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Motivation & Core Idea

[ Goal: use the graph structure C@? and node attributes

to group similar nodes together

J Problem: anomalies obfuscate the latent clusters in real-world data

1 Previous approaches: detect and discard the anomalous nodes

[ Key insight: anomalies can materialize only partially
" For agiven node, only one source of information is anomalous

1 Solution: derive meaningful clusters based on the clean source
" Jointly perform clustering and anomaly detection

- Probabilistic Model

Partial Anomaly Identification and Clustering in Attributed Networks
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Results

d Clustering performance comparison (NMI) for real-world datasets

. Clean graph: Degree-corrected Stochastic Block Model
. Clean binary attributes: Bernoulli Mixture Model
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- Separate parameters for edges with a (partially) anomalous node
] Separate parameters for the attributes of anomalous nodes

CODA FocusCO BAGC PICS LSBM SIAN  PAICAN
Lawyers 0.50 0.28 0.14 0.27 0.50 0.58 0.66
Parliament | 0.06 0.00 0.53 0.47 0.77 0.73 0.78
Cora d.n.f. 0.13 0.15 0.04 0.52 0.39 0.53
Soc. Papers| d.n.f. 0.25 0.17 0.10 0.50 d.n.f. 0.52
HVR 0.71 0.50 0.18 0.44 0.83 0.77 0.89
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. Clustering and anomaly detection performance with increasing
oercentage of anomalies
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Example: social network user shows anomalous attributes
(to e.g. hide her identity) but her friendship relations are normal

(@) Partial attribute anomaly
(2 Partial graph anomaly
(3) Complete anomaly

Algorithmic Solution

Efficient Variational Expectation-Maximization

[ We reduce the inference cost from O(N#4) to O(E):

uated in 0(1)

= Show that in the limit case when the graph grows (N — o)
certain terms become negligible with error at most 1/N

= Show that certain O(N) terms can be eva

[ Linear scaling with the number of edges and attributes
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Iteration

J Case study: Clustering

Discovered topics in the Amazon graph

J Case study: Anomaly detection

Example partial attribute anomaly: m N b0k
DBLB co-authorship network Video Games
Wii U

Nintendo 3DS
PlayStation 3
Novelty

Building Toys
Action Figures, Statues
Toys & Games
Playsets & Vehicles
Int. Gaming Figures
Automotive
Jewelry

Clothing

Body Jewelry
Clothes, Shoes, Jewelry
Piercing Jewelry
Exterior Accessories
Building Sets

Wii

Baby

Novelty, Costumes
Top Handle Bags
Xbox 360

" Srinivasan Parthasarathy published

in 18 conferences (e.g. EDBT, 1JCAI)
" Most of his co-authors published
in just a few (mainly KDD, ICDM, SDM)
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Example partial graph anomaly:
Amazon co-purchase graph

" The movie “Frozen” belongs

to the cluster of movies
= Yet it has multiple edges to nodes
from the cluster of children’s clothes
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