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Challenges
q The number of possible edge perturbations is in !(#$%)

q The data (i.e. graph structure) is discrete, which means that gradient-
based optimization is not directly applicable.

q Solving the bilevel optimization problem above involves training a graph
neural network in the inner problem.

Semi-supervised node classification
q Given an (attributed) graph and a small number of labeled 

nodes, predict the labels of the remaining unlabeled nodes.
q Deep neural networks excel at this task. But are they also robust?
q Robustness is critical for graph learning methods as there are plenty of

adversaries where they are deployed (e.g., the Web).

Problem formulation
Goal: Given a limited budget of perturbations Δ, insert/delete edges so that 
training on the resulting graph leads to weaker classification performance.

This corresponds to solving the following bilevel problem:

(): graph neural network with parameters +
ℒ-./01, ℒ-34-: loss on labeled (training) or unlabeled (test) nodes
Φ(6): set of graphs under admissible (unnoticeable) perturbations
In our paper we provide a proof of concept that our method can also modify 
the node attributes to attack GNNs.

max
:;∈=(;)

ℒ-34- ()∗ :6 ?. A. +∗ = argmin
)
ℒ-./01 () ( :6)

Cora Citeseer Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk rank 
Clean 16.6 ± 0.3 17.3 ± 0.3 20.3 ± 1.0 28.5 ± 0.9 28.3 ± 0.9 34.8 ± 1.4 5.2
DICE 18.0 ± 0.4 18.0 ± 0.2 22.8 ± 0.3 28.9 ± 0.3 29.1 ± 0.3 39.1 ± 0.4 4.0
Nettack*          - - - 31.9 ± 0.3 30.2 ± 0.4 41.2 ± 0.4 -
Meta-heuristic 21.8 ± 0.9 20.5 ± 0.3 25.0 ± 0.6 31.9 ± 0.7 30.1 ± 0.5 32.7 ± 0.5 3.4
Meta-gradient 24.5 ± 1.0 20.3 ± 0.4 28.1 ± 0.6 34.6 ± 0.7 32.2 ± 0.6 34.6 ± 0.7 2.2
Meta w/ Oracle 21.0 ± 0.5 21.6 ± 0.3 27.8 ± 0.7 34.2 ± 0.9 32.9 ± 0.6 36.1 ± 0.7 2.0

* Did not finish within three days on Cora-ML and PolBlogs

Predict on
Original graph Perturbed graph

Original graph 0.85 0.52
Perturbed graph 0.83 0.49

Trained on

Summary
q Graph neural networks (GNNs) can be successfully 

poisoned by only small changes to the graph.
q We use techniques from meta-learning for adversarial 

attacks on graph neural networks.
q Our attacks can lead to graph neural networks performing

worse in node classification than a linear classifier that
treats all samples independently.

Results
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Left: GNNs perform worse on Citeseer after 5% edge changes than logistic 
regression ignoring the graph altogether.
Right: Our meta-gradient-based attacks lead to the strongest decrease in 
classification performance (dataset: Cora-ML).

Table: Misclassification rate after training on graphs with 5% modified 
edges. Our attacks even transfer to unsupervised embeddings.
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Adversarial edges Original edges

Adversarially inserted edges cannot be distinguished from normal edges
based on typical properties

Once trained on the poisoned data, GNNs also fail on the clean data!

Idea
q Perform poisoning adversarial attacks on graph neural networks by 

backpropagating through the training phase to obtain meta-gradients.
q Approximate the classification loss on the unlabeled nodes ℒ-34-

via self-training.
q Relax the discreteness of the graph structure in order to obtain 

(meta-)gradients but perform discrete perturbations (actions).
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Classification accuracy

Algorithm
q Train a two-layer graph convolutional network with linear activation 

function for T steps using stochastic gradient descent with momentum.
q Predict the class labels of the unlabeled nodes and consider these as the 

true labels, i.e. ℒ43LM ≈ ℒ-34- (self-training).

q Unroll the training procedure to compute the meta-gradients:

∇;
O3-/≔ ∇;ℒ43LM ()Q 6 ∈ ℝS×S

q More scalable alternative: heuristic meta-gradients. Idea: average the 
inner gradients of the loss w.r.t. the graph structure during training.

q Select the edge to insert/delete with the largest meta-gradient while 
enforcing unnoticeability constraints Φ(6) on the degree distribution.
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