
Entropy-regularized optimal transport

Solvable via Sinkhorn algorithm (alternating matrix normalization):

Parallelizable, runs in 𝒪 𝑛2 → 𝑲 already has that many entries!

Sparse Sinkhorn
𝑲 exponential in 𝑪 → only near neighbors important!

Sparsely approximate 𝑲:

Calculate P via Sinkhorn algorithm: ഥ𝑷 ≈ ഥ𝑷sp = diag ത𝒔 𝑲sp diag( ҧ𝒕)
Runs in 𝒪(𝑛 log 𝑛)!

Locally corrected Nyström (LCN)
How to incorporate short- and long-range interactions?

Correct low-rank Nyström approximation with sparse values:

LCN is a general kernel approximation.
We can still use the Sinkhorn algorithm → LCN-Sinkhorn, runs in 𝒪(𝑛 log 𝑛 + 𝑛𝑙2)
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Graph Transport Network (GTN)
Graph neural network (GNN) generates node embeddings
Embeddings matched using Sinkhorn

→ Learns graph distances via backpropagation

Varying numbers of nodes → learnable unbalanced OT
Bipartite matching (BP) matrix for optimal transport
(Scaled) norms as deletion cost

Multi-head OT: OT with multiple embeddings & varying regularization 𝜆

LCN: Provably better approximation, same convergence
• Sparse corrections provably reduce kernel approximation error of Nyström

for uniform and clustered data [Theorem 1&2].

• Better kernel approximation directly translates to better Sinkhorn approximation
[Theorem 3].

• Sparse and LCN-Sinkhorn converge in 𝒪(lnmin𝑲 /𝜀), like full Sinkhorn
[Theorem 4].

• Sparse and LCN-Sinkhorn allow fast backpropagation via analytical gradients
[Prop. 1].

Embedding alignment
3x faster & 3.1pp more accurate

Massively scalable optimal transport:
Sparse and LCN-Sinkhorn

Method Time (s) Avg. accuracy

Original 268 67.9%

Full Sinkhorn 402 70.1%

Multiscale OT 88.2 26.8%

Nyström Sinkhorn 102 47.8%

Sparse Sinkhorn 49.2 68.4%

LCN-Sinkhorn 86.8 71.0%

Model Linux AIDS30 Pref. att.

SiamMPNN 0.09 13.8 12.1

SimGNN 0.039 4.5 8.3

GMN 0.015 10.3 7.8

GTN, 1 head 0.022 3.7 4.5

8 OT heads 0.012 3.2 3.5

Balanced OT 0.034 15.3 27.4

ഥ𝑷 = arg min
𝑷

𝑷, 𝑪 F − 𝜆𝐻 𝑷

ഥ𝑷 = diag ത𝒔 𝑲 diag( ҧ𝒕)

𝑲 = e− Τ𝑪 𝜆

𝒔 𝑖 = 𝒑⊘ (𝑲𝒕 𝑖−1 ), 𝒕 𝑖 = 𝒒⊘ (𝑲𝑇𝒔 𝑖 )

𝑲𝑖𝑗
sp

= ቊ
𝑲𝑖𝑗 if 𝑥𝑖 , 𝑥𝑗 are near,

0 otherwise

GTN: GNN with optimal transport
-48% error for graph distance learning

𝑲LCN = 𝑲Nys −𝑲Nys
sp

+𝑲sp

𝑲Nys = 𝑼𝑨−1𝑽

𝑪𝐵𝑃 = 𝑪 𝑪(𝐩,𝜀)

𝑪(𝜺,𝐪) 𝑪(𝜀,𝜀)
, 𝑪𝑖𝑗

𝐩,𝜀
= ቊ

𝑐𝑖,𝜀 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
, 𝑪𝑖𝑗

𝜺,𝐪
= ቊ

𝑐𝜀,𝑗 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
, 𝑪𝑖𝑗

𝜀,𝜀
= 0

Fast & accurate transport plan
and embedding alignment

Method AIDS
30

Pref. 
att.

Pref. att. 
200

Full Sinkhorn 3.7 4.5 1.3

Nyström Skh. 3.6 6.2 2.4

Multiscale OT 11.2 27.4 6.7

Sparse Skh. 44 40.7 7.6

LCN-Sinkhorn 4.0 5.1 1.4


