Professorship of Data Mining and Analytics Department of Informatics **Technical University of Munich**

tl;	dr
	Robustness certification of GNNs via convex r
	GCN with standard training is highly non-robu
	Our robust training increases robust nodes by
	without sacrificing accuracy.

Semi-supervised node classification

- Given an (attributed) graph and a small number of labeled nodes, predict the labels of the remaining unlabeled nodes.
- Graph neural networks (GNNs) excel at this task. But: they are not robust.

Research questions

Robustness certification: How can we verify whether a GNN is robust? Robust training: How can we improve GNNs' robustness?

Preliminaries

Vorst-case classification margin m^* =	minimize	$\min_{\text{class } c \neq c^*}$	log p(

 m^* : worst possible outcome among all admissible perturbations. $m^* > 0 \rightarrow \text{model is robust}; m^* < 0 \rightarrow \text{model is not robust}.$ **Certificate**: prediction doesn't change under any perturbation $(m^* > 0 \forall \Delta)$.

Attack scenario:

- Perturbations can be performed only to the node attributes.
- Binary node attributes, e.g. multi-hot vectors indicating words in abstract.
- \Box Perturbations are L_0 -bounded: at most *q* perturbations per individual node; global perturbation budget Q.

Certifiable Robustness and Robust Training for Graph Convolutional Networks Daniel Zügner, Stephan Günnemann

elaxation. ST. up to **4x**

Classification margin (> 0)

Classification margin m

 $(c^*) - \log p(c)$

github.com/danielzuegner/robust-gcn