Professorship of Data Mining and Analytics
Department of Informatics
Technical University of Munich

Summary

J Graph neural networks (GNNs) can be successfully
poisoned by only small changes to the graph.

J We use techniques from meta-learning for adversarial
attacks on graph neural networks.

. Our attacks can lead to graph neural networks performing
worse in node classification than a linear classifier that
treats all samples independently.

J ?

Semi-supervised node classification {
N

J Given an (attributed) graph and a small number of labeled — >
nodes, predict the labels of the remaining unlabeled nodes.

. Deep neural networks excel at this task. But are they also robust?

. Robustness is critical for graph learning methods as there are plenty of
adversaries where they are deployed (e.g., the Web).

Problem formulation

Goal: Given a limited budget of perturbations A, insert/delete edges so that
training on the resulting graph leads to weaker classification performance.

This corresponds to solving the following bilevel problem:

(’;‘renq?()((;) Liest (f@* (G)) s.t. 0" = daI'g mein Lirain (f@ (é))

fo: graph neural network with parameters 6
Lirain» Leest: 10ss on labeled (training) or unlabeled (test) nodes
D(G): set of graphs under admissible (unnoticeable) perturbations

In our paper we provide a proof of concept that our method can also modify
the node attributes to attack GNNs.

Challenges

1 The number of possible edge perturbations is in O(N?2)

. The data (i.e. graph structure) is discrete, which means that gradient-
based optimization is not directly applicable.

d Solving the bilevel optimization problem above involves training a graph
neural network in the inner problem.

Adversarial Attacks on Graph Neural Networks via Meta Learning

Daniel Zugner, Stephan GUnnemann

ICLR 2019

ldea

[Perform poisoning adversarial attacks on graph neural networks by
backpropagating through the training phase to obtain meta-gradients.

d Approximate the classification loss on the unlabeled nodes L;,;
via self-training.

[Relax the discreteness of the graph structure in order to obtain
(meta-)gradients but perform discrete perturbations (actions).

Schematic view

Outer optimization:

m(?x Liest (f@* (G))

Test loss surface

L

Meta gradients
vG*Ctest (f@* (G))

L ‘Normal’ gradients
Inner optimization:

) | VoLirai 0 (G)
0" = min Lorgin (o (6)) =/ rrain{fo0(6))
Trainingon Gy /" | Tréjning on EQ\\ Training on G4
05 - * g0

Training loss surface

Algorithm

J Train a two-layer graph convolutional network with linear activation
function for T steps using stochastic gradient descent with momentum.

] Predict the class labels of the unlabeled nodes and consider these as the
true labels, i.e. Lso1r = Lt (self-training).

d Unroll the training procedure to compute the meta-gradients:
V?eta’= V(Pl:self (ng(G)) e RVXN
1 More scalable alternative: heuristic meta-gradients. Idea: average the

inner gradients of the loss w.r.t. the graph structure during training.

J Select the edge to insert/delete with the largest meta-gradient while
enforcing unnoticeability constraints ®(G) on the degree distribution.

May 6-9, 2019
New Orleans, USA

Results
X 70 —
P
: I S e
&
500~ — 60 - A-Meta-Both \(
<ij) Clean == A-Meta-Train
Meta-Self (5%) == Meta-Self
50 = . I I i i y |
| | ' 1 5 10 15 25
CLN GCN Log. reg.

Edges changed (%)

Left: GNNs perform worse on Citeseer after 5% edge changes than logistic
regression ignoring the graph altogether.

Right: Our meta-gradient-based attacks lead to the strongest decrease in
classification performance (dataset: Cora-ML).

Cora Citeseer Avg.
Attack GCN CLN DeepWalk| GCN CLN DeepWalk | rank
Clean 16.6+0.3 17.3+0.3 20.3+1.0(28.5+09 283+09 348+1.4| 5.2
DICE 18.0+0.4 18.0+0.2 22.8+0.3(28.9+0.3 29.1+0.3 39.1+04 | 4.0
Nettack* - - - 31.9+0.3 30.2+£0.4 41.2+04| -

Meta-heuristic |21.8+ 0.9 20.5+0.3 25.0+£0.631.9+0.7 30.1+0.5 32.7+0.5| 3.4
Meta-gradient (24.5+1.0 20.3+0.4 28.1+0.6 |34.6+0.7 32.2+0.6 34.6+0.7 | 2.2
Meta w/ Oracle|21.0+ 0.5 21.6+0.3 27.8+0.7 |34.2+0.9 329+0.6 36.1+0.7 | 2.0

* Did not finish within three days on Cora-ML and PolBlogs

Table: Misclassification rate after training on graphs with 5% modified
edges. Our attacks even transfer to unsupervised embeddings.

Analysis of attacks

0 5 10

Adversarially inserted edges cannot be distinguished from normal edges
based on typical properties

Adversarial edges Original edges

A

—15 —-10 —=5 1 4 16 64 256

Density

Classification accuracy

Trained on
\ Original graph Perturbed graph
Predict on
Original graph 0.85 0.52
Perturbed graph 0.83 0.49

Once trained on the poisoned data, GNNs also fail on the clean data!

[github.com/danielzuegner/gnn-meta-attack O} ﬁ}:s‘r

