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tl:dr

J Robustness certification of GNNs via convex relaxation.

1 GCN with standard training is highly non-robust.

Jd Our robust training increases robust nodes by up to 4x
without sacrificing accuracy.

Semi-supervised node classification

J Given an (attributed) graph and a small number of labeled nodes, predict
the labels of the remaining unlabeled nodes.

(J Graph neural networks (GNNs) excel at this task. But: they are not robust.
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Research questions

|§| Robustness certification: How can we verify whether a GNN is robust?

E/j Robust training: How can we improve GNNs’ robustness?

Preliminaries ‘

Classification margin m

|
minimize min
perturbations class c#c”

Worst-case classification margin m* = logp(c*) —logp(c)

m™: worst possible outcome among all admissible perturbations.

m* > 0 =2 model is robust; m* < 0 = model is not robust.

Certificate: prediction doesn’t change under any perturbation (m* > 0 V A).

Attack scenario:

d Perturbations can be performed only to the node attributes.

J Binary node attributes, e.g. multi-hot vectors indicating words in abstract.

d Perturbations are Ly-bounded: at most g perturbations per
individual node; global perturbation budget 0.
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Robustness Certification: Overview o
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=» False negatives are possible. But no false positives!
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Relaxation 1: Convex RelLU Relaxation

Goal: Transform the GNN into a linear program that is tractable to optimize.
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T'Bht bounds Convex RelU relaxation: [Wong and Kolter 2018]

We derive tight bounds on the hidden neurons‘ activations
= exploiting the data discreteness and the graph structure.

Relaxation 2: Continuous Attributes

Goal: Relax the discreteness of the (binary) node attributes.
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Optimal solution (perturbation) is discrete despite continuous

Continuous relaxation (integral linear program) =2 no (additional) relaxation error!

relaxation

O Feed the optimal (binary) perturbed features into the original GNN.
= Does its prediction change? If yes =» we have found an adversarial example.
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Robust Training: Overview

Predictions of non-relaxed GNN

min z L (pv,yv ) Cross-entropy loss (labeled nodes)

)
veV .
= 0 if all nodes are robust

Hinge loss (labeled nodes) Hinge loss (unlabeled nodes)
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Lower bounds of worst-case margins
(efficiently obtainable from the Dual)

O * Reduces to standard cross entropy loss on the non-relaxed GNN when robust.
= e Semi-supervised setting: mitigates overconfidence in possibly incorrect predictions.
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Figure: Training with our robust hinge loss increases the number of
certifiably robust nodes by up to a 4x, not sacrificing accuracy.
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