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Deep Learning on Graphs

Graphs are ubiquitous
• Social networks
• Web graphs
• Knowledge graphs

Deep learning on graphs
• (Unsupervised) learning of node representations (e.g. DeepWalk)
• Neural message passing (graph convolution)
• Implicit generative models for graphs
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Attacks on Deep Learning for Graphs

Adversaries are very common in application scenarios, e.g. search engines, or 
recommender systems.
These adversaries will exploit any vulnerabilities exposed.

In our work, we try to answer the question:

Are deep learning models for graphs robust 
with respect to adversarial attacks?
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Semi-Supervised Node Classification
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Partially labeled, attributed graph

Deep learning
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Message passing (a.k.a. graph convolution) aggregates local information.

This could mean higher robustness – or lower robustness due to cascading failures!

Message 

passing



Real-world Example

• Image of a tabby cat correctly 
classified
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Training data

Training

Model

88% tabby cat



Perturbation

Real-world Example

• Image of a tabby cat correctly 
classified

• Add imperceptible perturbation

• Model classifies the cat as 
guacamole
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Training data

Training

Model

99% guacamole

Perturbed image



Adversarial attacks are a real threat.
When dealing with graphs, we need to rethink
possible attack and defense strategies.
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Attack possibilities

Target node ! ∈ #: node whose classification label we want to change

Attacker nodes $ ⊂ #: nodes the attacker can modify

Direct attack ($ = {!})
• Modify the

target‘s features

• Add connections
to the target

• Remove connections
from the target
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Target node

Indirect attack (! ∉ $)

• Modify the
attackers‘ features

• Add connections
to the attackers

• Remove connections
from the attackers

Attacker nodeAttacker node

Change website
content

Buy likes/ 
followers

Example

Unfollow
untrusted users

Hijack friends
of target

Create a link/ 
spam farm

Example



Adversarial Attacks – Graphs
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Original graph

Model
Training

Modified graph

Adversarial
attack

Transductive learning: data consists of
labeled and unlabeled samples; all data
used for training.

Copy

Reuse
Evasion attack: Modify data to fool a 
static classifier.

Evasion attack

Updated
model

Re-train

But: modifications are on the training data 
(transductive setting).
Re-training can restore the predictions

Poisoning attack



Adversarial Attacks – Graphs
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Original graph

Model
Training

Modified graph

Adversarial
attack

Transductive learning: data consists of
labeled and unlabeled samples; all data
used for training.

Copy

Reuse

Evasion attack: Modify data to fool a 
static classifier.

Evasion attack

Updated
model

Re-train

But: modifications are on the training data 
(transductive setting).
Re-training can restore the predictions

Poisoning attack

Important for a realistic attack: 
Impact after model re-training (poisoning).



Poisoning attack on node classification

argmax
&',)'

max
*+*,-.

log 12,*∗ − log 12,*,-.
∗

5ℎ787 1∗ = :;∗ <=, >= = ?@:ABCD E<′ G7HI E<′>′J K J L ,

5MAℎ N∗ = argmin
;
ℒ (N; <=, >=)

?. A. <=, >= ≈ (<, >)
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< ∈ 0,1 Z×Z: original adjacency matrix
> ∈ 0,1 Z×\: (binary) node attributes
<=: modified structure
>=: modified features
] : target node
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c.f. ℒ(N; <, >): evasion

(after re-train)

Message passing

“Unnoticeability”
constraint

< ∈ 0,1 Z×Z: original adjacency matrix
> ∈ 0,1 Z×\: (binary) node attributes
<=: modified structure
>=: modified features
] : target node



Challenges in the Graph Setting

1. argmax
&',)'

: optimization over discrete variables
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(gradient information less reliable)

0
(No edge)

1
(Edge)

Lo
ss Discrepancy

Predicted loss with edge
(extrapolated Gradient)

Loss with edge

Loss with no edge ∇&ℒ



Challenges in the Graph Setting

1. argmax
&',)'

: optimization over discrete variables

2. Relational dependencies between the nodes: propagation effects

3. +,, -, ≈ +, - :
what is a sensible measure of ‘closeness’ for (attributed) graphs?

4. /∗ = argmin4 ℒ /; +,, -, :
minimize classification accuracy after (re-)training on the modified data
(transductive setting)
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(gradient information less reliable)



Our approach

• Use linear surrogate model to perform attacks efficiently while enforcing 
unnoticeability constraints on the changes.

• Train state-of-the-art models on the perturbed data and evaluate the 
degradation in performance.

• No access to the classifier is needed for the attack.
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Surrogate Model

Based on a two-layer Graph Convolutional Network (GCN):

! = #$ %, ' = ()#*+,- .% /012 .%'3 4 3 5

log !′ = .%5'3′

Structure perturbations: max
=>
ℒ@ log !A@ ) Cℎ0E0 log !A@ = [ .%5G A

Feature perturbations: max
H

ℒ@ log !A@ ) Cℎ0E0 log !A@ = [G4'G5 A
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✘✘ Linearize classifier

Constants
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✘✘ Linearize classifier

Constants

In contrast to the gradient, this simpler surrogate model 
allows us to analytically and efficiently determine the exact
impact of a perturbation.



Unnoticeability Constraint
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Degree distributions

with constraint without constraint
probabilistic efforts

bayesian david
inference family

Adversarially inserted words
to ML paper abstracts:

Statistical test on the original and modified degree 
distributions to ensure structural similarity.

Structure perturbations: !" ≈ !

!", %" ≈ !, % : Visual inspection by a human is not an option for graphs.
What are sensible measures of ‘closeness’ for graphs?

Co-occurrence constraint for features to prevent 
addition of unrealistic, easy to detect features

Feature perturbations: %" ≈ %

: Clean graph
x : Modified graph



Unnoticeability Constraint
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Degree distributions

with constraint without constraint
probabilistic efforts

bayesian david
inference family

Adversarially inserted words
to ML paper abstracts:

Statistical test on the original and modified degree 
distributions to ensure structural similarity.

Structure perturbations: !" ≈ !

!", %" ≈ !, % : Visual inspection by a human is not an option for graphs.
What are sensible measures of ‘closeness’ for graphs?

Co-occurrence constraint for features to prevent 
addition of unrealistic, easy to detect features

Feature perturbations: %" ≈ %

: Clean graph
x : Modified graph

Closed-form equations, enabling a check for violations
of the constraints in constant time.



Experiments

• Experimental evaluation on three datasets: Cora (ML), Citeseer, PolBlogs
• Transfer experiments with Graph Convolutional Network (GCN), Column 

Network, and DeepWalk
• Perturbation budget is d+2, where d is the target‘s degree
• Evaluation on 5 different splits; 10x re-training per attack

Baselines:
• Inter-class random (direct; structure): insert edges randomly to nodes from 

different classes.
• Gradient (direct; structure): insert/remove edges based on the gradient.
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Dataset Nodes Edges Attributes

Cora-ML 2,485 5,069 1,433

Citeseer 2110 3,668 3,703

PolBlogs 1,222 16,714 –



Results: Example Attack on GCN
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(correct)

Class 7

Predicted probabilities (clean); 5 re-trainings

Classification margin
> 0: Correct classification
< 0: Incorrect classification



Results: Example Attack on GCN
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(correct)

Class 7

Predicted probabilities after attack (5 modifications)



Results: Transfer
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Deep learning models for graphs are not robust to adversarial attacks.
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Perturbations
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Full network

Results: Limited knowledge

Setup: Only provide a small part of the network around the target node to the 
surrogate model to attack (evaluation with GCN on the complete graph). 
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10% visible
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Results for attacking Citeseer data

• Deep learning models for graphs are highly vulnerable to adversarial attacks.
• We propose an efficient algorithm for performing transferable attacks.
• These attacks are successful even under restrictive attack scenarios, e.g. no 

access to target node or limited knowledge about the graph.

Conclusion

Adversarial Attacks on Neural Networks for Graph Data - Zügner, Akbarnejad, Günnemann. 25

github.com/danielzuegner/nettack
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