
Professorship of Data Mining and Analytics
Department of Informatics
Technical University of Munich

Adversarial Attacks on Neural Networks for Graph Data
Daniel Zügner, Amir Akbarnejad, Stephan Günnemann

August 19 – 23, 2018

London, United Kingdom
KDD 2018 github.com/danielzuegner/nettack

Attack method

Cora Citeseer PolBlogs

GCN CLN DW GCN CLN DW GCN CLN DW

Clean 0.90 0.82 0.84 0.88 0.71 0.76 0.93 0.63 0.92

Ours 0.01 0.17 0.02 0.02 0.20 0.01 0.06 0.47 0.06
Gradient 0.03 0.18 0.10 0.07 0.23 0.05 0.41 0.55 0.37

Inter-class Random 0.61 0.52 0.46 0.60 0.52 0.38 0.36 0.56 0.30

Ours-Indirect 0.67 0.68 0.59 0.62 0.54 0.48 0.86 0.62 0.91

w/ constraint w/o  constraint

probabilistic efforts

bayesian david

inference family

Experimental Results

q Transfer experiments: Graph Convolutional Network (GCN), Column Network, DeepWalk.

q Perturbation budget is d+2, where d is the target‘s degree.

q Evaluation on 5 different splits; 10x re-training per attack.

Approach

q Attacks via linear surrogate model while enforcing unnoticeability constraints.

q Train deep learning models on the poisoned data and evaluate the drop in performance.

q No access to the classifier is needed for the attack.

Example Attack

Limited knowledge

q Only provide a small part of the network around

the target node to the surrogate model to attack.

q Evaluation with GCN on the complete graph. 

q Attacks are successful even in this restricted setting.

Conclusion

q We propose an efficient algorithm for adversarial attacks on deep learning for graphs.

q No access to the classifier is needed for the attack due to the surrogate model approach.

q Our attacks are successful even under restrictive attack scenarios, e.g. no access to target

node or limited knowledge about the graph.

Ours: Full

network

Ours: 20%

Ours: 10%

Random: full network
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(correct)

Class 7

Class probabilities (clean data)

Classification margin

> 0: Correct classification

< 0: Incorrect classification
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Table: Share of correct classifications of target nodes after attack and re-training

Results

Poisoning of DeepWalk
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Poisoning of Column Network
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Evasion vs. poisoning of GCN
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Poisoning of GCN
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Formal Problem Definition

q Goal: maximize classification loss of a single target node.

q Measure impact after training the classifier on the modified data (poisoning attack).

q Enforce unnoticeability constraints for subtle perturbations.

q Challenge: discrete data (gradient less reliable because we need to extrapolate).

(A#, X#) = argmax
-.,/.

max
010234

log 78,0
∗ − log 78,0234

∗

Classifier: ;ℎ=>= 7∗ = ?@∗ A
B, CB , max

Training: ;DEℎ F∗ = argmin
@
ℒ (F; AB, CB) max

Unnoticeability: K. E. AB, CB ≈ (A, C) max

Budget constraint: NOP AB − A Q + CB − C Q < Δ

Surrogate Model

q Linear surrogate model based on two-layer GCN.

q Enables computation of the exact impact of a perturbation efficiently and in closed form.

q Attacker chooses perturbation that maximizes loss on the surrogate model (one at a time).

Linearize classifier: 7 = ?@ A, C = KU?EVNW XA Y=Z[ XAC\ ] \ ^ max

Simplified equation: log 7′ = XA^C\B max

Structure perturbations: max
-̀

ℒB log 78
B ) ;ℎ=>= log 78

B = [ XA^b
8

Feature perturbations: max
/

ℒB log 78
B ) ;ℎ=>= log 78

B = [b]Cb^ 8

Unnoticeability Constraints

AB, CB ≈ A, C : What are sensible measures of ‘closeness’ for graphs?

Structure perturbations 

q Fundamental property of graphs: degree distribution.

q Hypothesis test: Were the original and modified degree 

distributions d and d′ generated by the same underlying

powerlaw distribution?

eQ: d and d′ come from the same powerlaw distribution.

e]: they come from separate powerlaw distributions.

Approx. power law exponent: f d ≈ 1 + d ⋅ ∑jk∈m log
jk

jnkopQ.q

p]

Log likelihood: r d = d ⋅ log f 1 + log Pstu + f + 1 ∑jk∈m log Pt
p]

Hypothesis likelihoods: r eQ = r d ∩ dB ; r e] = r d + r dB
p]

Test statistic: Λ d,dB = −2 ⋅ r eQ + 2 ⋅ r(e])
p]

q For large N, Λ follows a y^ distribution with one degree of freedom. 

q We choose a very conservative p-value constraint (p=0.95), i.e. we can detect small changes.
q Bookkeeping enables incremental updates to all terms in constant time.

Feature perturbations 

q Constraint to prevent addition of unrealistic features (words).

q Co-occurrence graph of the node attributes in the data:

b = z, { , z ∈ 0,1 m, { ⊆ z×z

?], ?̂ ∈ {: ?] and ?̂ co-occur in at least one node in the dataset.

Node �’s features: ÄÅ = Ç CÅÉ ≠ 0}

Probability of reaching a feature by a random walker on b starting at node � in one step:

Ü D ÄÅ =
]

áà
∑É∈áà 1/PÉ ⋅ {tÉ > ã; in our experiments we set ã = 0.5 ⋅

]

áà
∑É∈áà 1/PÉ.

q Encourages addition of features that co-occur with many of node �’s features.

q Discourages addition of features that only co-occur with unspecific features, i.e. stopwords.

Top inserted words to papers 

of the class neural networks:

✘✘
Constants

A ∈ 0,1 ç×ç: adjacency matrix

C ∈ 0,1 ç×m: node attributes

AB: modified structure

CB: modified features

é : target node

Clean graph

x Modified graph
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Example: Degree Distributions

Original graph

Target node

Attacker nodeAttacker node

Possible Attacks on Graphs

q In addition to feature vectors, adversarial attacks on 
graphs can modify the graph structure.

q Even more critical: a node can be attacked 
without direct access due to network effects.

Target node E ∈ è: node whose classification label the attacker wants to change

Attacker nodes Ä ⊂ è: nodes the attacker can modify

Direct attack (Ä = {E})

• Modify the 
target‘s features

• Add connections
to the target

• Remove connections
from the target

Indirect attack (E ∉ Ä)

• Modify the
attackers‘ features

• Add connections to
the attackers

• Remove connections
from the attackers

Hijack friends of
target

Create a link/ 
spam farm

Example
Change website
content

Buy likes/ 
followers

Example

Unfollow
untrusted users

Focus: Semi-supervised Node Classification

Partially labeled, attributed graph

Deep learning

Message 

passing
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q Message passing could lead to higher robustness due to local averaging; or lower robustness

due to propagation effects in the network.

Motivation

q Deep learning for graphs has brought great improvements on many tasks, e.g. node 

representation learning or node classification.

q Adversaries are a real threat in the applications where these models are likely to be used, e.g.

search engines, recommender systems.

q Before deploying these models, we have to answer the question:

Are deep learning models for graphs robust

with respect to adversarial attacks?

Poisoning vs. Evasion Attacks
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q But: modifications are on the training

data (transductive setting).

q Re-training can restore the predictions

q Important for a realistic attack: 

Impact after model re-training (poisoning).

q Evasion attack: Modify data to

fool a static classifier.

q Transductive learning: data consists of

labeled and unlabeled samples; all data

used for training.

Evasion attack

Poisoning attack


