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ABSTRACT

Most database management systems cache pages from storage in a
main memory buffer pool. To do this, they either rely on a hash table
that translates page identifiers into pointers, or on pointer swizzling
which avoids this translation. In this work, we propose vmcache, a
buffer manager design that instead uses hardware-supported virtual
memory to translate page identifiers to virtual memory addresses.
In contrast to existing mmap-based approaches, the DBMS retains
control over page faulting and eviction. Our design is portable
across modern operating systems, supports arbitrary graph data,
enables variable-sized pages, and is easy to implement. One down-
side of relying on virtual memory is that with fast storage devices
the existing operating system primitives for manipulating the page
table can become a performance bottleneck. As a second contribu-
tion, we therefore propose exmap, which implements scalable page
table manipulation on Linux. Together, vmcache and exmap provide
flexible, efficient, and scalable buffer management on multi-core
CPUs and fast storage devices.
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1 INTRODUCTION

DBMS vs. OS. Database management systems (DBMS) and oper-
ating systems (OS) have always had an uneasy relationship. OSs
provide process isolation by virtualizing hardware access, whereas
DBMSs want full control over hardware for optimal efficiency. At
the same time, OSs offer services (e.g., caching pages from storage)
that are almost exactly what database systems require — but for
performance and semantic reasons, DBMSs often re-implement
this functionality. The mismatch between the services offered by
operating systems and the requirements of database systems was
raised four decades ago [40], and the situation has not improved
much since then.

OS-controlled caching. The big advantage the OS has over a
DBMS is that it runs in kernel mode and therefore has access to
privileged instructions. In particular, the OS has direct control over
the virtual memory page table, and can therefore do things user
space processes cannot. For example, using virtual memory and
the memory management unit (MMU) of the processor, the OS
implements transparent page caching and exposes this by map-
ping storage into virtual memory through the mmap system call.
With mmap, in-memory operations (cache hits) are fast, thanks to
the Translation Lookaside Buffer (TLB). Nevertheless, as Crotty
et al. [13] recently discussed, mmap is generally not a good fit for
database systems. Two major problems of mmap are that (1) the
DBMS loses control over page faulting and eviction, and that (2) the
virtual memory implementation in Linux is too slow for modern
NVMe SSDs [13]. The properties of mmap and alternative buffer
manager designs are summarized in Table 1.

DBMS-controlled caching. In order to have full control, most
DBMSs therefore avoid file-backed mmap, and implement explicit
buffer management in user space. Traditionally, this has been done
using a hash table that contains all pages that are currently in
cache [15]. Recent, more efficient buffer manager designs rely on
pointer swizzling [16, 23, 33]. Both approaches have downsides:
the former has non-trivial hash table translation overhead; and the
latter is more difficult to implement and does not support cycli-
cal page references (e.g., graph data). Rather than compromising
on either the performance or the functionality benefits of transla-
tion, this work proposes hardware-supported virtual memory as a
fundamental building block of buffer management.
Contribution 1: vimcache. The first contribution of this paper is
vmcache, a novel buffer pool design that relies on virtual memory,
but retains control over faulting and eviction within the DBMS,
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Table 1: Conceptual comparison of buffer manager designs

mmap tradi. pointer swiz. Umbra vmcache +exmap
[13] [15] [16, 23] [33] Sec.3  Sec.4

transl. page tbl. hash tbl. invasive
control 0Os DBMS DBMS

invasive page tbl. page tbl.
DBMS DBMS DBMS

var. size  easy hard hard med. () easy easy

graphs yes yes no no yes yes
implem. med. (**) easy hard hard easy easy
in-mem. fast slow fast fast fast fast
out-mem.  slow fast fast fast med. fast

(*) only powers of 2 [33]  (**) read-only easy, transactions hard [13]

unlike solutions based on file-backed mmap. The key idea is to map
the storage device into anonymous (rather than file-backed) vir-
tual memory and use the MADV_DONTNEED hint to explicitly control
eviction. This enables fast in-memory page accesses through TLB-
supported translations without handing control to the OS. Page-
table-based translation also allows vmcache to support arbitrary
graph data and variable-sized pages.

Contribution 2: exmap. While vmcache has excellent in-memory
performance, every page fault and eviction involves manipulating
the page table. Unfortunately, existing OS page table manipulation
primitives have scalability problems that become visible with high-
performance NVMe SSDs [13]. Therefore, as a second contribution,
we propose exmap, an OS extension for efficiently manipulating
virtual memory mappings. exmap is implemented as a Linux kernel
module and is an example of DBMS/OS co-design. By providing new
OS-level abstractions, we simplify and accelerate data-processing
systems. Overall, as Table 1 shows, combining exmap with vimcache
results in a design that is not only fast (in-memory and out-of-
memory) but also offers important functionality.

2 BACKGROUND: DATABASE PAGE CACHING

Buffer management. Most DBMSs cache fixed-size pages (usually
4-64KB) from secondary storage in a main memory pool. The basic
problem of such a cache is to efficiently translate a page identifier
(PID), which uniquely determines the physical location of each page
on secondary storage, into a pointer to the cached data content. In
the following, we describe known ways of doing that, including
the six designs shown in Table 1.

Hash table-based translation. Figure 1a illustrates the traditional
way [15] of implementing a buffer pool: a hash table indexes all
cached pages by their PID. A page is addressed using its PID, which
always involves a hash-table lookup. On a miss, the page is read
from secondary storage and added to the hash table. This approach
is simple and flexible. The hash table is the single source of truth
of the caching state, and pages can reference each other arbitrarily
through PIDs. The downside is suboptimal in-memory performance,
as even cache hits have to pay the hash table lookup cost. Also note
that there are two levels of translation: from PID to virtual memory
pointer (at the DBMS level), and from virtual memory pointer to
physical memory pointer (at the OS/MMU level).
Main-memory DBMS. One way to avoid the overhead of tradi-
tional buffer managers is to forego caching altogether and keep all
data in main memory. While pure in-memory database systems can

be very fast, in the past decade DRAM prices have almost stopped
decreasing [18]. Storage in the form of NVMe flash SSDs, on the
other hand, has become cheap (20 — 50x cheaper per byte than
DRAM [18]) and fast (>1 million random 4 KB reads per second
per SSD [4]). This makes pure in-memory systems economically
unattractive [29], and implies that modern storage engines should
combine DRAM and SSD. The challenge is supporting very large
data sets on NVMe SSDs with their high I/O throughput and making
cache hits almost as fast as in main-memory systems.

Pointer swizzling (invasive translation). An efficient technique
for implementing buffer managers is pointer swizzling. The tech-
nique has originally been proposed for object-oriented DBMSs [20],
but has recently been applied to several high-performance storage
engines [16, 23, 33]. As Figure 1b illustrates, the idea is to replace
the PID of a cached page with its virtual memory pointer within the
data structure. Page hits can therefore directly dereference a pointer
instead of having to translate it through a hash table first. One way
to think about this is that pointer swizzling gets rid of explicit hash
table-based translation by invasively modifying the data structure
itself. Pointer swizzling offers very good in-memory performance.
However, it requires adaptations for every buffer-managed data
structure, and its internal synchronization is quite intricate. E.g.,
to unswizzle a page, one needs to find and lock its parent, and
Storing a parent pointer on each node presents synchronization
challenges during node splits. Another downside is that pointer
swizzling-based systems generally do not support having more than
one incoming reference to any particular page. In other words, only
tree data structures are directly supported. Graph data, next point-
ers in B+tree leaf pages, and multiple incoming tuple references
(e.g., from secondary indexes) require inelegant and sometimes
inefficient workarounds.

Hardware-supported page translation. Traditional buffer man-
agers and pointer swizzling present an unsatisfactory and seem-
ingly inescapable tradeoff: either one pays the performance cost
of the hash table indirection, or one loses the ability to support
graph-like data. Instead of getting rid of the translation (as pointer
swizzling does), another way of achieving efficiency is to make
PID-to-pointer translation efficient through hardware support. All
modern operating systems use virtual memory and, together with
hardware support from the CPU, transparently translate virtual to
physical addresses. Page table entries are cached within the CPU,
in particular the TLB, which makes virtual memory translation fast.
Figure 1c shows how hardware-supported page translation can be
used for caching pages from secondary storage.

OS-driven caching with file-backed mmap. Unix offers the mmap
system call to access storage via virtual memory. After mapping a
file or device into virtual memory, a memory access will trigger a
page fault. The OS will then install that page in the page table, mak-
ing succeeding page accesses as fast as ordinary memory accesses.
Some systems therefore eschew implementing a buffer pool and in-
stead rely on the OS page cache by mmaping the database file/device.
While this approach makes cache hits very fast, it has major prob-
lems that were recently analyzed by Crotty et al. [13]: (1) Ensuring
transactional safety is difficult and potentially inefficient because
the DBMS loses control over eviction. (2) There is no interface for
asynchronous /O, and I/O stalls are unpredictable. (3) I/O error
handling is cumbersome. (4) OS-implemented page faulting and
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Figure 1: Buffer pool page translation schemes. Example with 6 pages on storage (P0-P5), 3 of which are cached (P1, P3, P5)

eviction is too slow to fully exploit modern NVMe storage devices.
The lack of control over eviction for file-backed mmap approaches
is a fundamental problem. Notably, it prevents the implementation
of ARIES-style transactions. ARIES uses in-place writes and pre-
vents the eviction of a dirty page before its corresponding log entry
is flushed - impossible with existing OS interfaces [13]. Without
explicit control over eviction, it is also impossible to implement
DBMS-optimized page replacement algorithms. Thus, one is at the
whim of whatever algorithm the OS currently in use implements,
which is unlikely to be optimized for DBMS workloads.

DBMS-driven, virtual-memory assisted caching. While OS-
managed caching using mmap may not be a good solution for most
DBMSs, the OS has one big advantage: instead of having to use
an explicit hash table for page translation, it can rely on hardware
support (the TLB) for page translation. This raises the following
question: Is it possible to exploit the virtual memory subsystem
without losing control over eviction and page fault handling? One
contribution of this paper is to answer this question affirmatively.
In Section 3, we describe how widely-supported OS features (anony-
mous memory and the MADV_DONTNEED hint) can be exploited to
implement hardware-supported page translation while retaining
full control over faulting and eviction within the DBMS.

Variable-sized pages. Besides making page translation fast, using
a page table also makes implementing multiple page sizes much
easier. Having dynamic page sizes is obviously very useful, e.g.,
for storing objects that are larger than one page [33]. Neverthe-
less, many buffer managers only support one particular page size
(e.g., 4KB) because multiple sizes lead to complex allocation and
fragmentation issues. In these systems, larger objects need to be
implemented by splitting them across pages, which complicates
and slows down the code accessing such objects. With control over
the page table, on the other hand, a larger (e.g., 12 KB) page can be
created by mapping multiple (e.g., 3) non-contiguous physical pages
to a contiguous virtual memory range. This is easy to implement
within the OS and no fragmentation occurs in main memory. One
system that allows multiple (albeit only power-of-two) page sizes
is Umbra [33]. It implements this by allocating multiple buffer pool-
sized virtual memory areas — one for each page size. To allocate a
page of a particular size, one can simply fault the memory from that
class. To free a page, the buffer manager uses the MADV_DONTNEED
OS hint. This approach gets rid of fragmentation from different

page sizes, but Umbra’s page translation is still based on pointer
swizzling rather than the page table. Umbra therefore inherits the
disadvantages of pointer swizzling (difficult implementation, no
graph data), while potentially encountering OS scalability issues.
Fast virtual memory manipulation. While OS-supported ap-
proaches offer very fast access to cached pages and enable variable-
sized pages, they unfortunately may suffer from performance prob-
lems. One problem is that each CPU core has its own TLB, which
can get out of sync with the page table!. When the page table
changes, the OS therefore generally has to interrupt all CPU cores
and force them to invalidate their TLB (“TLB shootdown”). Another
issue is that intra-kernel data structures can become the scalability
bottleneck on systems with many cores. Crotty et al. [13] observed
that because of these issues mmap can be slow in out-of-memory
workloads. For random reads from one SSD, they measured that
it achieves less than half the achievable I/O throughput. With se-
quential scans from ten SSDs, the gap between mmap and explicit
asynchronous I/O is roughly 20X. Any virtual memory-based ap-
proach (including our basic vimcache design) will run into these
kernel issues. Section 4 therefore describes a novel, specialized vir-
tual memory subsystem for Linux called exmap, which solves these
performance problems.

Persistent memory. In this work, we focus on block storage rather
than byte-addressable persistent memory, for which multiple spe-
cialized caching designs have been proposed [8, 21, 28, 41, 43].

3 VMCACHE: VIRTUAL-MEMORY ASSISTED
BUFFER MANAGEMENT

The POSIX system call mmap usually maps a file or storage device
into virtual memory, as is illustrated in Figure 1c. The advantage of
file-backed mmap is that, due to hardware support for page transla-
tion, accessing cached pages becomes as fast as ordinary memory
accesses. If the page translation is cached in the TLB and the data
happens to be in the L1 cache, an access can take as little as 1 ns.
The big downside is that the DBMS loses control over page fault-
ing and eviction. If the page is not cached but resides on storage,
dereferencing a pointer may suddenly take 10 ms because the OS

IThe page table, which is an in-memory data structure, itself is coherent across CPU
cores. However, a CPU core accessing memory caches virtual to physical pointer
translations in a per-core hardware cache called TLB. If the page table is changed, the
hardware does not automatically update or invalidate existing TLB entries.



will cause a page fault that is transparent to the DBMS. Thus, from
the point of view of the DBMS, eviction and page faulting are to-
tally unpredictable and can happen at any point in time. In this
section, we describe vimcache, a buffer manager design that - like
file-backed mmap — uses virtual memory to translate page identifiers
into pointers (see Figure 1c). However, unlike mmap, in vmcache the
DBMS retains control over page faults and eviction.

3.1 Page Table Manipulation

Setting up virtual memory. Like the file-backed mmap approach,
vmcache allocates a virtual memory area with (at least) the same
size as the backing storage. However, unlike with file-backed mmap
this allocation is not directly backed by storage. Such an “unbacked”
allocation is called anonymous and, confusingly, is done through
mmap as well, but using the MAP_ANONYMOUS flag:

int flags = MAP_ANONYMOUS |MAP_PRIVATE |MAP_NORESERVE;
int prot = PROT_READ | PROT_WRITE;
charx virtMem = mmap(@, vmSize, prot, flags, -1, 0);

Note that no file descriptor has been specified here (the fourth argu-
ment is -1). Storage is handled explicitly and could be a file (multiple
applications share one file system) or multiple block devices (in a
RAID setup). Moreover, the allocation will initially not be backed
by physical memory, which is important because storage capacity
is usually much larger than main memory.

Adding pages to the cache. To add a page to the cache, the buffer
manager explicitly reads it from storage to the corresponding posi-
tion in virtual memory. For example, we can use the pread system
call to explicitly read P3 as follows:

uint64_t offset = 3 % pageSize;
pread(fd, virtMem + offset, pageSize, offset);

Once pread completes, a physical memory page will be installed in
the page table and the data becomes visible to the DBMS process. In
contrast to mmap, which handles page misses transparently without
involving the DBMS, with the vincache approach the buffer man-
ager controls I/O. For example, we can use either the synchronous
pread system call or asynchronous I/O interfaces such as 1ibaio
or io_uring.

Removing pages from the cache. After mapping more and more
pages, the buffer pool will eventually run out of physical memory,
causing failing allocations or swapping. Before that happens, the
DBMS needs to start evicting pages, which on Linux can be done
as follows?:

| madvise(virtMem + offset, pageSize, MADV_DONTNEED);

This call will remove the physical page from the page table and
make its physical memory available for future allocations. If the
page is dirty (i.e., has been changed), it first needs to be written
back to storage, e.g., using pwrite:

| pwrite(fd, virtMem + offset, pageSize, offset);
With the primitives described above, the DBMS can control all

buffer management decisions: how to read pages, which pages to

20n Windows these primitives are available as VirtualAlloc(..., MEM_RESERVE,
...)and VirtualFree(..., MEM_RELEASE).

1 fix(uint64_t pid): // fix page exclusively

2 uint64_t ofs = pid * pageSize

3 while (true) // retry until success

4 PageState s = state[pid]

5 if (s.isEvicted())

6 if (state[pid].CAS(s, Locked))

7 pread(fd, virtMem+ofs, pageSize, ofs)
8 return virtMem+ofs // page miss

9 else if (s.isMarked() || s.isUnlocked())

10 if (state[pid].CAS(s, Locked))

11 return virtMem+ofs // page hit

2 unfix(uint64_t pid):
13 state[pid].setUnlocked()
Listing 1: Pseudo code for exclusive page access

evict?, whether and when to write back a page, and when to remove
a page from the page table.

3.2 Page States and Synchronization Basics

In terms of the buffer manager implementation, the most diffi-
cult aspect is synchronization, e.g., managing races to the same
page. Buffer managers must not only use scalable synchronization
internally, they should also provide efficient and scalable synchro-
nization primitives to the upper DBMS layers. After all, most data-
base data structures (e.g., relations, indexes) are stored on top of
cacheable pages.

Buffer pool state. In a traditional buffer manager (see Figure 1a),
the translation hash table is used as a single source of truth for
the caching state. Because all accesses go through the hash table,
synchronization is fairly straightforward (but usually not efficient).
Our approach, in contrast, needs an additional data structure for
synchronization because not all page accesses traverse the page ta-
ble* and because the page table cannot be directly manipulated from
user space. Therefore, we allocate a contiguous array with as many
page state entries as we have pages on storage at corresponding
positions, as the following figure illustrates:

[ Evicted [ Locked [ Evicted | Unlocked [ Evicted |
P P1 P2 P3 P4
foo bar

Page states. After startup, all pages are in the Evicted state. Page
access operations first check their state entry and proceed according
to the following state diagram:

( Evicted )-*~( Locked )
Fix unfix*ffix

\
candi-

( Marked )% (Unlocked)

evictT

3Strictly speaking, the OS could decide to evict vincache pages - but this does not affect
the correctness of our design. OS-triggered eviction can be prevented by disabling
swapping or by mlocking the virtual memory range.

“1f a page translation is cached in the TLB of a particular thread, the thread does not
have to consult the page table.



1 optimisticRead(uint64_t pid, Function fn):

2 while (true) // retry until success

3 PageState s = state[pid] // incl. version

4 if (s.isUnlocked())

5 // optimistic read:

6 fn(virtMem + (pid*pageSize))

7 if (state[pid] == s) // validate version
8 return // success

9 else if (s.isMarked())

10 // clear mark:

1 state[pid].CAS(s, Unlocked)

12 else if (s.isEvicted())

13 fix(pid); unfix(pid) // handle page miss

Listing 2: Pseudo code for optimistic read

Listing 1 shows pseudo code for the fix and unfix operations,
which provide exclusive page access. Suppose we have a page that
is currently in Evicted state (line 5 in the code). If a thread wants
to access that page, it calls fix, which will transition to the Locked
state using a compare-and-swap operation (line 6). The thread is
then responsible to read the page from storage and implicitly (via
pread) install it to the page table (line 7). After that, it can access
the page itself and finally unfix it, which causes a transition to the
Unlocked state (line 13). If another thread concurrently wants to
fix the same page, it waits until it is unlocked. This serializes page
misses and prevents the same page from being read multiple times.
The fourth state, Marked, helps to implement a clock replacement
strategy — though arbitrary other algorithms could be implemented
as well. Cached pages are selected for eviction by setting their state
to Marked. If the page is accessed, it transitions back to the Locked
state, which clears the mark (line 10). Otherwise, the page can be
evicted and eventually transitions to the Evicted state.

3.3 Advanced Synchronization

So far, we discussed how to lock pages exclusively. To enable scal-
able and efficient read operations, vmcache also provides shared
locks (multiple concurrent readers on the same page) and optimistic
(lock-free) reads.

Shared locks. To implement shared locks for read-only operations,
we count the number of concurrent readers within the page state. If
the page is not locked exclusively, read-only operations atomically
increment/decrement that counter [9] when fixing/unfixing the
page. Exclusive accesses have to wait until the counter is 0 before
acquiring the lock.

Optimistic reads. Both exclusive and shared locks write to shared
memory when acquiring or releasing the lock, which invalidates
cache entries in other CPU cores. For tree data structures such as
B-trees this results in suboptimal scalability, because the page states
of inner nodes are constantly invalidated. An elegant alternative to
locks are optimistic, lock-free page reads that validate whether the
read was correct. To do that, locks contain an update version that
is incremented whenever an exclusively locked page is unlocked [9,
25, 30]. We store this version counter together with the page state
within the same 64-bit value, ensuring that both are always changed

atomically. As the pseudo code in Listing 2 shows, an optimistic
reader retrieves the state and if it equals Unlocked (line 4 in the
code), it reads from the page (line 5). After that we retrieve the page
state again and make sure that the page is still not locked and that
the version has not changed (line 6). If this check fails, the operation
is restarted. Note that the version counter is incremented not just
when a page changes but also when it is evicted. This is crucial for
correctness and, for example, ensures that an optimistic read of a
marked page that is evicted before validation will fail. To prevent
starvation due to repeated restarts, it is also possible to fall back to
pessimistic lock-based operations (not shown in the code). Finally,
let us note that optimistic reads can be interleaved across multiple
pages, enabling lock coupling-like synchronization of complex data
structures like B-trees [24]. This approach has been shown to be
highly scalable and outperform lock-free data structures [42].
64-bit state entry. Overall, we use 64 bits for the page state,
of which 8 bits encode the Unlocked (0), LockedShared (1-252),
Locked (253), Marked (254), and Evicted (255) states. This leaves
us with 56 bits for the version counter — which are enough to never
overflow in practice. 64 bits are also a convenient size that allows
atomic operations such as compare-and-swap (CAS).

Memory reclamation and optimistic reads. In general, lock-
free data structures require special care when freeing memory [25,
27, 30]. Techniques such as epoch-based memory reclamation [30]
or hazard pointers [31] have been proposed to address this prob-
lem. All these techniques incur overhead and may cause additional
memory consumption due to unnecessarily long reclamation de-
lays. Interestingly, vimcache — despite supporting optimistic reads
- can sidestep these problems completely. Indeed, vmcache does
not prevent the eviction/reclamation of a page that is currently
read optimistically. However, this is not a problem because after
the page is removed from the page table using the MADV_DONTNEED
hint, it is replaced by the zero page. In that situation the optimistic
read will proceed loading 0s from the page without crashing, and
will detect that eviction occurred during the version check. (The
check fails because eviction first locks and then unlocks the page,
which increments the version.) Therefore, vimcache does not need
any additional memory reclamation scheme.

Parking lot. To avoid exclusive and shared locks from wasting
CPU cycles and ensure fairness under lock contention, one can use
the Parking Lot [9, 36] technique. The key idea is that if a thread
fails to acquire the lock (potentially after trying several times), it
can “park” itself, which will block the thread until it is woken up
by the thread holding the lock. Parking itself is implemented using
a fixed-size hash table storing standard OS-supported condition
variables [9]. Within the page state, we only need one additional bit
that indicates whether there are threads that are currently waiting
for that page lock to be released. The big advantage of parking lots
is very low space overhead per page, which is only 1 bit instead of
64 bytes for pthread (rw)locks [9].

3.4 Replacement Strategy

Clock implementation. In principle, arbitrary replacement strate-
gies can be implemented on top of vmcache. As mentioned earlier,
our current implementation uses the clock algorithm. Before the
buffer pool runs out of memory, we change the state of Unlocked
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Figure 2: vincache enables DBMS page sizes that are multiple
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pages to Marked. All page accesses, including optimistic reads, clear
the Marked state, ensuring that hot pages will not be evicted. To
implement clock, one needs to be able to iterate over all pages in
the buffer pool. One approach to do that would be to iterate over
the state array while ignoring evicted pages. However, this would
be quite expensive if the state array is very sparse (i.e., storage is
much larger than main memory). We implement a more robust
approach that stores all page identifiers that are currently cached
in a hash table. The size of the hash table is equal to the number
of pages in DRAM (rather than storage) and our page replacement
algorithm iterates over this much smaller data structure. We use a
fixed-size open addressing hash table, which makes iteration cache
efficient. Note that, in contrast to traditional buffer managers, this
hash table is not accessed during cache hits, but only during page
faults and eviction.

Batch eviction. For efficiency reasons, our implementation evicts
batches of 64 pages. To minimize exclusive locking and exploit
efficient bulk-I/O, eviction is done in five steps:

(1) get batch of marked candidates from hash table, lock dirty
pages in shared mode

(2) write dirty pages (using libaio)

(3) try to lock (upgrade) clean (dirty) page candidates

(4) remove locked pages from page table using madvise

(5) remove locked pages from eviction hash table, unlock them

After step 3, all pages must be locked exclusively to avoid race
conditions during eviction. For dirty pages, we already obtained

shared locks in step 1, which is why step 3 performs a lock upgrade.

Clean pages have not been locked, so step 3 tries to acquire the
exclusive lock directly. Both operations can fail because another
thread accessed the page, in which case eviction skips it (i.e., the
page stays in the pool). With the basic vmcache design, step 4 is
simply calling madvise once for every page. With exmap, we will
be able to exploit bulk removal of pages from the page table.

3.5 Page Sizes

Default page size. Most processors use 4 KB virtual memory pages
by default, and conveniently this granularity also works well with
flash SSDs. It therefore makes sense to set the default buffer pool
page size to 4KB as well. x86 (ARM) also supports 2 MB (1 MB)
pages, which might be a viable alternative in systems that primarily
read larger blocks. With vimmcache, OLTP systems should generally
use 4KB pages and for OLAP systems both 4 KB and 2 MB pages
are suitable.

Supporting larger pages. vmcache also makes it easy to support
any buffer pool page size that is a multiple of 4 KB. Figure 2 shows

an example where page P3 spans two physical pages. For data
structures implemented on top of the buffer manager this fact is
completely transparent, i.e., the memory appears to be contiguous.
Accesses to large pages only use the page state of the head page (P3
not P4 in the figure). The advantage of relying on virtual memory
to implement multiple page sizes is that it avoids main memory
fragmentation. Note that fragmentation is not simply moved from
user to kernel space, but the page table indirection allows the OS
to always deal with 4 KB pages rather than having to maintain
different allocation classes. As a consequence, as Figure 2 illustrates,
a contiguous virtual memory range will in general not be physically
contiguous.

Advantages of large pages. Although most DBMS rely on fixed-
size pages, supporting different page sizes has many advantages.
One case where variable-size pages simplify and accelerate the
DBMS is string processing. With variable-size pages one can, for
example, simply call external string processing libraries with a
pointer into the buffer pool. Without this feature, any string opera-
tion (comparison, LIKE, regexp search, etc.) needs to explicitly deal
with strings chunked across several pages. Because few existing
libraries support chunking, one would have to copy larger strings
into a contiguous memory before being able to use them. Another
case is compressed columnar storage where each column chunk has
the same number of tuples but a different size. In both cases it is in-
deed possible to split the data across multiple fixed-size pages (and
many systems have to do it due to a lack of variable-size support),
but it leads to complex code and/or slower performance. Finally, let
us mention that, in contrast to systems like Umbra [33], vmcache
supports arbitrary page sizes as long as they are a multiple of 4 KB.
This reduces memory waste for larger objects. Overall, we argue
that this feature can substantially simplify the implementation of
the DBMS and lead to better performance.

3.6 Discussion

State access. As mentioned earlier, every page access must retrieve
the page state — often causing a cache miss — before it can read the
page data itself. One may therefore wonder whether this is just as
inefficient as traditional hash table-based buffer managers. However,
these two approaches are very different from each other in terms
of their memory access patterns. In the hash table approach, the
page data pointer is retrieved from the hash table itself; i.e., there is
a data dependency between the two pointers and one usually pays
the price of two cache miss latencies. In our approach, in contrast,
both the page state pointer and data content pointer are known
upfront. As a consequence, the out-of-order execution of modern
CPUs will perform both accesses in parallel, hiding the additional
overhead of the state retrieval.

Memory consumption. vimcache comes with some DRAM over-
head in the form of page tables and the page state array: For config-
uring the virtual-memory mapping, vmcache requires 8.016 bytes
for each 4KB of storage to set up a 5-level page table. Besides this
cost, which is inherent to any mmap-like buffer manager, vmcache
requires additional 8 bytes for the page state: 8 bits for the exclu-
sive/shared lock and 56 bits for the optimistic-read version counter.
So in total, vimcache requires around 16 bytes of DRAM per 4 KB on
storage. Thus, for example, for 1 TB flash SSD, one needs 4 GB of
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Figure 3: Linux page (de)allocation performance

DRAM for the internal buffer manager state, which is a reasonable
ﬁth of SSD capacity. Economically speaking, as Flash is approxi-
mately 50X cheaper per byte than DRAM, the additional memory
costs % ~ 20 % of the flash price. While this is low enough in
most use cases, there are ways to reduce this cost: (1) Compress the
64-bit page state at the expense of optimistic reads (-56 bits) and
shared locking (-6 bits) down to two bits per storage page (evicted,
exclusive locked), leaving us with a total of 2.07 GB for a 1 TB flash
SSD (+10.11 % cost). (2) Place the page state within the buffered page
and keep the corresponding 8 bytes on the storage page unused,
leaving us with the unavoidable 2 GB of DRAM overhead. Thus,
the memory overhead is reasonable in terms of overall cost for the
system and could be reduced even further.

Address space. Existing 64-bit CPUs generally support at least 48-
bit virtual memory addresses. On Linux, half of that is reserved for
the kernel, and user-space virtual memory allocations are therefore
limited to 247 = 128 TB. Starting with Ice Lake, Intel processors
support 57-bit virtual memory addresses, enabling a user-space
address space size of 25 = 64 PB. Thus, the address space is large
enough for our approach, and will be so for the foreseeable future.

4 EXMAP: SCALABLE AND EFFICIENT
VIRTUAL MEMORY MANIPULATION

vmecache exploits hardware-supported virtual memory with ex-
plicit control over eviction while supporting flexible locking modes,
variable-sized pages, and arbitrary reference patterns (i.e., graphs).
This is achieved by relying on two widely-available OS primitives:
anonymous memory mappings and an explicit memory-release sys-
tem call. Although vmcache is a practical and useful design, with
some workloads it can run into OS kernel performance problems.
In this section, we describe a Linux kernel extension called exmap
that solves this weakness. We first motivate why the existing OS
implementation is not always sufficient, then provide a high-level
overview of the design, and finally describe implementation details.

4.1 Motivation

Why Change the OS? With vmcache, (de)allocating 4 KB pages
is as frequent as page misses and evict operations, i.e., the OS’
memory subsystem becomes part of the hot path in out-of-memory
workloads. Unfortunately, Linux’ implementation of page alloca-
tion and deallocation does not scale. As a consequence, workloads
that have a high page turn-over rate can become bottlenecked by
the OS’s virtual memory subsystems rather than the storage device.
To quantify the situation on Linux, we allocate pages on a single
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Figure 4: CPU time profile for Figure 3 with 128 threads

anonymous mapping by triggering a page fault and evict them
again with MADV_DONTNEED. As Figure 3 shows, vanilla Linux only
achieves 1.51M OP/s with 128 threads. Incidentally, a single modern
PCle 4.0 SSD can achieve 1.5M random 4KB reads per second [4]. In
other words, a 128-thread CPU would be completely busy manipu-
lating virtual memory for one SSD — not leaving any CPU cycles
for actual work.

Problem 1: TLB shootdowns. To investigate this poor scal-
ability, we used the perf profiling tool and show a flame
graph [17] in Figure 4. Linux spends 79% of all CPU time in the
flush_tlb_mm_range function. It implements TLB shootdowns,
which are an explicit coherency measure that prevents outdated
TLB entries, which otherwise could lead to data inconsistencies or
security problems. On changing the page table, the OS sends an
interprocessor interrupt (IPI) to all other (N-1) cores running appli-
cation threads, which then clear their TLB. This is fundamentally
unscalable as it requires N-1 IPIs for every evicted page.

Problem 2: Page allocation. After shootdowns, the next major
performance problem in Linux is the intra-kernel page allocator
(free pages and alloc page in the flame graph). The Linux page
allocator relies on a centralized, unscalable data structure and, for
security reasons, has to zero out each page after eviction. Therefore,
once the larger TLB shootdown bottleneck is solved, workloads
with high page turn-over rates will be bound by the page allocator.
Why a New Page Table Manipulation API? The two perfor-
mance problems described above cannot be solved by some low-
level changes within Linux, but are fundamentally caused by the
existing decades-old virtual memory API and semantics: The TLB
shootdowns are unavoidable with a synchronous page-at-a-time
API, and page allocation is slowed down by the fact that physi-
cal memory pages can be shared between different user processes.
Achieving efficient and scalable page table manipulation therefore
requires a different virtual memory API and modified semantics.

4.2 Design Principles

exmap. exmap is a specialized Linux kernel extension that enables
fast and scalable page table manipulation through a new API and
efficient kernel-level implementation. We co-designed exmap for
use with vmcache, but as we discuss in Section 4.5, it could also
be used to accelerate other applications. exmap comes as a Linux
kernel module that the user can load into any recent Linux kernel
without rebooting. Like the POSIX interface, exmap provides prim-
itives for setting up virtual memory, allocating, and freeing pages.
However, as outlined below, exmap has new semantics to eliminate
the bottlenecks provoked by the POSIX interface.
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Figure 5: exmap implementation overview: The VM Surface
(A) is manipulated with explicit free, alloc, read, or write
system calls. Each per-thread control interface (B) owns part
of the exmap-local memory pool, which exists as interface-
local free lists of physical pages (C). If an interface runs out
of pages (1), it steals pages from another interface (2). Pages
only circulate (X) between the surface and the interface.

Solving TLB shootdown problem. An effective way of reducing
the number of TLB shootdowns is to batch multiple page evictions
and thereby reduce the number of shootdowns by the batch size. To
achieve this, exmap provides a batching interface to free multiple
pages with a single system call. While batching is easy to exploit
for a buffer manager when evicting pages, it can be problematic to
batch page allocations because these are often latency critical. To
avoid TLB shootdowns on allocation, exmap therefore ensures that
allocation does not require shootdowns at all. To do this, exmap
always read-protects the page table entry of a freed page (by setting
a specific bit in the page table entry). Linux, in contrast, sets that
entry to a write but not read-protected zero page — potentially
causing invalid TLB entries that have to be explicitly invalidated on
allocation. This subtle change eliminates the need for shootdowns
on allocation completely.

Solving the page allocation problem. Another important differ-
ence between Linux and exmap is the page allocation mechanism.
In Linux, when a page is freed, it is returned to a system-wide
pool (and thereby potentially to other processes). This has two
drawbacks: (1) page allocation does not scale well and (2) pages are
repeatedly zeroed out for security reasons. exmap, in contrast, pre-
allocates physical memory at creation and keeps them in scalable
thread-local memory pools - thereby avoiding both bottlenecks.

4.3 Overview and Usage

Implementation overview. Figure 5 illustrates the three major
components of an exmap object: (A) its surface within the virtual
memory (VM); (B) a number of control interfaces to interact with
the object; and (C) a private memory pool of physical DRAM pages,
which exists as interface-local free lists spread over all interfaces.

Creation. On creation (lines 4-8 in Listing 3), the user configures
these components: She specifies the number of interfaces that the
kernel should allocate (line 5). Usually, each thread should use its
own interface (e.g., thread id = interface id) to maximize scalability.
The user also specifies the number of memory pool pages (line 6),
which exmap will drain from Linux’ page allocator for the lifetime
of the exmap object. As the third parameter, the user can specify a
file descriptor as backing storage for read operations (line 7).

1 // Open device/file as backing storage

2 int fd = open("/dev/...", O_RWDR|O_DIRECT);
3 // Create a new exmap object

4+ struct exmap_setup_params params = {

5 .max_interfaces = 8, // # of control interfaces
6 .pool_size = 262144, // # of pages in pool (1 GB)
7 .backing_fd = fd}; // storage device

s int exmap_fd = exmap_create(&params);

o // Make the exmap visible in the VM

10 Pagex pages = (Pagex)mmap(vmSize, exmap_fd, ...);

1 // Allocate and evict memory using interface 5

12 exmap_interface_t iface = 5;

13 // Scattered I/0 Vector: P1, P3-P5

14 struct iovec vec[] = {

15 { .iov_base = &pages[1], .iov_len = pageSize },

16 { .iov_base = &pages[3], .iov_len = pageSize * 3}};

17 exmap_action(exmap_fd, iface, EXMAP_ALLOC, &vec, 2);

18 exmap_action(exmap_fd, iface, EXMAP_FREE, &vec, 2);

19 // Read pages from fd into the exmap

20 // Use exmap_fd as a proxy file descriptor.

21 pread(exmap_fd, &pages[13], pageSize, iface); // P13

22 preadv(exmap_fd, &vec, 2, iface); // P1, P3-P5

23 // Write-Backs are explicit and without proxy fd

24 pwrite(fd, &pages[7], pageSize, 7 * pageSize); // P7
Listing 3: exmap usage example

Operations. After creation, the process makes the exmap sur-
face visible within its VM via mmap (line 10). While an exmap can
have an arbitrary VM extent, it can be mapped exactly once in the
whole system. On the mapped surface, we allow the vectorized
and scattered allocation of pages on the exmap surface (line 11 and
Figure 5 (X)). For this, one specifies a vector of page ranges within
the mapped surface and issues an EXMAP_ALLOC command at an
explicitly-addressed interface. The required physical pages are first
drawn from the specified interface (Figure 5 (1)), before we steal
memory from other interfaces (Figure 5 (2)). Once allocated, pages
are never swapped out and, therefore, accesses will never lead to
a page fault, providing deterministic access times. With the free
operation (line 18), we free the page ranges and release the removed
physical pages to the specified interface.

Read I/0. In contrast to file-backed mmap, we do not page in or
write back data transparently, but the user (e.g., vimcache) explic-
itly invokes read and write operations on the surface. To speed up
these operations, we integrated exmap with the regular Linux I/O
subsystem, whereby an exmap file descriptor becomes a proxy for
the specified backing device (lines 19-22). This allows combining
page allocation and read operations in a single system call: On
read, exmap first populates the specified page range with memory
before it uses the regular Linux VFS interface to perform the actual
read. Since we derive the disk offset from the on-surface offset, we
can use of fset parameter to specify the allocation interface. With
this integration, exmap supports synchronous (pread) and asyn-
chronous (libaio and io_uring) reads. Furthermore, as the on-
surface offset determines the disk offset, vectorized reads (preadv,
IORING_OP_READV) implicitly become scattered operations (line 22),
which Linux currently allows with no other system call.



Write I/0. On the write side, we actively decided against a write-
proxy interface, which would, for example, bundle the write back
and page evict. While such a bundling is not necessary as the user
can already write surface pages to disk (line 24), freeing pages
for each write individually could, if not used correctly, lead to
unnecessary overheads. Therefore, we decoupled write back and
(batched) freeing of pages.

4.4 Implementation Details

Scalable page allocator. Usually, when the kernel unmaps a page,
it returns the page to the system-wide buddy allocator, which possi-
bly merges it into larger chunks of physical memory. On allocation,
these chunks are broken down again into pages, which have to be
zeroed before mapping them to the user space. Therefore, with a
high VM turn-over rate, memory is constantly zeroed and circles
between the VM subsystem and the buddy allocator. To optimize
VM operations for vimcache, we decided to use per-exmap mem-
ory pools to bypass the system allocator. This also allows us to
avoid proactive page zeroing since pages only circulate between
the surface and the memory pool within the same process, whereby
information leakage to other processes is impossible. Only during
the initial exmap creation, we zero the pages in our memory pool.
Thread-local control interfaces and page stealing. Further-
more, exmap’s control interfaces not only allow the application to
express allocation/eviction locality, but they also reduce contention
and false sharing that come with a centralized allocator. For this,
we distribute the memory pool as local lists of free 4KB pages
over the interfaces, whereby the need for page stealing comes up.
After the interface-local free list is drained, we use a three-tiered
page-stealing strategy: (1) steal from the interface from which we
have successfully stolen the last time, (2) randomly select two in-
terfaces and steal from the interface with more free pages, and (3)
iterate over all interfaces until we have gathered enough pages. To
minimize the number of steal operations, we steal more pages than
required for the current operation. If we remove pages from the
surface, we always push them to the specified interface. Thereby,
for workloads in which per-interface allocation and eviction are in
balance, steal operations are rarely necessary.

Lock-free page-table manipulation. For page-table manipula-
tions, Linux uses a fine-grained locking scheme that locks the last
level of the page table tree to update page-table entries therein.
However, such entries have machine-word size on most architec-
tures, and we can update them directly with atomic instructions.
While Linux leaves this opportunity open for portability reasons,
we integrated an atomic-exchange—based hot path: If an operation
manipulates only an individual page-table entry on a last-level
page table, we install (or remove) the VM mapping with a single
compare-and-exchange.

I/0 subsystem integration. For read operations, the Linux I/O
subsystem is optimized for sequential reads into destination buffers
that are already populated with physical memory. For example,
without exmap, Linux does not provide a scattered read operation
that takes multiple offsets; such a read request had to be split into
multiple (unrelated) reads. On a lower level, Linux expects VM to
be populated and calls the page-fault handler for each missing page
before issuing the actual device operation. Hence, Linux cannot fully

exploit scattered request patterns, but it handles them as individual
requests which provokes unnecessary overheads (i.e., repeated page-
table locking, allocator invocations). To avoid this, exmap provides
vectorized and scattered reads with the proxy file descriptor. This
allows us to (1) pre-populate the VM with memory, which avoids the
page-fault handler path, and (2) cuts down the system-call overhead
as we issue only a single system call per request batch.

Multiple exmaps. A process can create multiple exmap objects,
which are mapped as separate non-overlapping virtual-memory
areas (VMAs) into the process address space. These VMAs come
with their own VM subsystem and are largely isolated from each
other and from the rest of the kernel while still ensuring consis-
tency and privilege isolation. As already noted, each exmap can be
mapped exactly once, whereby we avoid the bookkeeping overhead

of general-purpose solutions®.

4.5 Discussion

OS customization. exmap is a new low-level OS interface for ma-
nipulating virtual memory efficiently. Seemingly minor semantic
changes such as batching and avoiding zero pages result in very
high performance without sacrificing security. One analogy is that
exmap is for VM what O_DIRECT is for I/O: a specialized tool for
systems that want to manage and control hardware resources them-
selves as efficiently as possible. Two design decisions of exmap
require further discussion.

Functionality. We largely decoupled the exmap surface and its
memory pool from the rest of Linux. As a consequence of this lean
design, exmap is efficient but does not support copy-on-write fork-
ing and swapping. Few buffer pool implementations rely on such
functionality. Indeed, it is actually a benefit that exmap behavior
is simple and predictable as it allows buffer managers to precisely
track memory consumption and ensure robust performance.
Portability. Another important aspect is generalizability to other
operating systems and architectures. Since our kernel module comes
with its own specialized VM subsystem, it only has few depen-
dencies to the rest of the Linux kernel. This makes exmap easily
portable between Linux versions and suggests that the concept can
be implemented for other operating systems such as Windows and
FreeBSD. Except for our architecture-dependent lock-free short-cut
for small page table modifications, the exmap implementation is
also independent of the used ISA and MMU as it reuses Linux’ MMU
abstractions. In other words, our Linux implementation is easily
portable across CPU architectures that support Linux.

Other Applications of exmap. Although we explicitly designed
exmap for caching, it has other use cases as well: (1) Due to its high
VM-modification performance (see Figure 8), an heap manager
could use a large exmap surface to coalesce free pages into large
contiguous buffers, which is useful for DBMS query processing [14].
(2) With a page-move extension, a language run-time system could
use exmap as a base for a copying garbage collector for pools of
page-aligned objects. (3) For large-scale graph processing, workers
request, often with a high fan out (e.g., for breadth-first search)
and with high parallelism, randomly-placed data from the backing
store, which can easily be serviced by exmap. (4) For user-space file

SFor example, Linux usually maintains a reverse mapping from physical to virtual
addresses that is necessary to implement features such as copy-on-write fork.
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systems, a device-baked exmap allows for a user-space—controlled
buffer cache strategy.

5 EVALUATION

The goal of this section is to show experimentally that vimcache
is competitive to state-of-art swizzling-based buffer managers for
in-memory workloads and that exmap enables the vmcache design
to exploit modern storage devices. However, let us emphasize here
that we see the main benefits of vmcache as qualitative rather than
quantitative as we summarized in Table 1. Specifically, despite being
easy to implement, vimcache supports arbitrary (graph) data and
variable-size pages.

5.1 Experimental Setup

Implementation. Our buffer manager is implemented in C++ and
uses a B+tree with variable-size keys/payloads and optimistic lock
coupling. We compare two variants: (1) vmcache uses the regu-
lar and unmodified OS primitives described in Section 3. (2) vm-
cache+exmap is based on the vimcache code, except that it uses the
exmap kernel module and the interface proposed in Section 4. Both
variants use 4 KB pages and perform reads through the blocking
pread system call. Therefore, there is at most one outstanding read
I/O operation per thread. Dirty pages are written in batches of
up to 64 pages using libaio. vmcache frees those pages individ-
ually with madvise, while vmcache+exmap batches them into a
single EXMAP_FREE call. Page allocations are not batched to avoid
increasing latencies (we use one EXMAP_ALLOC call per allocation).
Competitors. We use three state-of-art open source storage en-
gines based on B+trees as competitors: (1) LeanStore [1], (2) WiredTiger
3.2.1 [5], and (3) LMDB 0.9.24 [2]. For caching, LeanStore and
WiredTiger rely on pointer swizzling, whereas LMDB [2] uses mmap
with out-of-place writes. Since the focus of this work is buffer
management, in all systems we disable write ahead logging and
run in the lowest transactional isolation level offered. LMDB and
LeanStore use 4 KB pages, whereas WiredTiger uses 32 KB pages
for leaf nodes on storage. We configured LeanStore to use 8 page
provider threads that handle page replacement [19], which resulted
in the best performance.

Hardware, OS. We ran all experiments on a single-socket server
with an AMD EPYC 7713 processor (64 cores, 128 hardware threads)
and 512 GB main memory, of which we use 128 GB for caching. For
storage, we use a 3.8 TB Samsung PM1733 SSD. The system is run-
ning unmodified Linux 5.16, except when we run vmcache+exmap,
which uses our exmap kernel module. Workloads. We use TPC-
C as well as a key/value workload that consists of random point
lookups, 8 byte uniformly-distributed keys, and 120 byte values.
The two benchmarks are obviously very different from each other:
TPC-C combines complex access patterns and is write-heavy, while
the lookup benchmark is simple and read-only. Both are imple-
mented as standalone C++ programs linked against the storage
engines, i.e., there is no network overhead.

5.2 End-To-End In-Memory Comparison

vmache performance and scalability. In the first experiment we
investigate the performance and scalability in situations where the
data set fits into main memory. The results are shown in Figure 6.
The two vmcache approaches are faster than the other systems
and scale very well — achieving almost 90 M lookups/s and around
3 M TPC-C transactions/s respectively. Because no page eviction
happens for in-memory workloads, we see that exmap does not
offer major performance benefits over the basic vimcache design.
Competitor performance. LeanStore comes closest to vmcache
in performance, while WiredTiger trails significantly. LMDB is
competitive to LeanStore for the lookup benchmark but does not
scale on the write-heavy TPC-C benchmark. This is because LMDB
uses a single writer model with out-of-place writes, which means
that reads do not have to synchronize, but only a single writer
is admitted at any point in time. Overall, the results show that
the vmcache design has excellent scalability and high absolute
performance.

5.3 End-To-End Out-of-Memory Comparison

Workload. Figure 7 shows the out-of-memory performance (upper
plot) over time. In this experiment, the data sets are larger than
the buffer pool by one order of magnitude, which means that page
misses happen frequently. We start measuring right after loading
the data for both workloads. Therefore, in all systems it takes some
time for the performance to converge to the steady state because
the buffer pool state needs to adjust to the switch from loading to
the actual workload.

vmcache and exmap. For the random lookup benchmark, we see
that exmap improves performance over basic vimcache by about 60%.
This is caused by Linux scalability issues during page eviction. For
TPC-C, the difference between the vimcache and vmache+exmap is
small because even vmcache manages to become I/O bound. For
both workloads, the exmap variant manages to become fully I/O
bound, as is illustrated by the lower part of the figure®.
LeanStore. When we compare LeanStore with vimcache and exmap,
we see that vincache is substantially slower than LeanStore for ran-
dom lookups in steady state (again due to vmcache being bound by

®We measured the I/O bound for this experiment using the fio benchmarking and
128 threads doing synchronous random I/O operations.



random lookup TPC-C

1.2M 0.2M
» vmcache
K]
.5 vme.+exmap
8 0.6M 0.1M LeanStore
17}
§ WiredTiger
- LMDB

0.0M 0.0M

0 50 100 150 200 0 50 100 150 200
time [seconds]

& random lookup TPC-C
ﬁ 1/0 bound (read-only)
S
% 3 3 1/0 bound (read/write)
= read /O
X
o 2 2 write /O
[0}
5 1 1 total /O
I}
€
S
@) 0 0
= 0 50 100 150 200 0 50 100 150 200

time [seconds]

Figure 7: Out-of-memory performance and I/O statistics
(128 GB buffer pool, 128 threads, random lookup: 5B entries
~ 1TB, TPC-C: 5000 warehouses ~ 1TB)

the kernel). Only by using the exmap module, can it become com-
petitive to LeanStore. Eventually, exmap+vmcache performs simi-
larly to LeanStore and both become I/O bound in steady state. The
performance differences are largely due to minor implementation
differences: vimcache+exmap has slightly higher steady state perfor-
mance due to a more compact B-tree (less I/O per transaction), and
LeanStore temporarily (40s to 90s) outperforms vimmcache+exmap
due to more aggressive dirty page eviction using dedicated back-
ground threads.

WiredTiger and LMDB. WiredTiger and the mmap-based LMDB
are significantly slower than vmcache and LeanStore. The perfor-
mance of WiredTiger suffers from the 32KB page size, whereas
LMDB is bound by kernel overhead (random lookups) and the
single-writer model (TPC-C). Overall, we see that while basic vim-
cache offers solid out-of-memory performance, as the number I/O
operations per second increases it requires the help of exmap to
unlock the full potential of fast storage devices.

5.4 vmcache Ablation Study

To better understand the performance of virtual-memory assisted
buffer management and compare it against a hash table-based de-
sign, we evaluated page access time using a microbenchmark. We
focus on the in-memory case, which is why all page accesses in this
experiment are hits. For all designs, we read random 4KB pages
of main memory and report the average number of instructions,
cache misses, and the access latency. We report numbers of 32 KB
and 128 GB of data. The former corresponds to very hot CPU-cache
resident pages and the latter to colder pages in DRAM. Line #1 in

Table 2: Random page access microbenchmark

32 KB 128 GB
inst- cache time ins- cache time
# truc. miss [ns] truc. miss [ns]
1 read 3.0 0 1.6 3.3 1.0 219

2.1 read (1 TB range) 3.0 0 1.6 3.3 1.0 235

2.2+ page state 7.0 0 17 7.4 2.0 236

2.3 +version check 10.0 0 1.8 104 2.0 236
0

3 hash table 26.1 10.7 279 2.6 336

Table 2 simply shows the random access time in an 32 KB/128 GB
array and therefore represents the lower bound for any buffer man-
ager design. The next three lines incrementally show the steps
(described in Section 3.1, Section 3.2, and Section 3.3) necessary in
the vimcache design. In line #2.1, we randomly read from a virtual
memory range of 1 TB (instead of 128 GB), which increases latency
by 7% due to additional TLB pressure. In line #2.2, in addition to
accessing the pages themselves, we also access the page state array
as is required by the vmcache design. As mentioned in Section 3.6,
this additional cache miss does not noticeably increase access la-
tency because both memory accesses are independent and the CPU
therefore performs them in parallel. In line #2.3, we also include the
version validation, which results in the full vimcache page access
logic. Overall, this experiment shows that a full optimistic read in
vmcache incurs less than 8% overhead in comparison with a simple
random memory read. We measured that an exclusive, uncontended
page access (fix & unfix) on 128 GB of RAM takes 238ns (not shown
in the table). The last line in the table shows the performance of a
hash table-based implementation based on open addressing. Even
such a fast hash table results in substantially higher latencies be-
cause the page pointer is only obtained after the hash table lookup.
Note that our hash table implementation is not synchronized, and
the shown overhead is therefore actually a lower bound for the true
cost of any hash table based design.

5.5 exmap Allocation Performance

Allocation benchmark. The end-to-end results presented so far
have shown that exmap is more efficient than the standard Linux
page table manipulation primitives. However, because we were
I/O bound, we have yet to evaluate how fast exmap actually is.
To quantify the performance of exmap, we used similar allocation
benchmark scenarios as in Figure 3, i.e., we constantly allocate and
free pages in batches.

Baselines. The results are shown in Figure 8. For these, we always
use batched allocations/evictions of 512 individual 4 KB pages. As
a baseline, we use process_madvise with TLB batching, which
already requires kernel changes. For reference, we also show the
maximal DRAM read rate, which we achieved using the pmbw bench-
marking tool and 64 threads (144.56 GiB/s). If the OS provides mem-
ory faster than this threshold, we can be sure that memory alloca-
tion will not be the bottleneck.

Page stealing scenarios. exmap uses page stealing, and its per-
formance therefore depends on the specific inter-thread allocation
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Figure 8: Linux memory allocation performance with exmap.
The three exmap lines shows different page stealing scenarios
(1IF: no stealing, 2 IF: pair-wise stealing, pool: stealing across
all threads)

pattern. We therefore investigate three workload scenarios at dif-
ferent degrees of page stealing: For exmap (1 IF), no stealing occurs
as each thread allocates 512 pages and then evicts them again at
the same interface. exmap (2 IF) is like 1 IF but each thread has two
interfaces, one for allocations and one for evicting pages. Due to a
large enough memory pool (1 GB), stealing rarely occurs and we
regularly steal more than 512 pages, but eventually each page must
be stolen once per allocation. For exmap (Pool), half of the threads
allocate pages as fast as possible while the other half free those
pages again. Here, the memory pool is always close to depletion and
stealing happens frequently but often does not return more than
512 pages. Thereby, this scenario is the most challenging workload
for exmap.

Results. Figure 8 shows that exmap outperforms the current state
of the art in Linux significantly in all scenarios, and we reach up to
301M OP/s, which is equivalent of providing memory at 1,150 GiB/s
and way beyond current DRAM speeds. We also see that page
stealing has a moderate effect in the low-memory-pressure scenario
(2 IF), while a high memory pressure (Pool) reduces the rate by
73 percent. This also demonstrates the success of our interface-
local free lists and suggests that applications should try to roughly
balance out their allocations and frees at each interface for optimal
performance.

5.6 exmap Read I/O Performance

I/0 libraries. Both vmcache and exmap support both synchronous
(pread) and asynchronous I/O (io_uring and libaio). With asyn-
chronous I/O, one can achieve high I/O using fewer threads. In
the final experiment, we quantify the read-throughput of differ-
ent user-space I/O strategies. For this, N threads randomly read
4KB blocks in O_DIRECT mode from our Samsung PM1733 SSD
with the synchronous pread system call and via Linux’ modern
asynchronous io_uring interface. The target memory is either vin-
cache, exmap, or thread-local fixed buffers (FB). As these FBs have
a fixed address, this variant does not include VM-manipulation
overheads and marks the upper bound of Linux’ IO subsystem for
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Figure 9: Read performance for synchronous (pread) and
asynchronous (uring) I/O operations. Both vimcache and
exmap support asynchronous I/0 using uring, which allows
achieving full I/O bandwidth using a few threads

the respective system-call interface. For the io_uring variant, we
use thread-local submission queues and allow each thread to have
256 outstanding in-flight operations. We submit each read as an in-
dividual operation and do not use exmap’s scattered and vectorized
read capability. For vimcache, we use process_madvise with TLB
batching for eviction, and for exmap, we read and evict at the same
exmap interface. Since the SSD handles up to 128 parallel requests
and has a maximum random-read throughput of 6 GiB/s, we are
interested in which strategy can saturate it and how many threads
it requires for this.

I/0 performance. In Figure 9, we see that the pread variants,
where each thread has at most one read operation in flight, cannot
saturate the SSD. Nevertheless, both vmcache and exmap closely fol-
low the throughput of the fixed-buffer variant, and we can conclude
that our vmcache concept is not the limiting factor here. When us-
ing io_uring, where a single thread could already submit enough
parallel reads to theoretically saturate the SSD, all three variants
reach the maximum of 6 GiB/s at some point. With fixed buffers, 3
threads already saturate the SSD with 1.58 MIOP/s random reads.
When using the regular Linux system-call interface to implement
a vmcache, we require 11 threads to reach the same level. With a
single thread, we reach 40 percent of the fixed-buffer performance.
Even better, with exmap and io_uring, we only require 4 threads to
reach 6 GiB/s and with three threads it is already at 96 percent. With
a single thread, exmap achieves 66 percent of the single-threaded
FB variant. We thus argue that in the modern hardware landscape
in which multiple SSDs can be used, exmap is a perfect fit for buffer
management. Both vimmcache and exmap work with off-the-shelf
asynchronous I/O in Linux. Furthermore, exmap minimizes virtual
memory overhead and follows the performance of the upper-bound
implementation (FB) very closely.

5.7 exmap Ablation Study

VM optimizations. Let us now quantify the impact of the exmap
optimizations we presented in Section 4.4. For this, we perform an
ablation study that is representative for scenarios with a high VM
turn-over rate. The left-hand side of Figure 10 shows how the indi-
vidual techniques contribute to exmap’s performance. For the most
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Figure 10: Impact of techniques on allocation (left) and read
performance from null_blk (right).

basic variant (see Figure 10), exmap has a similar performance to
madvise. However, for this variant, TLB shootdowns make up 98.16
percent of the total CPU time, which explains why TLB batching has
a significantly higher impact on the end-to-end performance. With
TLB batching, exmap reaches 92.34M OP/s. Our next optimization
is to add the private scalable page allocator. With TLB batching and
the private memory pool, exmap reaches 267.32M OP/s. Finally, we
enable the lock-free page-table manipulation which further speeds
up random page-sized surface manipulations and with this we reach
286.38M OP/s (see Figure 10). With our final variant of exmap, we
outperform off-the-shelf madvise by a factor of = 190.

I/0 optimization. Our I/O-integration techniques contribute to
exmap’s performance as well. To quantify their contributions, we
measure the read performance from a null_blk device (irgmode=0,
queue_mode=0) onto an exmap surface. Due to scalability issues of
the null_blk driver, we only show single-threaded performance.
From the baseline, where reads are issued individually and provoke
one page fault each, we first pre-populate the surface in batches of
512 pages and achieve 67 % more reads. Finally, by combining allo-
cation with the actual I/O request through the proxy file descriptor,
we gain another 35 % with batches of 512 scattered reads.

6 RELATED WORK

We already described prior work on buffer management in Section 2,
so let us now discuss related work on virtual memory and operating
systems.

Exploiting VM in DBMS. Besides caching, virtual memory manip-
ulation has also been shown to be useful in other database use cases
such as query processing [37], and for implementing dynamic data
structures such as Packed Memory Arrays [26]. In multi-threaded
situations, these applications may run into kernel scalability is-
sues and would therefore likely benefit from the optimizations we
propose in Section 4.

DBMS/OS co-design. Let us mention two recent DBMS/OS co-
design projects. MxKernel [3] is a runtime system [32] for data-
intensive systems on many-core CPUs. The focus of DBOS [38] is
on cloud orchestration (i.e., managing and coordinating multiple
instances) and on using database concepts and systems to simplify

this task. Again, a technique like exmap is orthogonal to both
designs and could be exploited by them.

Optimizing TLB shootdowns. The operating systems community
has identified TLB shootdowns as a major performance problem and
has proposed several techniques, including batching, for mitigating
them [6, 7, 22]. exmap uses the same batching idea to speed up VM
manipulation.

Incremental VM improvements. Existing work on improving
the Linux VM subsystem can be split into two general categories:
(1) speed up the existing infrastructure and (2) provide new VM
management systems. For the first, Song et al. [39] modify the
allocation strategy in the page fault handler. Freed pages are saved
in application-local lists instead of being directly returned to the
system, which enables the recycling of pages within an application.
With exmaps, we extend this to explicitly-addressed free lists to
avoid contention within the allocation path. Additionally, they
batch write-back operations to mitigate the overhead of the write
I/O path. Choi et al. [10] use cache removed VMAs for future use
instead of deleting them immediately on munmap. They also extend
the memory hinting system of madvise, adding new functionality
like asynchronous map-ahead. Overall, the speedups of both these
incremental approaches are limited because of the complex and
general nature of the Linux VM subsystem. Another bottleneck of
Linux’ VM system is the management of the VMA list, which is
a stored lock-protected red-black tree. Bonsai [11] uses an RCU-
based binary tree to provide lock-free page faults. In follow-up work,
RadixVM [12] speeds up mapping operations in non-overlapping
address ranges. As exmap and vmcache only use a single long-living
VMA and memory is not implicitly allocated through page faults,
we do not expect significant speedups although they are orthogonal
to our approach.

New VM subsystems. An alternative to incremental changes is to
develop a specialized Linux VM subsystem. In UMap [35], memory-
mapped I/O is handled entirely in user-space using userfaultfd.
With memory hints for prefetching, caching and evicting, as well
as configurable page sizes, they achieve a speedup of up to 2.5
times compared to unmodified Linux. UMap, similar to our exmap
approach, manages separate regions that bypass the memory man-
agement of Linux. The approach also gives the application more
control by providing configurable thresholds to influence the evic-
tion strategy. Unlike vincache, however, the kernel still controls
page eviction. Furthermore, user-level page-fault handling intro-
duces system-call overheads that run counter the goal of improving
VM speeds. Papagiannis et al. identify bottlenecks in Linux’s VM
system and propose FastMap [34] as an mmap alternative for implicit
memory-mapped file I/O. They alleviate lock contention through
per-core free page lists as well as separate clean and dirty page trees.
They also identify TLB invalidation as a limiting factor to scalabil-
ity, which they also solve via batched TLB shootdowns. Overall,
their implementation is up to 5 times faster than unmodified Linux,
and provides up to 11.8 times more random IOPS/s. Though signifi-
cantly faster than Linux’ mmap, both UMap and FastMap offer no
explicit control over page eviction, which makes them unattractive
for database systems.



7 SUMMARY

vmcache. In this paper, we propose virtual-memory assisted, but
DBMS-controlled buffer management. By exploiting virtual mem-
ory, vimcache is not only fast and scalable, but is also easy to im-
plement, enables variable-size pages, and supports graph data. The
basic vmcache design only relies on widely-available OS features
and is therefore portable. This combination of features makes vm-
cache applicable to a wide variety of data management systems.
vmcache is available at https://github.com/viktorleis/vmcache.
exmap. With fast storage devices, the page table manipulation prim-
itives that vimcache relies on can become a performance bottleneck.
To solve this problem, we propose exmap, a specialized OS interface
for page table manipulation. We implemented exmap as a Linux ker-
nel module that is highly efficient and scalable. When one combines
vmcache with exmap, one can fully exploit even very fast storage
devices. exmap is available at https://github.com/tuhhosg/exmap.
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