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TL;DR: First certificate w.r.t. graph perturbations for a

general class of models including Label Prop. and GNNSs.

GNNs are vulnerable to Adversarial Attacks

Semi-Supervised Node Classification: Given a few labelled
nodes predict the classes of the remaining nodes in the graph
Targeted Attack: Perturb the graph to misclassify a target node

Research Questions

Certification: How to verify if a graph-based model is robust?
Robust Training: How can we improve certified robustness?

Flexible Threat Model

Attacker controls fragile edges they can turn on or off

Global Budget: perturb at most B edges in total |

Local Budget: at most b,, edges for each node v

Robustness Certificate

Guarantee that the prediction does not change under any
admissible perturbation of the input graph
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Family of Models based on PageRank

Predictions are a linear function of (Personalized) PageRank
logpg(t,c) = mg(t)" h(c)

Personalized PageRank t(t): Stationary distribution of a
random walker teleporting back to node t with probability «

EX 1 - Label Propagation: repeatedly diffuse initial beliefs H(0)
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EX 2 - Graph Neural Network (PPNP): first map node features
to initial beliefs with a NN fy then diffuse with 7. (t)
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Certificate & PageRank Optimization & MDP

Computing certificates amounts to finding optimal PageRank
which can be done efficiently via a Markov Decision Process
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A = {0, Uk}, U, k}}

node = state transition law

(S, (A;)ies,p,T) reward

actions = subsets of fragile edges

Local budget: find optimal fragile edges with policy iteration

X — solving a sparse
linear system

r=Hy —H
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Local + Global budget: NP-Hard, augment graph & solve a QP
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Certification Results
GNNs are more robust than Label/Feature Propagation

Two attacker scenarios:
add and remove or
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Three models:

(83%) GNN (PPNP)

(82%) Feature Propagation
(73%) Label Propagation
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To increase ratio of certified nodes: decrease budget / lower «
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Robust Training

Use worst-case margin during training to learn robust weights

Hinge-loss penalty: maximize the worst-case margin
Robust cross-entropy: worst-case instead of standard logits

Lepm = Leg + 2 2o max(0, M —m”) Lrce = Lep(—m”)

Robust training increases ratio of certified nodes and accuracy
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2 Training scheme:

S (70%) Standard cross-entropy
;0'9_ (73%) Hinge-loss penalty

O (72%) Robust cross-entropy
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