SPONSORED BY THE

Machine Learning Lab Course

Organizational Meeting

Winter Term 2020/21

Team

- Prof. Dr. Stephan Günnemann
- Marin Bilos, Anna Kopetzki and Aleksei Kuvshinov

This is a practical course (Praktikum) for **Master** students! *Name of module: Large-Scale Machine Learning (IN2106, IN4192)*

Website: www.daml.in.tum.de/ml-lab

Why attend our ML lab course?

- 1. Opportunity to **implement and apply** state-of-the-art ML algorithms
- 2. Gain hands-on experience working on real-world data, solving real-world tasks by working on projects offered by our industry partners.
 - Successful projects might even qualify for a subsequent master thesis.
- 3. Work on large-scale problems with the support of state-of-the-art GPU computing resources.

Requirements

- Requirements for the lab course
 - strong programming skills (Python, deep learning frameworks Pytorch/Tensorflow, etc.)
 - strong knowledge in data mining/machine learning
 - you should have passed relevant courses (the more, the better)
 - Machine Learning for Graphs and Sequential Data
 - Machine Learning
 - Our seminars
 - self-motivation
- Additional selection criteria
 - other **relevant** experience (projects in companies, experience as a HiWi)
 - you can send an overview of your experience to us (see end of slides)

Organization

- Groups of 3 students
- Each team will work on a different project
 - Groups can collaborate
- Students get access to our GPU compute servers
 - each of the servers has:
 - 4x NVIDIA GPU with 11GB RAM
 - 10-core CPU
 - 256 GB RAM
 - scale up your models and data!

Organization

- Weekly meetings (around 2 hours)
 - online
 - groups present every week
 - each group should briefly report their progress and next steps
- Regular documentation of your work on wiki
- Code on git

Projects – industrial and academic

VENERGIE

Image generation with invertible networks

. . .

Registration via the matching system!

Module name: Large-Scale Machine Learning (IN2106, IN4192)

+ Fill out the application form!

https://docs.google.com/forms/d/e/1FAIpQLSdegvjZFYeZpeHld_XzR0PRVUxpl0kO1wI0uMRnsJfp6cyZ0A/viewform

- provide us with a list of your experiences with ML (courses, projects, etc.)
- please send us a short overview (bullet list, not a complete CV)

Now! Presentations with current lab participants

- Adversarial Attacks on Images by Relighting
- Transfer Learning
- Robust Intermediate Representations
- Adversarial Examples for Emergency Vehicle Detection
- Predicting Environment Safety Using BMW Fleet Recording
- Image Analysis of Technical Documents to Identify Advanced Metadata
- Molecular Energy Prediction for Reactions and Simulation

Questions in chat and live after each presentation!