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Graphs are ubiquitous
• Social networks
• Web graphs
• Knowledge graphs

Graph neural networks (GNNs): state of the art on tasks such as
• Semi-supervised node classification (our work’s focus)
• Link prediction
• Unsupervised representation learning (node embeddings)
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Deep Learning on Graphs



Background: GNN Node Classification

Given:  Graph 𝐺 = (𝑨, 𝑿) with connectivity 𝑨 and node features 𝑿
Predict a node’s class by using its neighborhood.

e.g., two-layer Graph Convolutional Network (GCN):

(𝒀 = softmax((𝑨 𝜎 (𝑨 𝑿𝑾 ! + 𝒃 𝟏 𝑾 # + 𝒃(#))
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Graph Neural Networks are not robust

GNNs are not robust w.r.t. adversarial attacks.

[Dai et al. 2018]
[Wang et al. 2018]
[Zügner et al. 2018],
[Zügner and Günnemann 2019]

Adversarial attacks on GNNs:
• Node feature perturbations 
• Graph structure perturbations (this work’s focus)
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High-level approach

• We assume that the present graph can contain up to a certain number of 
adversarial edges, i.e. an attacker has inserted edges.

• In other words, the clean (unknown) graph is reachable by removing edges 
from the present graph according to the adversarial budget.

• That is, by inserting edges the adversary could have changed the model’s 
prediction.
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Finding the worst-case perturbation

• Robustness certification: check whether there exists a graph reachable by removing 
edges for which the node has a different predicted label.

è Certify robustness if it is guaranteed that the prediction does not change.

• Since enumerating all reachable graphs is intractable, we propose to bound the 
maximum change in logits (“worst-case” perturbation).

• 𝐿!-bounded perturbations on the graph structure
• At most 𝑞 adversarial edges per node
• At most 𝑄 adversarial edges in total (over all nodes)
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Optimization problem view

• Finding the “worst-case” perturbation as an optimization problem:

• 5𝑚& 𝑦∗, 𝑦 > 0 for all classes 𝑦: predicted class cannot be changed (robust).

• 5𝑚& 𝑦∗, 𝑦 < 0 for any class 𝑦: prediction is not robust.
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Optimization problem challenges

Challenges for optimization:

• 𝑓 has nonlinear activation functions

è can be addressed via linear relaxation.

• Optimization over binary variable (𝑨 ∈ 0,1 *×*)

• Problem contains nonconvex products of variables
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Challenge: binary variables

Addressing the challenge of optimization over binary variable (𝑨 ∈ 0,1 *×*) 

• Naïve solution: continuous relaxation, i.e. 𝑨 ∈ [0,1]*×*

• However, GCN performs preprocessing on 𝑨: 

Pre-processed matrix: (𝑨,- = D
"

($%& ' (") ⋅($%& + (")

0

Values (𝑨,- are not convex in the variables (𝑨,-)
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Challenge: binary variables

Our approach: 

• directly optimize the continuous-valued 
message passing matrix "𝑨 ∈ ℝ"×"

• Derive constraints on "𝑨 that are induced by the 
budget constraints on 𝑨 and the preprocessing procedure.

• E.g.: node degrees cannot increase.

è "𝑨$% must be in 0, &
(()* $ +& , -) ⋅ (()* % +& ,-)

• In the paper we derive induced constraints on an element-, row-, and global level.
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Challenge: nonconvex variable products

• At each GCN layer we perform message passing in the form of multiplying by (𝑨:

• This introduces non-convex bilinear terms of the variables.

• A naïve solution is to relax these terms using the reformulation-linearization (RLT) 
technique. However, this leads to loose approximations.
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𝑯($) = 𝜎(;𝑨 𝑯 $&' 𝑾 ( + 𝒃 ( )

depends on ;𝑨
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Challenge: nonconvex variable products

• We show how to phrase the problem as a jointly constrained bilinear program:

• Can be solved exactly via branch-and-bound (B&B) techniques.

• We design a custom B&B-scheme for provably robust GCN:

• converges faster and

• produces tighter bounds (compared to standard B&B).
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s𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐱 + 𝐳 ≤ 𝐜
(and other constraints)

min
𝐱, 𝐳

𝐱,𝐳
bilinear objective jointly constrained variables



Optimization properties

• At each B&B iteration we solve a linear program, for 
which we can use highly-optimized off-the-shelf solvers.

• We refine upper and lower bounds at each iteration

• Finding the global optimum can take an infinite number of iterations

• Since we are only interested in the sign of the optimum, we can stop when either the upper or 
lower bound crosses zero.
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Optimization
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Once the upper or lower bound crosses zero,
we can stop optimization.

Lower bound > 0: provably robust
Upper bound < 0: no decision

In about 80% of the cases, our algorithm terminates 
within 50 iterations.

Dataset: Cora-ML



Comparison to linear relaxation
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Dataset: Cora-ML

• Our branch-and-bound method can prove robustness for 
many more nodes than a linear relaxation baseline.

• Even a single edge perturbation can change the predicted 
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Robust training comparison
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• We compare various robust training schemes in terms of their robustness share.

• In line with [Dai et al 2018], adversarial training does not seem to help.

• Interestingly, the only consistently more robust training method is [Zügner+ 2019]’s method for 
improved robustness for attribute attacks.
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Summary

• Robustness certification of GCN for perturbations of the graph structure

• Our novel branch-and-bound algorithm substantially
outperforms a linear relaxation approach

• Adversarial training does not seem to improve
provable robustness. This highlights the need for 
novel robust training schemes.

• Paper, code & more: www.daml.in.tum.de/robust-gcn

18Certifiable Robustness of Graph Convolutional Networks under Structure Perturbations – Daniel Zügner and Stephan Günnemann.

(1,1) (3,5) (5,10)

(q,Q)

0

25

50

75

%
C
er
t.
ro
b
u
st

Branch and bound

Linear relaxation

(local, global) budget

(1, 1) (3,5) (5,10)

%
 R

ob
u
st

 n
od

es

http://www.daml.in.tum.de/robust-gcn

