

Summary

- Graph neural networks (GNNs) can be successfully poisoned by only small changes to the graph.
- We use techniques from meta-learning for adversarial attacks on graph neural networks.
- Our attacks can lead to graph neural networks performing worse in node classification than a linear classifier that treats all samples independently.

Semi-supervised node classification

- Given an (attributed) graph and a small number of labeled nodes, predict the labels of the remaining unlabeled nodes.
- Deep neural networks excel at this task. But are they also robust?
- **Robustness is critical** for graph learning methods as there are plenty of adversaries where they are deployed (e.g., the Web).

Problem formulation

Goal: Given a limited budget of perturbations Δ , insert/delete edges so that training on the resulting graph leads to weaker classification performance.

This corresponds to solving the following bilevel problem:

 $\max_{\hat{G}\in\Phi(G)}\mathcal{L}_{test}\left(f_{\theta^*}(\hat{G})\right) \quad s.t. \ \theta^* = \arg\min_{\theta}\mathcal{L}_{train}\left(f_{\theta}\left(\hat{G}\right)\right)$

graph neural network with parameters θ f_{θ} : loss on labeled (training) or unlabeled (test) nodes $\mathcal{L}_{train}, \mathcal{L}_{test}$: $\Phi(G)$: set of graphs under admissible (unnoticeable) perturbations In our paper we provide a proof of concept that our method can also modify

the node attributes to attack GNNs.

Challenges

- \Box The number of possible edge perturbations is in $O(N^{2\Delta})$
- The data (i.e. graph structure) is discrete, which means that gradientbased optimization is not directly applicable.
- Solving the bilevel optimization problem above involves training a graph neural network in the inner problem.

Adversarial Attacks on Graph Neural Networks via Meta Learning

Daniel Zügner, Stephan Günnemann

	_	Cora		_	Citeseer		Avg.
Attack	GCN	CLN	DeepWalk	GCN	CLN	DeepWalk	rank
Clean	16.6 ± 0.3	17.3 ± 0.3	20.3 ± 1.0	28.5 ± 0.9	28.3 ± 0.9	34.8 ± 1.4	5.2
DICE	18.0 ± 0.4	18.0 ± 0.2	22.8 ± 0.3	28.9 ± 0.3	29.1 ± 0.3	39.1 ± 0.4	4.0
Nettack*	-	-	-	31.9 ± 0.3	30.2 ± 0.4	41.2 ± 0.4	_
Meta-heuristic	21.8 ± 0.9	20.5 ± 0.3	25.0 ± 0.6	31.9 ± 0.7	30.1 ± 0.5	32.7 ± 0.5	3.4
Meta-gradient	24.5 ± 1.0	20.3 ± 0.4	28.1 ± 0.6	34.6 ± 0.7	32.2 ± 0.6	34.6 ± 0.7	2.2
Meta w/ Oracle	21.0 ± 0.5	21.6 ± 0.3	27.8 ± 0.7	34.2 ± 0.9	32.9 ± 0.6	36.1 ± 0.7	2.0

