
1 5 10 15 25

Edges changed (%)

60

80

A
cc

u
ra

cy
(%

)

Clean
DICE
A-Meta-Both
A-Meta-Train
Meta-Self

Professorship of Data Mining and Analytics
Department of Informatics
Technical University of Munich

Adversarial Attacks on Graph Neural Networks via Meta Learning
Daniel Zügner, Stephan Günnemann

May 6-9, 2019
New Orleans, USAICLR 2019 github.com/danielzuegner/gnn-meta-attack

Challenges
q The number of possible edge perturbations is in !(#$%)

q The data (i.e. graph structure) is discrete, which means that gradient-
based optimization is not directly applicable.

q Solving the bilevel optimization problem above involves training a graph
neural network in the inner problem.

Semi-supervised node classification
q Given an (attributed) graph and a small number of labeled

nodes, predict the labels of the remaining unlabeled nodes.
q Deep neural networks excel at this task. But are they also robust?
q Robustness is critical for graph learning methods as there are plenty of

adversaries where they are deployed (e.g., the Web).

Problem formulation
Goal: Given a limited budget of perturbations Δ, insert/delete edges so that
training on the resulting graph leads to weaker classification performance.

This corresponds to solving the following bilevel problem:

(): graph neural network with parameters +
ℒ-./01, ℒ-34-: loss on labeled (training) or unlabeled (test) nodes
Φ(6): set of graphs under admissible (unnoticeable) perturbations
In our paper we provide a proof of concept that our method can also modify
the node attributes to attack GNNs.

max
:;∈=(;)

ℒ-34- ()∗ :6 ?. A. +∗ = argmin
)
ℒ-./01 () (:6)

Cora Citeseer Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk rank
Clean 16.6 ± 0.3 17.3 ± 0.3 20.3 ± 1.0 28.5 ± 0.9 28.3 ± 0.9 34.8 ± 1.4 5.2
DICE 18.0 ± 0.4 18.0 ± 0.2 22.8 ± 0.3 28.9 ± 0.3 29.1 ± 0.3 39.1 ± 0.4 4.0
Nettack* - - - 31.9 ± 0.3 30.2 ± 0.4 41.2 ± 0.4 -
Meta-heuristic 21.8 ± 0.9 20.5 ± 0.3 25.0 ± 0.6 31.9 ± 0.7 30.1 ± 0.5 32.7 ± 0.5 3.4
Meta-gradient 24.5 ± 1.0 20.3 ± 0.4 28.1 ± 0.6 34.6 ± 0.7 32.2 ± 0.6 34.6 ± 0.7 2.2
Meta w/ Oracle 21.0 ± 0.5 21.6 ± 0.3 27.8 ± 0.7 34.2 ± 0.9 32.9 ± 0.6 36.1 ± 0.7 2.0

* Did not finish within three days on Cora-ML and PolBlogs

Predict on
Original graph Perturbed graph

Original graph 0.85 0.52
Perturbed graph 0.83 0.49

Trained on

Summary
q Graph neural networks (GNNs) can be successfully

poisoned by only small changes to the graph.
q We use techniques from meta-learning for adversarial

attacks on graph neural networks.
q Our attacks can lead to graph neural networks performing

worse in node classification than a linear classifier that
treats all samples independently.

Results

CLN GCN Log. reg.

50

60

70

Clean

Meta-Self (5%)

Left: GNNs perform worse on Citeseer after 5% edge changes than logistic
regression ignoring the graph altogether.
Right: Our meta-gradient-based attacks lead to the strongest decrease in
classification performance (dataset: Cora-ML).

Table: Misclassification rate after training on graphs with 5% modified
edges. Our attacks even transfer to unsupervised embeddings.

Analysis of attacks

De
ns

ity

Shortest paths Edge centrality (log) Node degree
0 5 10

Shortest path
(a)

D
en

si
ty

�15 �10 �5

log(CE)
(b)

1 4 16 64 256

Node degree
(c)

Adversarial edges Original edges

Adversarially inserted edges cannot be distinguished from normal edges
based on typical properties

Once trained on the poisoned data, GNNs also fail on the clean data!

Idea
q Perform poisoning adversarial attacks on graph neural networks by

backpropagating through the training phase to obtain meta-gradients.
q Approximate the classification loss on the unlabeled nodes ℒ-34-

via self-training.
q Relax the discreteness of the graph structure in order to obtain

(meta-)gradients but perform discrete perturbations (actions).

+$
∗

+G
∗

+$
∗

+H
∗

6H

6$

6G

Test loss surface

Training loss surface

+I

+G
∗

Training on 6G

Meta gradients
∇;ℒ-34-(()∗ 6)

‘Normal’ gradients
∇)ℒ-./01(()(K) 6)

+I+H
∗
Training on 6H

+I

Outer optimization:
max
;

ℒ-34- ()∗(6)

Inner optimization:
+∗ = min

)
ℒ-./01(() 6)

Training on 6$

Schematic view

Classification accuracy

Algorithm
q Train a two-layer graph convolutional network with linear activation

function for T steps using stochastic gradient descent with momentum.
q Predict the class labels of the unlabeled nodes and consider these as the

true labels, i.e. ℒ43LM ≈ ℒ-34- (self-training).

q Unroll the training procedure to compute the meta-gradients:

∇;
O3-/≔ ∇;ℒ43LM ()Q 6 ∈ ℝS×S

q More scalable alternative: heuristic meta-gradients. Idea: average the
inner gradients of the loss w.r.t. the graph structure during training.

q Select the edge to insert/delete with the largest meta-gradient while
enforcing unnoticeability constraints Φ(6) on the degree distribution.

1 5 10 15 25

Edges changed (%)

60

80

A
cc

u
ra

cy
(%

)

Clean
DICE
A-Meta-Both
A-Meta-Train
Meta-Self

?
?

?

