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Semi-supervised node classification
q Given an (attributed) graph and a small number of labeled nodes, predict 

the labels of the remaining unlabeled nodes.
q Graph neural networks (GNNs) excel at this task. But: they are not robust.

tl;dr
q Robustness certification of GNNs via convex relaxation.
q GCN with standard training is highly non-robust.
q Our robust training increases robust nodes by up to 4x 

without sacrificing accuracy.

Results

Robustness Certification: Overview
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> 4x improvement

Figure: Training with our robust hinge loss increases the number of 
certifiably robust nodes by up to a 4x, not sacrificing accuracy.

Accuracy: 67% 69% 68% 83% 83% 83% 86% 84% 86%
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Global Perturbation Budget

Feed the optimal (binary) perturbed features into the original GNN. 
Does its prediction change? If yes è we have found an adversarial example.
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è False negatives are possible. But no false positives!
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Relaxation 1: Convex ReLU Relaxation
Goal: Transform the GNN into a linear program that is tractable to optimize.
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Relaxation 2: Continuous Attributes
Goal: Relax the discreteness of the (binary) node attributes.

Convex relaxation (loose)

Lower bound: relaxation (1)

• Reduces to standard cross entropy loss on the non-relaxed GNN when robust.
• Semi-supervised setting: mitigates overconfidence in possibly incorrect predictions.
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Robust Training: Overview

= 𝟎 if all nodes are robust

Figure: Robust training for 
𝑄 = 12 vs. standard training.

Preliminaries

𝑚∗: worst possible outcome among all admissible perturbations.
𝑚∗ > 0è model is robust; 𝑚∗ < 0è model is not robust.

Certificate: prediction doesn’t change under any perturbation (𝑚∗ > 0 ∀ Δ).

Attack scenario:

q Perturbations can be performed only to the node attributes.
q Binary node attributes, e.g. multi-hot vectors indicating words in abstract.

q Perturbations are 𝐿P-bounded: at most 𝑞 perturbations per 
individual node; global perturbation budget 𝑄.
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Convex ReLU relaxation: [Wong and Kolter 2018]Tight bounds
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Optimal solution (perturbation) is discrete despite continuous 
relaxation (integral linear program) è no (additional) relaxation error!
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We derive tight bounds on the hidden neurons‘ activations 
exploiting the data discreteness and the graph structure.
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Research questions
Robustness certification: How can we verify whether a GNN is robust?

Robust training: How can we improve GNNs’ robustness?

Worst-case classification margin 𝑚∗ = minimize
UVWXYWZ[X\]^_

min
`a[__ bcb∗

log 𝑝 𝑐∗ − log 𝑝(𝑐)

Classification margin 𝑚
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Figure: Varying the perturbation 
budget 𝑄 used for training:

Small 𝑄: many nodes robust
for small perturbations.
Large 𝑄: fewer robust nodes, 
but handle larger perturbations.
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>50% of nodes vulnerable

<25% of nodes robust

85% robust after robust training


