Professorship of Data Mining and Analytics **Department of Informatics** Technical University of Munich

Scalable Graph Neural Network solves limited range via personalized PageRank and decouples prediction from propagation.

Introduction

- Message passing neural networks set the SOTA on various graph tasks
- Semi-supervised classification: Graph A, node features X, subset of node labels $y \rightarrow$ predict remaining labels z

Basic model: Graph Convolutional Network (GCN):

$$oldsymbol{H}^{(k+1)} = ext{ReLU}\left(oldsymbol{\hat{A}}oldsymbol{H}^{(k)}oldsymbol{W}^{(k)}
ight)$$

 $oldsymbol{\hat{A}} = oldsymbol{ ilde{D}}^{-1/2}oldsymbol{ ilde{A}}oldsymbol{ ilde{D}}_{ij} = \sum_koldsymbol{ ilde{A}}_{ik}\delta_{ij}, \quad oldsymbol{ ilde{A}} = oldsymbol{A} + oldsymbol{ ilde{A}}$

Problems 1. Limited range

- Influence in GCN converges to PageRank in the limit of infinite layers
- Standard PageRank independent of root node
- \Rightarrow deep GCN suffers from oversmoothing
- Most MPNNs are limited to few (2-3) layers

2. Coupled prediction and propagation

- In MPNNs every layer predicts (transforms features) and propagates \Rightarrow MPNNs couple neural network depth (prediction) with used neighborhood size (propagation)
- Prediction & propagation are orthogonal aspects:
- Prediction depends on nature of node features
- Propagation depends on properties of graph

Predict then Propagate: Graph Neural Networks meet Personalized PageRank Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann

PPNP

 ${oldsymbol{x}}_{a}$

Solutions

1. Unlimited, adjustable range

2. Predict then propagate

Decouple prediction from propagation

End-to-end trained **PPNP**:

Scalability

- Interpret Z_{PPNP} as topic-sensitive PageRank, i.e. teleport set: topic $\widehat{=}$ column $H_{:c} \widehat{=}$ label
- Use power iterations to approximate topic-sensitive PageRank \rightarrow approximate PPNP (APPNP):

$$oldsymbol{Z}^{(0)} = oldsymbol{H} = f_{ heta}(oldsymbol{X}), \ oldsymbol{Z}^{(k+1)} = (1-lpha) oldsymbol{\hat{A}} oldsymbol{Z}^{(k)} + lpha oldsymbol{H}, \ oldsymbol{Z}^{(K)} = ext{softmax} \left((1-lpha) oldsymbol{\hat{A}} oldsymbol{Z}^{(K-1)} + lpha oldsymbol{H}
ight)$$

Stable performance for deep propagation

Propagation helps both training & inference

Performance gap grows for small train sets

SOTA performance

Model	Citeseer	Cora-ML	PubMed	MS Academic
GCN	75.40 ± 0.30	83.41 ± 0.39	78.68 ± 0.38	92.10 ± 0.08
N-GCN	74.25 ± 0.40	82.25 ± 0.30	77.43 ± 0.42	92.86 ± 0.11
GAT	75.39 ± 0.27	84.37 ± 0.24	77.76 ± 0.44	91.22 ± 0.07
JK	73.03 ± 0.47	82.69 ± 0.35	77.88 ± 0.38	91.71 ± 0.10
Bt. FP	73.55 ± 0.57	80.84 ± 0.97	72.94 ± 1.00	91.61 ± 0.24
PPNP	75.83 ± 0.27	85.29 ± 0.25	-	-
APPNP	75.73 ± 0.30	85.09 ± 0.25	79.73 ± 0.31	93.27 ± 0.08

Independent benchmark also confirms that PPNP is SOTA [Matthias Fey, Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric, ICLR 2019 (RLGM Workshop)]

