Professorship of Data Mining and Analytics Department of Informatics Technical University of Munich

Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking Aleksandar Bojchevski, Stephan Günnemann

Graph2Gauss - 3 key modeling ideas

1. Uncertainty

- Uncertainty: embedding nodes as Gaussian distributions captures uncertainty
- Personalized ranking: for node i, nodes in k-hop neighborhood should be closer to i than nodes in (k + 1)-hop neighborhood
- Inductiveness: generalizes to unseen nodes by learning a mapping from node features to embeddings 3.

Efficient optimization

Personalized ranking implies the following constraints:

$$D_{KL}(\mathcal{N}_{j}||\mathcal{N}_{i}) < D_{KL}(\mathcal{N}_{j'}||\mathcal{N}_{i}) \quad \forall i, \forall j \in N_{i}^{(k)}, \forall j' \in N_{i}^{(k')}, \forall k < k'$$

Embedding quality

naturally handles directed graphs

set of nodes in the k-hop neighborhood of node i

 $E_{ij} = D_{KL}(N_j || N_i)$

 $\mathcal{L} = \sum_{(i,j,j')} (E_{ij}^2 + \exp^{-E_{ij'}})$

Learning via energy-based loss closer nodes should have lower energy • naive optimization: $O(N^3)$ complexity

Node-anchored sampling strategy

Sample $\forall i, (j_1, \dots, j_K) \sim (N_i^{(1)}, \dots, N_i^{(K)})$ and optimize over implied constraints

- only few triplets seen (< 4.2%) to match performance
- lower gradient variance compared to uniform random sampling
- our optimization: O(N) complexity

Graph2Gauss shows strong performance for both link prediction and node classification tasks

Strong performance even when using only the network structure

Graph2Gauss is parameter and data efficient

- large performance gap for both small embedding size
- and in the sparse training setting (e.g. 15% edges)

Embedding uncertainty

Inductiveness

Visualization

G2G is truly inductive

- After training only needs attributes
- Able to embed nodes w/o edges

- Uncertainty correlates with neighborhood diversity
 - Diversity is number of distinct classes in a node's k-hop neighborhood
- Uncertainty reveals the intrinsic latent dimensionality of the graph
 - Detected latent dimensions \approx number ground-truth communities
- We can prune dimensions with high average uncertainty
 - Without a decrease in link prediction performance

- Maintains strong performance
 - Even for ¼ of the nodes hidden

Dataset	Log. Reg. 10%	G2G 10%	G2G 25%
Cora-ML	75.95	90.93	87.83
Cora	78.53	94.18	92.96
Citeseer	73.09	88.58	87.30
DBLP	67.55	85.06	83.09
Pubmed	86.83	92.22	90.20

2D Embedding of Cora-ML

April 30 – May 03, 2018 Vancouver, BC – Canada

github.com/abojchevski/graph2gauss