Data Mining and Analytics Group **Department of Informatics** Technical University of Munich

Overlapping Community Detection with Graph Neural Networks Oleksandr Shchur, Stephan Günnemann

Motivation

- Community detection in graphs is a fundamental problem
- Applications: protein function prediction, social network analysis, fraud detection, neuroscience

Overlapping vs. disjoint communities

Existing deep learning methods can only find disjoint communities

But communities in real networks are overlapping!

Are deep learning methods suitable for overlapping community detection in graphs?

Background: Bernoulli-Poisson model

Non-negative community affiliation matrix $F \in \mathbb{R}_{>0}^{N \times C}$

 F_{uc} = strength of node u's membership in community c

Generative model for the graph

$$A_{uv} \sim Bernoulli(1 - \exp(-F_u F_v^T))$$

Intuition: Connection probability is proportional to the number of shared communities

Learning: Maximum likelihood

 $\max_{F \ge 0} \log p(A|F)$

F is treated as a free variable in optimization

Idea: Train a GNN to predict the community affiliations

Neural Overlapping Community Detection (NOCD) Predict communities using a Graph Neural Network (GNN)

Challenges

Real graphs are extremely sparse \rightarrow Balance loss for edges and non-edges

Naïve loss computation is $O(N^2)$ \rightarrow Use stochastic optimization – leads to $O(batch_size)$

Node attributes might be uninformative / unavailable \rightarrow Use adjacency matrix as input

Attractive properties

- Accurate: State-of-the-art results in community recovery
- Scalable: Train on a graph with 800K edges in 3 minutes on a single consumer GPU
- Works out of the box: Single hyperparameter configuration \bullet works across graphs with extremely different properties

Inductive community detection

- Fit the model on the training graph G_{train}
- Predict communities for the test graph G_{test} with a single forward pass
- Applications
 - 1. Time evolving graphs: Infer communities of new nodes without retraining
 - 2. Scalability: Train using a small subset of the original graph

August 5, 2019 Anchorage, AK, USA

 $\max_{A} \log p(A|F)$

Reconstruction loss

NOCD recovers ground truth communities

- Excellent results in community recovery

Dataset	BigCLAM	CESNA	SNetOC	DW/NEO	NOCD-Adj	NOCD-Attr
Facebook 414	48.3	50.3	52.0	40.9	56.3	59.8
Facebook 686	13.8	13.3	10.6	11.8	20.6	21.0
Facebook 698	45.6	39.4	44.9	40.1	49.3	41.7
Facebook 1684	32.7	28.0	26.1	37.2	34.7	26.1
Facebook 1912	21.4	21.2	21.4	20.8	36.8	35.6
Comp. Science	0.0	33.8	DNF	3.2	34.2	50.2
Engineering	7.9	24.3	DNF	4.7	18.4	39.1
Medicine	0.0	14.4	DNF	5.5	27.4	37.8

Training using only 30% of the original graph leads to virtually no decrease in performance

GNN is the crucial component Replacing GNN with an MLP degrades the performance

Dataset	NOCD + GNN	NOCD + MLP	Free variable
Facebook 414	59.8 ± 1.8	22.1 ± 3.1	49.2 ± 0.4
Facebook 686	21.0 ± 0.9	1.5 ± 0.7	13.5 ± 0.9
Facebook 698	41.7 ± 3.6	1.4 ± 1.3	41.5 ± 1.5
Facebook 1684	26.1 ± 1.3	17.1 ± 2.0	22.3 ± 1.4
Facebook 1912	35.6 ± 1.3	17.5 ± 1.9	18.3 ± 1.2
Computer Science	50.2 ± 2.0	49.2 ± 2.0	15.1 ± 2.2
Engineering	39.1 ± 4.5	44.5 ± 3.2	7.6 ± 2.2
Medicine	37.8 ± 2.8	31.8 ± 2.1	9.4 ± 2.3

Choose between attribute- and adjacency-based variants of the model by choosing one with better reconstruction loss

Inductive formulation speeds up training

--- Transductive performance

www.kdd.in.tum.de/nocd