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Supplementary Material

1 Experiments

1.1 Experimental setup details
For all methods we provide the true number K of clusters to detect. CODA is a non-
deterministic algorithm that is highly sensitive to initialization and parameter choice.
Following [2], we tried the values of {0.05, 0.1, 0.5} for λ, perform several restarts for
each of them and report only the highest NMI achieved. Moreover, CODA requires the
percentage of anomalous nodes, for which we provide the true values. FocusCO is a
semi-supervised approach; we have to provide example nodes that belong to the same
single cluster. We pick the best possible scenario, i.e. we run FocusCO K number of
times and we provide all nodes from a given cluster. We then pick the run which gave
us the highest NMI. SIAN and LSBM are also executed multiple times and we pick the
solution achieving highest NMI. For our approach, we simply perform several restarts
with random initialization and pick the one that gives us the highest likelihood. PICS
and BAGC are deterministic.

1.2 Blocky clusters: Robustness and anomaly detection
In Section 5.1 of the paper we mention that if we perform similar analysis for the
unrealistic case of ’blocky’ clusters (i.e. the degree distribution does not show a power-
law) FocusCO and CODA perform relatively better.

In Fig. 1(a) we can see that CODA performs relatively well achieving high NMI
score for the blocky clusters even though it can not detect all the anomalies as shown
in Fig. 1(b). FocusCO although performs better compared to the power-law degree
distributed graphs still has poor performance in comparison. PAICAN consistently
outperforms both methods. We can draw similar conculusions for the case when we
are generating either only graph anomalies (A), attribute anomalies (X), or complete
anomalies (A, X) shown in Figs. 1(c) and 1(d).
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Figure 1: Clustering and anomaly detection performance when increasing the percent-
age of anomalies on synthetic data with blocky clusters. PAICAN is very robust ob-
taining highest results.

1.3 Case study: Connectivity patterns
In this experiment we run our method on the SOCIALPAPERS and inspect the inferred
block connectivity patterns η. The nature of this dataset yields non-trivial block struc-
ture where some clusters have significant number of edges between each other. In
other words we have relatively high values at multiple places in η rather than just on
the diagonal.

For example our method detects a cluster where almost all of the papers are from the
subject ’neurology’. We observe that this cluster most likely connects to two other clus-
ters with main subjects ’diagnostic imaging’ and ’psychiatry’ respectively. These con-
nection patterns are coherent and indicative of users who tend to mention papers from
the broader area of neuropsychiatry. Similarly we discover a cluster of papers about
’audiology’ with preferred connections to a cluster about ’speech language pathology’.

1.4 Case study: Clustering
To enable visual inspection of the clustering, we select a small subset (N = 1549, E =
36934, D = 661) of the AMAZON dataset. The results for K = 15 are visualized in
Fig. 2 and Fig. 3(a) . The learned topic distribution t is shown in Fig. 2(a); for visu-
alization we only plot dimensions where tdk > 0.5 for at least one cluster. Intuitively,
this plot shows the ’active’ categories for each cluster. For example the products in
cluster C2 have the following most active categories [Wii U, Nintendo 3DS, PlaySta-
tion 3, Xbox 360] clearly showing a coherent cluster of products related to gaming
consoles. Similarly, inspecting the topics of C10 shows products about jewelery and
C14 cell phone cases related products.

The adjacency matrix in Fig. 2(b) reveals that the network has mostly typical clus-
ters – with most edges within the clusters and few edges between the clusters. No-
table is one off-diagonal entry between clusters C9 and C5. Interestingly, this entry
describes co-purchase behavior between the cluster with topic ’playsets, toys, action-
figures’ and the cluster ’clothing, bags’. Hence, probably indicating co-buying behav-
ior of families where products for their kids are bought together with other products.
PAICAN can easily detect such kind of network topology.

Finally, the graph embedding in Fig. 3(a) visually confirms the good clustering
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(a) Topics of the clusters (b) Adjacency matrix

Figure 2: Clustering in the Amazon dataset: cluster topics and adjacency matrix. Col-
ors indicate clusters.

structure and shows that PAICAN can easily handle non-trivial degree distributions.
We also observe partial graph anomalies – marked bigger in size – connecting to several
unrelated (according to η) clusters.

1.5 Case study: Partial anomalies
For this case study we run our method on the DBLP dataset. Since the data is too large
to visualize and we have no anomaly ground truth to evaluate the validity of our results
we pick some of the detected partial anomalous nodes and inspect their ego network
and attributes.

In Fig. 3(b) we show the ego network for a node that has been marked partially
anomalous in attribute space corresponding to Srinivasan Parthasarathy. As we can see
from the ego-network he fits nicely in graph space since most of his neighbors belong
to the same cluster. However, as we discussed in the main paper in, he is an obvious
anomaly w.r.t. attribute space. Overall, all these case studies indicate that PAICAN is
able to extract interesting knowledge from attributed graphs.

2 Proofs and derivations

2.1 Terms of the ELBO
Given our model, the ELBO decomposes as follows:

Eq [log p(A|z, c,η, ηbg , ηbb,θ, θ̃)]︸ ︷︷ ︸
:=LA

+Eq [log p(X|z, c, t)]︸ ︷︷ ︸
:=LX

+Eq [log p(z|c,π)] + Eq [log p(c|ρ)]− Eq [log q(z, c)] (1)
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(a) Clustering in the Amazon dataset. Colors indi-
cate clusters. Bigger nodes indicate partial graph
anomalies. Best viewed on screen.

(b) Ego network of a partial anomaly in attribute
space for DBLP data. Colors indicate clusters.

Figure 3: Graph embeddings for Amazon and DBLP data.

The last four terms are straightforward and can all be evaluated in linear time w.r.t. the
number of nodes and dimensions.

Eq [log p(c|ρ)] =
∑
i

3∑
m=0

φim log(ρm)

Eq [log p(z|c,π)] =
∑
i

∑
k

ψik(1− φi3)log(πk)

Eq [log q(z, c)] =
∑
i

∑
k

ψik log(ψik) +
∑
i

3∑
m=0

φim log(φim)

LX =
∑
i

∑
k

ψikφ
X
i0

(∑
d

Xid log(tdk) + (1−Xid) log(1− tdk)
)

+
∑
i

φXi1D log(0.5)

2.2 Proof of Eq. (4)
We will show that

∑
i φ

A
i0θi

∑
l ψilηkl = 1,∀k. We are using this identity only in the

E-step of our variational EM. That means we can substitute our MLE solution for the
parameters that we got in the M-step.

Let’s start by plugging in the solution for ηkl and substituting DG
k , we get:∑

i

φAi0θi
∑
l

ψilηkl =
∑
l

ψil
∑
i

φAi0θi
mkl

DGk D
G
l

=

∑
l

∑
i

φAi0θiψil
mkl(∑

i φ
A
i0θiψik

)(∑
i φ
A
i0θiψil

) =

∑
lmkl∑

i φ
A
i0θiψik

Let’s substitute now θi and mkl and take advantage of
∑
k ψkC = C for any

constant C that does not depend on k:∑
lmkl∑

i φ
A
i0θiψik

=

∑
l

∑
i 6=j Aijφ

A
i0φ

A
j0ψikψjl∑

i φ
A
i0(
∑
j 6=i Aijφ

A
j0)ψik

=

∑
l ψjl

∑
i6=j Aijφ

A
i0φ

A
j0ψik∑

i 6=j Aijφ
A
i0φ

A
j0ψik

=

∑
i 6=j Aijφ

A
i0φ

A
j0ψik∑

ij Aijφ
A
i0φ

A
j0ψik

= 1
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2.3 Calculation of the E-Step
Following [1] (Ch. 10) the optimal variational distribution is

q∗(zi) ∝ exp(Eq\zi [log p(A,X, z, c| . . .)])

Thus to derive the optimal variational parameters ψik for the cluster assignments, we
have to keep only the terms of the ELBO that include ψik and disregard the constants.
After rearranging we obtain (for the general case of graphs including potential self-
loops):

ψnewik ∝ exp

(
φAi0

[ ∑
j∈Ni

φAj0
∑
l

ψjl log(θiθjηkl)− θi(1− θiφAi0
∑
l

ψilηkl)−
1

2
θ2i ηkk

+Aii log(
1

2
θ2i ηkk)

]
+ φXi0

[∑
d

Xid log(tdk) + (1−Xid) log(1− tdk)
]
+ (1− φi3) log(πk)

)
(2)

In the case when the graph contains no self-loops (Aii = 0) we obtain Eq. (9) in the
paper.

Similarly, for the anomaly assignments φim, when including the self loops, the
variables φ̂Ai0 and φ̂Ai1 become:

φ̂Ai0 =
∑
j∈Ni

φAj0
∑
kl

ψikψjl log(θiθjηkl)− θi(1− θiφAi0
∑
kl

ψikψilηkl)

+
∑
j∈Ni

φAj1 log(θ̃jηbg)− ηbg(θ̃B − φAi1θ̃i)−
1

2
θ2i
∑
k

ψikηkk +
∑
k

ψikAii log(
1

2
θ2i ηkk)

φ̂Ai1 = log(θ̃iηbg)
∑
j∈Ni

φAj0 − ηbg θ̃i(g − φAi0) +
∑
j∈Ni

φAj1 log(θ̃iθ̃jηbb)

− θ̃iηbb(θ̃B − φAi1θ̃i)−
1

2
θ̃2i ηbb +Aii log(

1

2
θ̃2i ηbb)

2.4 Reformulation of the ELBO for the M-Step
We will simplify LA – the ELBO term with regards to graph space. We start with the
definition:

LA =
∑
i<j

∑
k,l

ψikψjlφ
A
i0φ

A
j0Aij log(θiθjηkl)− ψikψjlφAi0φAj0θiθjηkl

+
∑
i<j

φAi1φ
A
j0Aij log(θ̃iηbg)− φAi1φAj0θ̃iηbg

+
∑
i<j

φAi0φ
A
j1Aij log(θ̃jηbg)− φAi0φAj1θ̃jηbg +

∑
i<j

φAi1φ
A
j1Aij log(θ̃iθ̃jηbb)− φAi1φAj1θ̃iθ̃jηbb

+
∑
i

∑
k

ψikφ
A
i0Aii log(

1

2
θ2i ηkk)− ψikφAi0

1

2
θ2i ηkk +

∑
i

φAi1Aii log(
1

2
θ̃2i ηbb)− φAi1

1

2
θ̃2i ηbb

(3)
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Now we will consider the terms involving θ and θ̃. Looking at terms involving θ
in (3) a, and taking advantage of symmetry, we can rewrite them as:

Lθ =
∑
i 6=j

∑
k,l

ψikψjlφ
A
i0φ

A
j0Aij log(θi) +

1

2

∑
i 6=j

∑
k,l

ψikψjlφ
A
i0φ

A
j0Aij log(ηkl)

−
1

2

∑
i6=j

∑
k,l

ψikψjlφ
A
i0φ

A
j0θiθjηkl +

∑
i

∑
k

ψikφ
A
i0Aii log(

1

2
θ2i ηkk)− ψikφAi0

1

2
θ2i ηkk

Which we can rewrite using the definitions of mkl and DG
k :

Lθ =
∑
i

log(θi)φ
A
i0d

G
i +

1

2

∑
k,l

mkllog(ηkl)−
1

2
DGk D

G
l ηkl

+
1

2

∑
i

∑
k,l

ψikψilθ
2
i φ
A
i0(φ

A
i0ηkl − ηkk) +

∑
i

φAi0Aii log(
1

2
θ2i )

Now let’s look at the terms involving θ̃. Again taking advantage of symmetry we
can rewrite it as:

L
θ̃
=
∑
i6=j

φAi1φ
A
j0Aij log(θ̃i) + φAi1φ

A
j0Aij log(ηbg)− φAi1φAj0θ̃iηbg

+
∑
i6=j

φAi1φ
A
j1Aij log(θ̃i) +

1

2
φAi1φ

A
j1Aij log(ηbb)−

1

2
φAi1φ

A
j1θ̃iθ̃jηbb

+
∑
i

φAi1Aii log(
1

2
θ̃2i ηbb)− φAi1

1

2
θ̃2i ηbb

Which we can then rewrite using the definitions of mbg , mbb as:

L
θ̃
=
∑
i

∑
j∈Ni

φAi1φ
A
j0 log(θ̃i) +mbg log(ηbg)−

∑
i 6=j

φAi1φ
A
j0θ̃iηbg

∑
i

∑
j∈Ni

φAi1φ
A
j1 log(θ̃i)

1

2
mbb log(ηbb)−

1

2

∑
i6=j

φAi1φ
A
j1θ̃iθ̃jηbb +

∑
i

φAi1Aii log(
1

2
θ̃2i ηbb)− φAi1

1

2
θ̃2i ηbb

Plugging in DB and further simplifying we arrive at:

L
θ̃
=
∑
i

φAi1di log(θ̃i) +mbg log(ηbg) +
1

2
mbb log(ηbb)−

1

2
DBDBηbb

−DB
∑
i

(
∑
j

φAj0 − φAi0)ηbg +
1

2

∑
i

θ̃2i ηbbφ
A
i1(φ

A
i1 − 1) +

∑
i

φAi1Aii log(
1

2
θ̃2i )

Joining the terms regarding θ and θ̃, plugging in the definition of g and rearranging
we the complete log-likelihood w.r.t. to graph space:

LA =
1

2

∑
k,l

mkllog(ηkl)−
1

2
DGk D

G
l ηkl +

∑
i

φAi0 log(θi)d
G
i

+
1

2

∑
i

∑
k,l

ψikψilθ
2
i φ
A
i0(φ

A
i0ηkl − ηkk) +

∑
i

φAi0Aii log(
1

2
θ2i )

+
∑
i

φAi1di log(θ̃i) +mbg log(ηbg) +
1

2
mbb log(ηbb)−

1

2
DBDBηbb

−DB · g · ηbg +
∑
i

θ̃iφ
A
i1(1− φAi1)(ηbg −

1

2
ηbb) +

∑
i

φAi1Aii log(
1

2
θ̃2i ) (4)
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For the case that the observed graph has no self-loops (i.e. Aii = 0), we obtain the
simplified Eq. (14) as presented in the paper.

2.5 MLE/MAP of the parameters.
Before we solve for the MLE of the parameters we have to include the identifiability
constraints DG

k
!
=
∑
i(d

G
i + 2Aii)ψikφ

A
i0 and DB !

=
∑
i(di + 2Aii)φ

A
i1. That is

our log likelihood function has two additional terms L = L−
∑
k λk(D

G
k −

∑
i(d

G
i +

2Aii)φikφ
A
i0)−λ(DB−

∑
i(di+2Aii)φ

A
i1), where λk and λ are Lagrangian multipliers.

Similarly as above, focusing on graphs with Aii = 0 we obtain the constraints as
presented in the paper.

Since θi are independent of each other we can find the MLE for each of them
separately. Taking the terms involving θi and setting the derivative to 0 we get: ∂Lθi∂θi

=
φAi0d

G
i

θi
−
∑
k λkψikφ

A
i0. Solving the N +K system of equations we get the following

solution: θi = dGi ,∀i and λk = 1,∀k.

Similarly for θ̃i we have
∂L

θ̃i

∂θ̃i
=

φAi1di

θ̃i
− λφAi1. Solving the N + 1 system of

equations we get λ = 1 and θ̃i = di,∀i.
For the edge generating parameters we have:

∂Lηkl
∂ηkl

=
mkl

ηkl
−DGk D

G
l = 0 =⇒ ηkl =

mkl

DGk D
G
l

∂Lηbg
∂ηbg

=
mbg

ηbg
−DBg = 0 =⇒ ηbg =

mbg

DBg

∂Lηbb
∂ηbb

=
1

2

mbb

ηbb
−

1

2
DBDB = 0 =⇒ ηbb =

mbb

DBDB

Next looking at the topics we get: ∂Ltdk
∂tdk

=
∑
i ψikφ

X
i0

(
Xid
tdk
− 1−Xid

tdk−1

)
= 0 =⇒

tdk =
∑
i rikXid
Rk

. Looking at the cluster probabilities and introducing Lagrangian

multipliers to enforce
∑
k πk = 1 we get for πk =

∑
i(1−φi3)ψik+αk∑
i(1−φi3)+

∑
k αk

. Finally looking

at ρm and also introducing Lagrangian multipliers to enforce
∑4
m=0 ρm = 1 we have:

ρm =
∑
i φim+βm

N+
∑
m βm

2.6 Limit case analysis for approximation
In the following we justify the simplification of the term LA, by considering the limit
cases when the graph grows. As we will see, both terms

∑
i θ̃iφ

A
i1(1−φAi1)(ηbg− 1

2ηbb)
and 1

2

∑
i

∑
k,l ψikψilθ

2
i φ

A
i0(φ

A
i0ηkl − ηkk) become neglectable.

Recap the definition of LA:
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LA =
1

2

(∑
k,l

mkllog(ηkl)−DGk D
G
l ηkl +mbb log(ηbb) +D

B
D
B
ηbb
)

+
1

2

∑
i

∑
k,l

ψikψilθ
2
i φ
A
i0(φ

A
i0ηkl − ηkk) +mbg log(ηbg)− gDBηbg

+
∑
i

φ
A
i0 log(θi)d

G
i + φ

A
i1 log(θ̃i)di +

∑
i

θ̃iφ
A
i1(1− φ

A
i1)(ηbg −

1

2
ηbb)

After carefully rearranging the terms ηkl, ηbg , and ηbb, we obtain:

LA =
1

2

(∑
k,l

mkllog(ηkl)−
∑
i

ψikθiφ
A
i0ηkl(D

G
l − ψilθiφ

A
i0)

+mbb log(ηbb) +
∑
i

θ̃iφ
A
i1ηbb

(
D
B − (1− φAi1)

))
+

1

2

∑
i

∑
k

ψikθ
2
i φ
A
i0(−ηkk) +mbg log(ηbg)−

∑
i

θ̃iφ
A
i1ηbg

(
g − (1− φAi1)

)
+
∑
i

φ
A
i0 log(θi)d

G
i + φ

A
i1 log(θ̃i)di)

Now, splitting the
∑
k,l into

∑
k 6=l and

∑
k, we can also rearrange the terms ηkk.

Thus, we obtain:

LA =
1

2

(∑
k 6=l

mkllog(ηkl)−
∑
i

ψikθiφ
A
i0ηkl(D

G
l − ψilθiφ

A
i0)

+
∑
k

mkklog(ηkk)−
∑
i

ψikθiφ
A
i0ηkk(D

G
k − ψikθiφ

A
i0 + θi)

+mbb log(ηbb) +
∑
i

θ̃iφ
A
i1ηbb

(
D
B − (1− φAi1)

))
+mbg log(ηbg)−

∑
i

θ̃iφ
A
i1ηbg

(
g − (1− φAi1)

)
+
∑
i

φ
A
i0 log(θi)d

G
i + φ

A
i1 log(θ̃i)di)

Which can further be written as:

LA =
1

2

(∑
k 6=l

mkllog(ηkl)−
∑
i

ψikθiφ
A
i0ηklD

G
l (1−

ψilθiφ
A
i0

DGl
)

+
∑
k

mkklog(ηkk)−
∑
i

ψikθiφ
A
i0ηkkD

G
k (1−

ψikθiφ
A
i0

DGk
+

θi

DGk
)

+mbb log(ηbb) +
∑
i

θ̃iφ
A
i1ηbbD

B
(1−

(1− φAi1)
DB

)

)

+mbg log(ηbg)−
∑
i

θ̃iφ
A
i1ηbgg(1−

(1− φAi1)
g

)

+
∑
i

φ
A
i0 log(θi)d

G
i + φ

A
i1 log(θ̃i)di)

8



Introducing the following abbreviation ail = ψilθiφ
A
i0 and noticing the 1 − φAi1 =

φAi0, we finally arrive at

LA =
1

2

(∑
k 6=l

mkllog(ηkl)−
∑
i

ψikθiφ
A
i0ηklD

G
l (1−

ail

DGl
)︸ ︷︷ ︸

(1)

+
∑
k

mkklog(ηkk)−
∑
i

ψikθiφ
A
i0ηkkD

G
k (1−

aik

DGk
+

θi

DGk
)︸ ︷︷ ︸

(2)

+mbb log(ηbb) +
∑
i

θ̃iφ
A
i1D

B
ηbb (1−

φAi0
DB

)︸ ︷︷ ︸
(3)

)

+mbg log(ηbg)−
∑
i

θ̃iφ
A
i1ηbgg (1−

φAi0
g

)︸ ︷︷ ︸
(4)

+
∑
i

φ
A
i0 log(θi)d

G
i + φ

A
i1 log(θ̃i)di)

For the limit case it is now sufficient to consider the terms (1)-(4). Note that if we
replace each of the terms in the underbraces (1) through (4) with the value of 1 we
obtain the simplified equation in the paper. Thus, if we can show that (1)-(4) converge
to 1 in the limit case, the approximation error becomes neglectable. Indeed, as we will
see this holds for almost all the cases – and in the cases where it does not hold, the
two terms

∑
i θ̃iφ

A
i1(1− φAi1)(ηbg − 1

2ηbb) and 1
2

∑
i

∑
k,l ψikψilθ

2
i φ

A
i0(φ

A
i0ηkl − ηkk)

vanish due to another reason.
We start with the simplest case (4): Since g =

∑N
i=1 φ

A
i0, the term (4) obviously

approaches 1. More formally, we can distinguish two cases: First, if limN→∞ g =∞,
then clearly (

φAi0
g ) → 0 since φAi0 is bounded by 1 and the denominator grows faster.

Second, if limN→∞ g = c for some constant c, the series converges. Thus, it has to
hold limi→∞ φAi0 = 0. And therefore again (

φAi0
g )→ 0.1

The exactly same argumentation holds for the term (1): We have DG
l =

∑N
i=1 ail.

Either it holds limN→∞DG
l =∞, in which case, in the fraction the denominator grows

faster than the nominator, i.e. the fraction becomes 0. Or we have limN→∞DG
l = c

for some constant c. The series converges and, thus, limi→∞ ail = 0. In this case
the nominator approaches 0. In both cases the fraction approaches 0 and therefore (1)
approaches 1.

Let us now consider the term (3): Recap that DB =
∑N
i=1 θ̃iφ

A
i1. In the first case,

if limN→∞DB = ∞ then (3) approaches 1. Note again, that this result combined
with the above result for (4) means that we can safely drop the term

∑
i θ̃iφ

A
i1(1 −

φAi1)(ηbg − 1
2ηbb). In the second case, limN→∞DB = c for some constant c. Then

limi→∞ θ̃iφ
A
i1 = 0 has to hold. Accordingly, almost all terms in

∑
i θ̃iφ

A
i1(1−φAi1)(ηbg−

1Note that in general the following holds: If limN→∞
∑N
i=1 xi = c for some constant c (i.e. the series

converges), then limi→∞ xi = 0 has to hold.
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1
2ηbb) evaluate to zero (note that the variables are all bounded by 1). We can again
safely drop the term.

Finally consider the term (2): Recap that DG
k =

∑N
i=1 aik = ψikθiφ

A
i0. Again,

for the case limN→∞DG
k = ∞ the overall term clearly approaches 1. Second, for

the case limN→∞DG
k = c, the terms aik approach 0. That is, the same argumen-

tation as for (3)+(4) can be used: in combination with the result for (1), the term
1
2

∑
i

∑
k,l ψikψilθ

2
i φ

A
i0(φ

A
i0ηkl − ηkk) can be dropped since almost all elements eval-

uate to zero.
Overall, in all cases (i.e. independent whether the individual series converge or

diverge), the resulting error we make by the approximation approaches zero. Finally
note that is not possible that all series converge at the same time. At least one of
the series has to diverge when the graph grows since either infinitely many good or
infinitely many anomalous nodes have to be added (or both). This means that the
overall term LA in the simplified version has to diverge as well. Thus, while this term
grows, the error gets smaller.
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