Memory. These techniques
can enhance BLOB access over the network, an area we will
explore in upcoming research.
DBMS-backed file systems. There is limited work on file
systems backed by DBMSs, with the Oracle Database Filesys-
tem [35] as a notable exception. Aligning with our approach,
Oracle DBFS utilizes the FUSE library to provide POSIX-
standard file system interfaces to connect to the DBMSs. It
differs from our approach in that Oracle DBFS essentially acts
as a translation layer from file APIs to DBMS interface (i.e.,
PL/SQL procedure calls), while our solution provides direct
data accesses identical to file systems.
Aging and fragmentation. All systems supporting variable-
sized objects suffer from the aging problem, i.e. performance
can decline with time in some workloads because of the
increasing fragmentation. For example, after the application
allocates lots of small BLOBs and deletes most of them, the
storage system may struggle to locate a suitable extent for a
huge BLOB allocation. We note that system aging is an active
research topic in file system community [90, 91, 92, 93, 94].
Despite that, file system aging is still not a solved prob-
lem [92, 93], and some recent works only tried to mitigate
it [92, 94]. We believe that, in principle, out-of-place write
policy can solve the aging problem. The core idea is to
decouple logical PID from the on-storage physical address.
Consequently, the DBMS can allocate every extent as new
and map those PIDs with the available physical addresses in
secondary storage. Because it is a significant topic, we plan
to investigate it in the future.

VII. SUMMARY

In this paper, we demonstrate that DBMSs can be more
efficient than file systems in handling BLOBs. To achieve this,
we introduce a comprehensive design for allocating and log-
ging large objects in DBMSs. Our performance study shows
that our proposed approach successfully outperforms many
popular file systems while ensuring transactional consistency
and durability for large objects. Moreover, FUSE integration
allows external apps to access BLOBs similarly to file systems,
paving the way toward a unified storage system for objects of
arbitrary size. Our implementation is open source and available
at https://github.com/leanstore/leanstore/tree/blob.

https://github.com/leanstore/leanstore/tree/blob
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