
Fast and Flexible Temporal Point Processes
with Triangular Maps

Temporal point process (TPP) is a probability distribution over variable-
length event sequences 𝒕 = 𝑡!, … , 𝑡" on an interval 0, 𝑇

Defining TPPs as transformations
Integrated intensity function (compensator) 
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What is a temporal point process?
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Scalability analysis

tl;dr
• Represent temporal point process densities as transformations

• Define flexible, tractable and efficient (parallelizable) 
transformations on sequences as compositions of simple maps

• Reparametrization trick + differentiable relaxation enable 
learning TPPs with sampling-based losses

• Use TPPs for variational inference in Markov jump processes
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The sequence 𝒛 = 𝑭(𝒕) is distributed according 
to the Standard Poisson Process
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How are TPPs usually defined?
Conditional intensity function 𝜆∗ 𝑡 describes 
the rate of arrival new events at time 𝑡 given 
the history
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State-of-the-art approaches parametrize 𝜆∗ 𝑡
with autoregressive neural nets

Autoregressive models are flexible
Sequential sampling is extremely slow
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How can we define TPPs that are 
• as flexible as autoregressive models?
• where we can both sample & compute likelihood in parallel?

Research question

How should we parametrize 𝑭?

The triangular map 𝑭 defines the TPP density
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Jacobian 
determinant of 𝑭

Standard Poisson process 
density at 𝒛 = 𝑭(𝒕)

Main idea
Define TPPs by directly specifying the triangular map 𝑭

The parametrization of 𝑭 must be
• flexible – able to represent different distributions 
• fast – we can compute 𝑭(𝒕) and 𝑭%!(𝒛) analytically in 𝑂 𝑁 parallel operations

Solution: Define 𝑭 as a composition of easy-to-invert transformations

Inverse transform sampling for TPPs
1. Sample 𝒛 from the standard Poisson process
2. Transform 𝒕 = 𝑭%! 𝒛
3. Discard events 𝑡$ after 𝑇

Density estimation

Variational inference in 
Markov jump processes

Learning TPPs with sampling-based losses
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Sampling losses are common in variational inference, reinforcement learning
ℒ 𝜽 = 𝔼𝒕~0𝜽 𝒕 𝑔 𝒕

We show how to optimize such objectives thanks to
1. Reparametrization trick for TPPs that allows computing 𝛻𝜽ℒ with Monte Carlo

𝔼𝒕~0𝜽 𝒕 𝑔 𝒕 = 𝔼𝒛~344 𝑔 𝑭𝜽%! 𝒛
2. Differentiable relaxation to ℒ that removes discontinuities w.r.t. 𝜽

→ Instead of discarding 𝑡$ > 𝑇, use indicator functions
→ Sigmoid relaxes the indicator function

𝟙 𝑡$ < 𝑇 ≈ 𝜎 𝑇 − 𝑡$

Test set negative log-likelihood

Maximum mean discrepancy between model samples and the test set

• Goal: Infer the posterior distribution 
over the latent state in a continuous-
time discrete-state system

• Approximate posterior over the jump 
times modeled with TriTPP

• ELBO can be optimized thanks to fast 
sampling + reparametrization trick + 
differentiable relaxation

→ New efficient parametrizations for existing TPP models
→ TriTPP: A new flexible model where all operations can be done in 
parallel


